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Abstract: Multiple-instance learning has become popular over recent years due to its use in some
special scenarios. It is basically a type of weakly supervised learning where the learning dataset
contains bags of instances instead of a single feature vector. Each bag is associated with a single
label. This type of learning is flexible and a natural fit for multiple real-world problems. MIL has
been employed to deal with a number of challenges, including object detection and identification
tasks, content-based image retrieval, and computer-aided diagnosis. Medical image analysis and
drug activity prediction have been the main uses of MIL in biomedical research. Many Algorithms
based on MIL have been put forth over the years. In this paper, we will discuss MIL, the background
of MIL and its application in multiple domains, some MIL-based methods, challenges, and lastly, the
conclusions and prospects.

Keywords: artificial intelligence; deep learning; multiple instance learning; weakly supervised
learning

1. Introduction

In machine learning, basically, a computer program is given some tasks to complete; if
the computer program’s measured performance on these tasks improves as it obtains more
and more experience completing these tasks, it is claimed that the machine has learned
from its experience. As a result, the machine makes decisions and predictions according to
data. Traditional machine learning has three major segments, namely supervised learning,
unsupervised learning, and reinforcement learning. Supervised machine learning is a
subset of machine learning in which the algorithm learns using labeled training data. In
this method, the model is given input data and labels for the expected outputs. For the
model to accurately predict future events or categorize previously unidentified data, it must
understand the relationship between inputs and outputs. In other words, when training
instances have known labels, and there is consequently the least amount of ambiguity,
supervised learning datasets are based on labeled inputs and their corresponding outputs,
which seeks to develop a notion for accurately identifying unknown occurrences. On the
other hand, Unsupervised machine learning is a sort of machine learning in which the
algorithm is tasked with discovering patterns, structures, or groupings within the data on
its own after being provided unlabeled data. There are no predetermined output labels
to direct the learning process, in contrast to supervised learning. Instead, using methods
like clustering or dimensionality reduction, the program looks for inherent relationships or
commonalities between the data points. In short, when the training instances do not have
labels, and there is consequently the greatest amount of uncertainty, unsupervised learning
tries to understand the structure of the underlying patterns of instances. Algorithms for
reinforcement learning (RL) use the learning approach by interacting with the environment
(sequences of actions, observations, and rewards). Robotics and resource allocation are
two areas where RL-based techniques have demonstrated outstanding performance. These
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have made them one of the most promising prospects for achieving the aim of artificial
intelligence (AI), creating autonomous entities that can learn in complex and unknowable
contexts [1].

The amount of data required to handle significant problems has grown tremendously
in recent years. A considerable amount of labeling work is necessary for large amounts of
data. Since weak supervision is typically easier to get, approaches with weak supervision,
like MIL, might lessen this load. For instance, object detectors could be trained to utilize
web-sourced images and their associated labels as weak supervision instead of manually
labeled data sets. Instead of spending money and time on expensive manual annotations,
which can be only provided by experts, as the case may be in medical images for which only
patient diagnoses are accessible, can be used to train computer-aided diagnosis algorithms;
MIL enables the use of partially annotated data to complete the tasks with fewer resources.

The robotics industry, virtual assistants (for example, Google, etc.), video games,
pattern recognition, natural language processing (NLP), data mining, traffic forecasting,
online public transportation systems (one example is predicting surge prices by the Uber
app during peak hours), product recommendation, share market prediction, healthcare
diagnosis, online fraud detection, and search engine result prediction and refinement (for
example, Google search results) are just a few of the fields where machine learning is
used [2].

MIL is a type of weakly supervised learning. Training data are arranged in groupings
called bags for multiple-instance learning (MIL), which uses these data. Only complete sets
are subject to supervision; the individual labels of the instances contained in the bags are
not made available. The research community has given this problem formulation much
attention, especially in the last few years when the amount of data required to address
major problems has proliferated. A significant amount of labeling work is required due
to the large amounts of data. As stated earlier, in MIL, inputs are arranged in bags, and
each bag has multiple instances/inputs. A single label is associated with a bag full of
instances rather than every single instance. Unlike supervised learning, where all instances
have predefined labels, multi-instance learning uses training instances with unknown and
ambiguous labels. This arrangement of MIL is gaining popularity because of its flexibility
as it leverages weakly/ambiguously annotated data [3]. Figure 1 shows the concept of
single instance learning and multi-instance learning [4].
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Multi-instance learning has garnered much interest from the machine learning com-
munity since multi-instance problems are widespread yet distinct from those handled by
prior learning frameworks. A bag in MIL is marked as positive as positive if there is at
least a single positive instance and labeled as negative if all of the instances in the bag are
negative [5], as illustrated in Figure 2.
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Figure 2. Positive and negative bags [5].

