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Abstract: The beamforming technique has attracted considerable attention in wireless communication
due to its various advantages such as interference reduction and improved wireless resource efficiency.
However, the beam alignment between transmitting and receiving devices, which is fundamentally
required for the beamforming, poses a significant challenge due to the continuous variability of the
wireless channel. Recently, a deep learning-based technique has been proposed to predict narrow
beam indices by measuring wide beams. However, there is room for improvement in the performance
of the neural network architecture employed in this technique. Therefore, we suggest a novel deep
learning model architecture that incorporates a channel attention module for beam training. The
simulation results show a significant enhancement in performance with our scheme compared to
both a state-of-the-art approach and other existing methods across all scenarios. Particularly, we
confirm that even when reducing the number of wide beams used for measurement by approximately
50%, our proposed approach achieves a performance close to that of the state-of-the-art scheme.

Keywords: channel attention; deep learning; mmWave communications; beam prediction

1. Introduction

Millimeter-wave (mmWave) wireless communication systems [1–3] enable high data
rate communication due to their large bandwidth resources. However, high-frequency
wireless signals are subject to rapid attenuation with distance and are highly sensitive to
obstacles. To overcome these challenges, directional communication utilizing the multiple-
input multiple-output (MIMO) technology [4] is applied to ensure high beamforming
gain. Conventional beamforming techniques depend on narrow beams that necessitate
precise channel data and are susceptible to beam misalignment due to factors such as
movement or changing wireless channel environmental conditions. Furthermore, creating
and assessing a multitude of narrow candidate beams across the entire angular spectrum
results in substantial training expenses. One simple and direct method to address this cost is
to confine the beam search to those with a fixed angular separation. Subsequently, by using
the diminished received signals, we can forecast the optimal narrow beam. Nonetheless,
this technique may prove less efficacious in scenarios characterized by a low signal-to-noise
ratio (SNR), particularly when the actual angles of arrival and departure of the primary
path do not precisely align with the main lobe of the candidate beam.

In recent years, deep learning (DL) has garnered increasing focus as a promising
technology for 6G, particularly in the field of wireless communications [5]. DL has demon-
strated substantial progress with regard to both performance and efficiency, with notable
contributions in various areas of wireless communication, including channel state in-
formation (CSI) feedback [6], channel denoising [7], channel decoding [8,9], end-to-end
transceivers [10], and beam prediction [11–15]. This paper specifically focuses on DL-
assisted beam prediction. In a prior work [11], a method was introduced to forecast the
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best narrow beam by leveraging wide beam measurements to cover the entire angular
space. The authors performed a comparative study that involved evaluating both super-
resolution beam prediction and super-resolution image restoration techniques. During this
investigation, they created a dedicated convolutional neural network (CNN) optimized for
beam prediction.

Recently, Ma et al. [15] used CNN for beam prediction from wide beam signals but
faced noise sensitivity. To address this, they added LSTM to track user movements and
refine beam direction. However, the combined CNN-LSTM model still struggled to provide
adequate beamforming gain. For example, there are areas where the combined CNN-LSTM
model performs worse than the CNN model despite increased complexity. Therefore, we
focused on the need for a more effective neural network architecture.

Since the introduction of AlexNet [16], neural networks have conventionally been
constructed to be deep, enabling them to capture intricate characteristics with nonlin-
earities. Alternatively, there has been a surge in research focused on enhancing model
efficiency using methods other than increasing depth. This trend has been spurred by the
introduction of backbone structures such as DenseNet [17], ResNet [18], EfficientNet [19],
and ParNet [20].

Inspired by these effective architectural innovations, we have devised a novel neural
network structure based on attention mechanisms [21]. This architecture, named by channel
attention, proficiently extracts and accentuates features from complex high-dimensional
signals. In our experiments, conducted within the same framework as [15], we observed
that integrating the channel attention module into the combined CNN and LSTM structure
yields a substantial increase in beamforming gain.

Through experiments, we have confirmed that our proposed model demonstrates
superior performance from a normalized beamforming gain perspective when compared
to a state-of-the-art model and other existing models. Furthermore, when we applied
the optimal neighboring criterion (ONC) and maximum probability criterion (MPC) tech-
niques proposed in [15] to our model to reduce the wide beam measurement overhead,
we observed that despite a roughly 50% reduction in the number of wide beams for beam
measurement, our model’s performance closely approximates that of the state-of-the-art
model that utilizes all wide beams.

2. System Model

We focus on a downlink wireless communication system employing mmWave MIMO
technology where base station (BS) and user equipment (UE) are equipped with MTx and
MRx antennas, respectively. Within the scope of our assumptions, we contemplate a channel
configuration where antennas are positioned in a two-dimensional layout, utilizing uniform
linear arrays (ULAs).

2.1. Channel Model

We utilize a narrowband frequency-flat channel model featuring a line-of-sight (LOS)
path along with C non-line-of-sight (NLOS) clusters. We use HLOS and HNLOS to represent
the LOS and NLOS parts of the channel matrix H ∈ CMRx×MTx , respectively. Each part is
formulated as follows:

HLOS =

√
MTxMRx

ρLOS
αLOSaRx(θLOS)aH

Tx(φLOS), (1)

HNLOS =
C

∑
c=1

√
MTxMRx

ρc

Lc

∑
l=1

αc,l√
Lc

aRx(θc + θc,l)a
H
Tx(φc + φc,l). (2)

The LOS path is characterized by the pathloss ρLOS, angle-of-arrival (AoA) θLOS,
and angle-of-departure (AoD) φLOS. Similarly, the c-th cluster, which consists of Lc paths,
is characterized by the pathloss ρc, AoA θc and AoD φc. For the l-th path within the c-th
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cluster, we use αc,l , θc,l , and φc,l to represent the complex gain, AoA offset, and AoD offset,
respectively. The antenna response vectors are represented by

aTx(φ) =

√
1

MTx

[
1 ej2πdTx sin(φ)/λ · · · ej2π(MTx−1)dTx sin(φ)/λ

]T
, (3)

aRx(θ) =

√
1

MRx

[
1 ej2πdRx sin(θ)/λ · · · ej2π(MRx−1)dRx sin(θ)/λ

]T
, (4)

where dTx and dRx represent the antenna spacings, and λ stands for the wavelength. To sim-
plify, we assume dTx = dRx = λ/2. The transpose and conjugate transpose operations are
represented as (·)T and (·)H , respectively.

2.2. Beam Training Model

We explore the utilization of analog beamforming with phase shifters, where the
transmitting beam from the BS is represented by f ∈ CMTx×1, and the UE’s receiving
beam is represented as w ∈ CMRx×1. For m-th, the candidate transmitting beam and n-th
candidate receiving beam are expressed as

fm =

√
1

MTx

[
1 ejπ sin(γTx,m) · · · ejπ(MTx−1) sin(γTx,m)

]T
, (5)

wn =

√
1

MRx

[
1 ejπ sin(γRx,m) · · · ejπ(MRx−1) sin(γRx,m)

]T
, (6)

where m ∈ {1, 2, . . . , NTx} and n ∈ {1, 2, . . . , NRx}. γTx,m and γRx,n represent the beam
directions of the m-th transmitting beam and the n-th receiving beam, respectively. To en-
compass the entire angular range, we take into consideration the scenario where the
directions of the beam pairs for transmitting and receiving have been uniformly selected
from predetermined intervals (−ΓTx/2, ΓTx/2) and (−ΓRx/2, ΓRx/2), i.e.,

γTx,m = −ΓTx

2
+

2m− 1
2NTx

ΓTx, (7)

γRx,n = −ΓRx

2
+

2n− 1
2NRx

ΓRx. (8)

Considering the channel matrix H and an associated beam pair {f, w}, we can represent
the received signal y in the following manner:

y =
√

PwHHfx + wHn, (9)

where P is the transmission power, x is the transmitting signal with |x| = 1, and n ∈ CMRx×1

denotes AWGN vector with zero mean and variance of σ2, i.e., n ∼ CN (0MRx , σ2IMRx). To
simplify the analysis, we focus on selecting the transmitting beam f at the BS side, assuming
a single-antenna UE and omitting the receiving beam w. Due to the limited penetration
ability and substantial power loss through reflection in mmmWave channels, the power
of the LOS path is significantly higher than that of NLOS paths. As a result, the LOS path
exerts a predominant influence on mmWave channels, and the received signal components
from the NLOS path can be considered as a form of noise. It can be represented by
the following

y =
√

PHLOSfx +
√

PHNLOSfx + n (10)

=
√

PHLOSfx + neq, (11)

where the composite noise term neq =
√

PHNLOSfx + n.
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The goal of beam training is to determine a beam pair {fm∗ , wn∗} that yields the highest
gain. This objective can be formulated as the following optimization problem:

{m∗, n∗} = arg max
m∈{1,2,...,NTx},
n∈{1,2,...,NRx}

∣∣∣wH
n Hfm

∣∣∣2. (12)

One straightforward approach to address the aforementioned optimization is to em-
ploy a brute-force search. In this scheme, all possible candidate beams are systematically
explored to identify the beam pair that yields the highest power in the measured signal.
Nonetheless, implementing this scheme necessitates a large number of measurements,
specifically NTxNRx, which results in a substantial training overhead. In order to resolve
this issue, we can investigate the utilization of a two-level beam search technique, in-
corporating a multi-resolution codebook. The codebook is organized in a hierarchical
manner, with wide beam codewords at the primary level and narrow beam codewords
at the subsequent level. This configuration offers a promising method for minimizing
training overhead.

In [15], a narrow beam training scheme utilizaing a wide beam codebook is introduced.
The received signal corresponding to the m-th wide beam is denoted as yw,m, and all
received signals from the wide beams are combined into a single received signal vector

yw =
[
yw,1 yw,2 · · · yw,NTx/sTx

]T
where sTx defines the number of narrow beams within

each wide beam. Due to the increased angular resolution provided by the narrow beam
codebook, the objective of the scheme is to forecast the index m∗ of the best narrow beam
based on the received wide beam signal vector. As the number of available candidate
narrow beams is constrained, this prediction task can be viewed as a multi-classification
problem, where each class represents a specific narrow beam. The prediction model is
mathematically formulated as a function f1(·), as described below:

m∗ = f1(yw), m∗ ∈ {1, 2, . . . , NTx}. (13)

Implementing this prediction model using conventional estimation methods is chal-
lenging for two main reasons. Firstly, the correlation between yw and φLOS demonstrates a
strongly nonlinear behavior. Secondly, obtaining the distribution of the composite noise
term neq is a demanding task due to the variability of NLOS paths in different propagation
environments. These two factors contribute to the complexity of the estimation process
using conventional methods. As a result, DL is employed, leveraging its strong capability
to learn complex nonlinear relationships, in order to facilitate the implementation of the
prediction task.

3. Calibrated Beam Training with Channel Attention

The authors in [15] employed an architecture comprising CNN and LSTM for the
calibrated beam training (CBT). The CNN module was responsible for expanding the
2-dimensional signal into a 256-dimensional signal, thereby facilitating characteristic extrac-
tion. Meanwhile, the LSTM was utilized to handle continuous input signals, making the
model robust to noise and enabling it to capture signal variations over time. However, our
simulations indicated that the double-layered CNN module was inefficient in characteristic
abstraction, and depending solely on the LSTM had limitations in addressing this issue.
Consequently, we suggest a novel structure that efficiently captures characteristics.

The architecture of our model is illustrated in Figure 1. Following the t-th training
session, the received wide beam signals {yw,1, yw,2, . . . , yw,t} undergo initial processing
through preprocessing, CNN, and channel attention modules to extract relevant features
from the received signals. Following that, the LSTM module leverages the received signals
from both the ongoing and previous beam training sessions to further fine-tune the narrow
beam direction. Finally, the output module generates probabilities { p̂1,t, p̂2,t, . . . , p̂NTx,t},
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with the candidate beam exhibiting the highest probability being selected as the opti-
mal choice.

Figure 1. Proposed CNN-CA-LSTM model for the CBT scheme.

3.1. Preprocessing Module

Due to the complex-valued nature and large dynamic ranges of the received signal
vector yw, it cannot be directly fed into the CNN module. To address this, the preprocessing
module initially normalizes yw by dividing it by the maximum magnitude of the elements.
Mathematically, this is represented as follows

yN
w =

yw
‖yw‖∞

. (14)

The normalized signal vector yN
w = <(yN

w) + j=(yN
w) is split into the real term <(yN

w)
and the imaginary term =(yN

w), which are provided as input to the subsequent convolu-
tion module.

3.2. Convolutional Neural Network Module

To derive hidden features from <(yN
w) and =(yN

w), multiple convolutional layers are
employed. After each layer, a rectified linear unit (ReLU) activation layer is sequentially
applied, enabling non-linear fitting capabilities. To prevent the model from becoming
overly complex, a max-pooling is applied after the last ReLU activation. The max-pooling
layer reduces each feature vector to a single scalar value through downsampling. The CNN
module is depicted in Figure 2.

3.3. Channel Attention Module

A multi-scale feature map r obtained by the convolution module is considered as the
input of our channel attention module. It goes through two different branches. On the left
branch, shown in Figure 3, we use 1× 1 convolution, followed by a batch normalization,
to compress the channel-wise information, which can be represented as

u = BN(Conv(r)). (15)
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On the right branch, a global average pooling (GAP) is employed to gather comprehen-
sive spatial information on a global scale from the feature map r. The k-th feature channel
element of the pooled feature g is calculated as

gk =
1

H ×W

H

∑
i=1

W

∑
j=1

rk(i, j), (16)

where rk is the k-th feature channel element of the feature map r. H and W denote the size
of the vertical and horizontal dimensions of the feature map r, respectively.

Figure 2. CNN module for the proposed CNN-CA-LSTM model.

The GAP compresses spatial dimensions and generates channel-wise statistics. We
also connect 1× 1 convolution with GAP for channel alignment with u. An adaptive soft
attention mechanism is employed across channels to flexibly determine different spatial
scales, guided by the information in g. To determine the importance of each spatial scale,
a soft assignment weight is designed by

v = Sigmoid(Conv(g)). (17)
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Here, we apply the Sigmoid to re-calibrate the weight of the feature channel. Finally,
we perform element-wise product � on the refined weight v and the corresponding feature
map u, and apply the activation function Sigmoid-weighted linear unit (SiLU), as follows

z = SiLU(u� v), (18)

where the SiLU, also known as the swish function, is composed of the original input
multiplied by the Sigmoid function applied to the input, i.e., SiLU(x) = x · sigmoid(βx).
In our model, we set β = 1.

Figure 3. Proposed channel attention module.

3.4. Long Short-Term Memory Module

We present the formulation of the CBT scheme, which leverages the measured signals
obtained from previous iterations of beam training. We make the assumption that the beam
training process takes place at regular intervals, and we use the notation yw,t to represent
the measured signals from the t-th wide beam training.

To ascertain the best narrow beam m∗t during the t-th wide beam training session, we
leverage the received signals obtained from previous wide beam training sessions, denoted
as {yw,1, yw,2, . . . , yw,t−1}, and the current received signal yw,t. This task of prediction can
be viewed as a problem of multi-class classification, employing a function f2(·), as follows

m∗t = f2({yw,1, yw,2, . . . , yw,t}), m∗t ∈ {1, 2, . . . , NTx}. (19)

Since the AoD of the LOS path φLOS changes non-linearly with the movement of a
UE, we employ a DL model to facilitate the prediction task. In contrast to the CNN-based
model proposed in [15], in the LSTM-based model, the received signals from consecutive
wide beam trainings and their corresponding best narrow beam indices for the UE are
stacked in chronological order. This arrangement allows us to extract features related to
the movement of the UE and forms a training sample.

Within the LSTM module, the current time slot input zt is combined with the cell
state and output {ct−1, ht−1} from the previous time slot. This joint input is then passed
through the LSTM at time slot t, allowing the LSTM to capture and learn features from
previous inputs. The LSTM module generates characteristic features for optimal narrow
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beam prediction by utilizing all successive received values and passes them to the output
module. The LSTM structure for the proposed model is described by Figure 4. In the figure,
σ(·) and tanh(·) represent the sigmoid and hyperbolic activation functions, respectively.
Among the two outputs of LSTM module, ct and ht, only ht serves as the input to the
output module.

Figure 4. Basic LSTM structure for the proposed CNN-CA-LSTM model.

3.5. Output Module

To forecast the most suitable narrow beam among the candidate beams, we incorporate
a fully connected (FC) layer after the LSTM module. This FC layer is responsible for
converting the extracted features into representations that correspond to the candidate
beams. Subsequently, to ensure that the outputs are in the form of probabilities, a softmax
activation function is utilized to normalize the output values. Mathematically, this can be
expressed as follows

p̂ = Softmax(FC(h)), (20)

where p̂ is a probability vector that signifies the probabilities associated with each beam
being the optimal beam, while z corresponds to the output vector generated by the LSTM
module. Finally, we select the narrow beam with the maximum probability as the ultimate
choice, i.e.,

m̂∗ = arg max
m∈{1,2,...,NTx}

p̂m, (21)

where p̂m denotes the probability of the m-th candidate beam being the best choice.
We use a cross entropy function that is a commonly used cost function in classification

tasks. It can be represented by

Cost = −
NTx

∑
m=1

pm log p̂m, (22)

where the value of pm is equal to 1 when the m-th narrow beam is predicted as the best,
and it is 0 otherwise.
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4. Adaptive Calibrated Beam Training with Channel Attention

Following a methodology akin to the one proposed in [15], we introduce a channel
attention-assisted adaptive CBT scheme aimed at mitigating the overhead associated with
wide-beam measurements. In this scheme, we selectively train a subset of wide beams,
utilizing received signals from previous beam training sessions. To initially ascertain
the AoD of the LOS path, denoted as φLOS, across the entire angular space, we conduct
an initial wide-beam training session where signals from all candidate wide beams are
measured. Following this, only a subset of wide beams necessitates training, and we utilize
the corresponding received signals to forecast the best narrow beam index.

In contrast to the adaptive CBT model introduced in [15], we have introduced a new
channel attention module. The architecture of our channel attention-based adaptive CBT
model is depicted in Figure 5. This structure effectively extracts the characteristics of wide
beams from received signals, enabling the model to maintain satisfactory narrow beam
prediction performance even when the number of wide beams used for measurement is
reduced, as in partial beam training environments.

Figure 5. Proposed adaptive CNN-CA-LSTM model for the CBT scheme.

In order to identify candidate wide beams in the partial beam training, we employ
two criteria introduced in [15], ONC and MPC. Let K represent the number of wide beams
used for measurements during the t-th wide beam training session, where K < NTx/sTx
and t > 1. We denote the corresponding indices as Lw,t.

The ONC’s objective is to choose wide beams whose directions are closest to φLOS,t.
However, φLOS,t cannot be precisely determined. To approximate φLOS,t suitably, we take
note that the UE’s location during t-th wide beam training session is in close proximity to the
location associated with the previous (t− 1)-th wide beam training session. Consequently,
we suggest approximating φLOS,t by utilizing the direction of the previously predicted
optimal narrow beam.

The MPC relies on the assumption that the predicted probabilities reflect the quality
of the beams. It chooses wide beams with the highest probabilities from the (t − 1)-th
prediction. It is important to note that the prediction results offer probabilities only for
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narrow beams, not wide beams. To approximate the probability for the m-th wide beam,
we aggregate the probabilities of all narrow beams that fall within the m-th wide beam.

5. Enhanced Adaptive Calibrated Beam Training with Channel Attention

The adaptive CBT scheme determines which wide beams to train based on the out-
comes of prior beam predictions. However, this approach may become outdated in mobile
scenarios if the AoD of the LOS path, denoted as φLOS, undergoes variations. To address this
challenge and effectively track the changing AoD of the LOS path φLOS, we can leverage the
received signals from previous beam training sessions to forecast the present UE location
ahead of time. This allows us to calibrate the choice of wide beams to be trained, thereby
further enhancing received SNRs. This scheme is called enhanced adaptive CBT [15].

In this section, we suggest an enhanced adaptive CBT scheme with channel attention,
building upon our previously introduced channel attention approach. The structure of our
channel attention-based enhanced adaptive CBT model is illustrated in Figure 6. Our atten-
tion structure effectively extracts the characteristics of wide beams, positively influencing
the training of the auxiliary LSTM module for wide beam prediction. These advantages
contribute to an enhancement in the final narrow beam prediction performance.

Figure 6. Proposed enhanced adaptive CNN-CA-LSTM model for the CBT scheme.

Specifically, in the channel attention-assisted enhanced adaptive CBT scheme, to iden-
tify wide beams for the t-th wide beam training session, an auxiliary LSTM module is
utilized. The auxiliary LSTM module anticipates the t-th optimal wide beam index ahead
of time, leveraging received signals from previous wide beam training sessions denoted
as {yw,1, ywp,2, . . . , ywp,t−1}. The output of the auxiliary LSTM model is represented as
predicted with wide beam probabilities, denoted as { p̂w

1,t, p̂w
2,t, . . . , p̂w

NTx/sTx,t}, with the wide
beam having the highest predicted probability being determined as the best wide beam.

In order to train the entire model, including the auxiliary LSTM, we combine the costs
of both narrow beam predictions, denoted as Costn, and wide beam predictions, denoted as
Costw, using a weight coefficient µ. This combination is expressed as Cost = Costn + µCostw.
The coefficient µ should be set to an appropriate value depending on how much the wide-
beam prediction performance contributes to the final narrow-beam prediction. This can be
optimized through sufficient preliminary experiments and performance analysis. In this
paper, we set the value to 1. Within the enhanced adaptive CBT scheme, the two criteria,
ONC and MPC, can also be applied, similar to the adaptive CBT scheme.
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6. Numerical Results

We carried out simulations utilizing the COST2100 channel model [22], following the
methodology and system parameters employed in [15]. We generated a dataset comprising
20,480 samples, with 80% dedicated to training, while the remaining 20% is reserved
for testing. In our evaluation, we included the CNN-based model and the CNN-LSTM
hybrid model introduced in [15], along with three baseline models: (1) A narrow beam
prediction scheme [12] relies on calculating the ratio of the beamforming gains between
the chosen wide beam and its adjacent wide beams; (2) A FC neural network-based beam
prediction scheme [13], which utilizes NTx/sTx measurements of sparsely sampled narrow
beams; (3) Active learning-based beam prediction scheme [14], making use of NTx/sTx
measurements of hierarchical beams with a target resolution of NTx.

The detailed structure of our model is specified in Table 1. In the table, li denotes the
count of input feature channels, while lo signifies the count of output feature channels.
In the convolution layers, the parameters (p1, p2, p3) correspond to the filter size, stride
size, and padding size, respectively. We denoted batch normalization as BN and dropout as
DO at each layer. Throughout the training phase, the model undergoes a total of 80 epochs.
The Adam optimizer is employed to optimize the trainable parameters.

Table 1. Detailed structure of the proposed models.

Module Layer Parameters

CNN

Convolution li = 2, lo = 64, (3, 3, 1), BN
ReLU li = 64, lo = 64

Convolution li = 64, lo = 256, (3, 1, 1), BN
ReLU li = 256, lo = 256

Max-pooling li = 256, lo = 256

Channel attention

Convolution li = 256, lo = 256, (1, 1, 0), BN

Global average pooling li = 256, lo = 256
Convolution li = 256, lo = 256, (1, 1, 0)

Sigmoid li = 256, lo = 256

Multiplication li = (256, 256), lo = 256
SiLU li = 256, lo = 256

LSTM LSTM li = 256, lo = 256, DO = 0.2
LSTM li = 256, lo = 256, DO = 0.2

Auxiliary LSTM LSTM li = 256, lo = 256, DO = 0.2
LSTM li = 256, lo = 256, DO = 0.2

Narrow beam output FC li = 256, lo = 64, DO = 0.3
Softmax li = 64, lo = 64

Wide beam output FC li = 256, lo = 16, DO = 0.3
Softmax li = 16, lo = 16

Initially, we explored the influence of the number of training sessions t for wide beams
on the achievable normalized beamforming gain GN, as given in Figure 7. The normalized
beamforming gain GN is defined as

GN =
|Hf m̂∗ |2
|Hf m∗ |2

, (23)

where f m̂∗ and f m∗ are the actual best narrow beam and the predicted best narrow beam, re-
spectively. We consider 16 candidates for wide beams, which corresponds to NTx/sTx = 16.
It is important to note that the CNN-assisted CBT scheme and all three baseline schemes
remain independent of prior information, resulting in a constant beamforming gain re-
gardless of t. The CNN-LSTM assisted CBT scheme demonstrates improved performance
with increasing t. However, when t = 1, it demonstrates underwhelming performance
compared to the CNN-assisted CBT. This suggests that there are limitations to enhancing



Electronics 2023, 12, 4318 12 of 15

performance solely through the LSTM structure. On the contrary, our scheme consistently
achieves the highest performance across all training numbers, thanks to the introduced
channel attention module.

Figure 7. Normalized beamforming gain for various CBT schemes; baseline 1 [12], baseline 2 [13],
baseline 3 [14], CNN assisted CBT [15], CNN-LSTM assisted CBT [15], and proposed CNN-CA-LSTM
assisted CBT.

Figure 8 demonstrates that the effectiveness of our approach is confirmed by the
cumulative distribution function (CDF) of the predicted narrow beam gain. As depicted
in Figure 7, the normalized beamforming gains GN of all methods converge when t ≤ 6.
Consequently, we rely on the GN results after model convergence, specifically, utilizing
the average GN values over t = 6 to 10. As a result, Figure 8 also affirms the excellent
prediction performance of our scheme in comparison to the five previous schemes.

Figure 9 illustrates the normalized beamforming gain GN for adaptive CBT approaches.
We set the candidate number of wide beams, K, used for partial beam training to 7. As
anticipated, GN exhibits an upward trend with increasing t for both ONC and MPC-based
schemes, as a larger number of previously received signals offers more precise information
regarding UE movement. Beyond t = 6, it becomes apparent that GN stabilizes across all
scenarios. After convergence, we verified that the performance of the proposed CNN-CA-
LSTM assisted CBT scheme improved by approximately 3–4% compared to the performance
of the conventional CNN-LSTM-assisted CBT scheme for both ONC and MPC methods.
Furthermore, we confirmed that it achieves performance close to the conventional CNN-
LSTM assisted CBT scheme, which uses 16 candidate beams, despite reducing the number
of wide beams required for measurement for the narrow beam prediction from 16 to 7,
resulting in an approximately 50% reduction.

Figure 10 shows the normalized beamforming gain GN for enhanced adaptive ap-
proaches. In the experiment, we considered the case where the number of candidates K
for the wide beam used for partial beam training is 7. Comparing the results in Figure 9,
it can be observed that applying the enhanced adaptive approach to the proposed CNN-
CA-LSTM-assisted CBT scheme yields better performance than applying the adaptive
approach alone. This finding underscores the enhanced accuracy of UE location tracking in
mobile scenarios achieved by the auxiliary LSTM. Notably, this performance enhancement
becomes even more pronounced when the MPC technique is applied.
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Figure 8. CDF of the predicted narrow beam gains for various CBT schemes; baseline 1 [12], baseline
2 [13], baseline 3 [14], CNN assisted CBT [15], CNN-LSTM assisted CBT [15], and proposed CNN-
CA-LSTM assisted CBT.

Figure 9. Normalized beamforming gain for adaptive CBT schemes; adaptive CNN-LSTM assisted
CBT (ONC) [15], proposed adaptive CNN-CA-LSTM assisted CBT (ONC), adaptive CNN-LSTM
assisted CBT (MPC) [15], and proposed adaptive CNN-CA-LSTM assisted CBT (MPC).
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Figure 10. Normalized beamforming gain for enhanced adaptive CBT schemes; enhanced adaptive
CNN-LSTM assisted CBT (ONC) [15], proposed enhanced adaptive CNN-CA-LSTM assisted CBT
(ONC), enhanced adaptive CNN-LSTM assisted CBT (MPC) [15], and proposed enhanced adaptive
CNN-CA-LSTM assisted CBT (MPC).

7. Conclusions

We conducted research on millimeter-wave beam alignment techniques using deep
learning approaches for wireless communication systems. The incorporation of our
proposed channel attention module has notably enhanced the performance of narrow
beam forecasting by efficiently capturing characteristics from received wide beam signals.
The simulations results consistently demonstrated that our CNN-CA-LSTM-assisted CBT
scheme outperformed existing methods across various simulation environments. Moreover,
the proposed CNN-CA-LSTM-assisted CBT scheme mitigates the performance degrada-
tion resulting from the application of two overhead reduction methods, ONC and MPC,
to the state-of-the-art CNN-LSTM-assisted CBT scheme, ultimately achieving performance
comparable that of the state-of-the-art scheme with full overhead.
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