The main goal of applying MIL is to classify and correctly predict unseen bags of data
based on the training data (labeled data) [6]. According to this paradigm, there is some
ambiguity in the data on how the labels were assigned. As mentioned above, labels are
given to sets or bags of inputs instead of label pairs, which is how the learning process is
fed. The MIL assumes that no less than one positive input is present in every positive bag,
which limits the labels to binary. Since the true input labels are unknown during training,
they can be seen as latent variables. Contrary to reinforcement learning, where there is a
delay in the labeling of the training instances, multi-instance learning does not have any
such delay. Popular learning techniques like decision trees and neural networks, which
ignore the properties of multi-instance issues, have been found to be ineffective in this
situation [7]. Consider the simple example for a better understanding of the MIL concept,
shown in Figure 3 below. There are some keychains with multiple keys. People can enter a
special room with the use of a special key. Some people have access to that particular room,
while others do not. We must first find that specific key among all the “positive” keychains
in order to unravel the puzzle of who would be able to enter the room. The only way we
can adequately categorize all the keychains is if we can locate the specific key. Therefore,
keychains containing that specific key are positive, whilst others are negative [8,9]; in this
example shown in Figure 3, that key is the green key.



Electronics 2023, 12, 4323 4 of 25Electronics 2023, 12, x FOR PEER REVIEW  4  of  25 
 

 

 

Figure 3. Keychain example for MIL. 

In addition, a variety of problems can be naturally phrased as MIL problems. For 

instance, the aim of the drug activity prediction issue is to foretell whether a given mole-

cule will cause a specific effect. A molecule can adopt a variety of forms that either result 

in the desired action or not. It is impossible to observe how different conformations affect 

one another. As a result, molecules must be viewed as a collection of shapes, which is why 

the MIL formulation is used. Over the past 20 years, MIL has been employed more and 

more in many different application sectors because of its appealing qualities, including 

image and video classification, document and sound classification, sound classification, 

content-based image retrieval, and face recognition. Apart from this, MIL is being used in 

various other disciplines, such as medical imaging. Multiple instance learning is utilized 

to recognize and classify cancers on whole slide images (WSI). In natural language pro-

cessing, it is also possible to classify documents based on their content [10]. 

In this paper, we will review various domains where MIL is applicable, along with 

some MIL algorithms, some challenges while  implementing MIL, and  the conclusions. 

The key contribution of this review is to create awareness by exposing the various appli-

cation areas  in which MIL can be utilized  for easy problem-solving  in case of partially 

labeled data availability scenarios. Specifically, we carried out an inventory of all the ex-

isting MIL methods in their various application domains, on which we demonstrated the 

potential of MIL to revolutionize problem-solving in a partially labeled data context.   

2. Background Knowledge 

The challenge of correctly predicting the degree of activity of medicinal drug mole-

cules served as the initial inspiration for the MIL study. Following that, numerous MIL 

techniques were put out,  including  learning axis-parallel concepts Dietterich et al. [10], 

extended Citation (kNN) k-nearest neighbors (Wang and Zucker) [11], and others. They 

have been used for various tasks, from stock market forecasting to text classification and 

image concept learning. 

Dietterich et al. [10] looked at the issue of drug activity prediction in the early 1990s. 

The objective was to give learning systems the ability to determine via analysis of a data-

base of existing molecules whether a novel molecule was suitable for producing a certain 

medicine. The majority of medications or drugs are composed of tiny molecules that act 

by attaching to bigger protein molecules like enzymes and cell-surface receptors. One of 

the molecules’ low-energy configurations that are eligible to make drugs can bind to the 

intended area tightly, whereas none of the low-energy configurations of molecules that 

are not capable of making drugs can. The main challenge in predicting drug activity is 

that every molecule could have a variety of alternative low-energy formations, as shown 

in Figure 4. However, biochemists only knew whether a molecule was qualified to make 

a drug or not which of its alternative low-energy shapes would result in qualification [5]. 

Figure 3. Keychain example for MIL.

In addition, a variety of problems can be naturally phrased as MIL problems. For
instance, the aim of the drug activity prediction issue is to foretell whether a given molecule
will cause a specific effect. A molecule can adopt a variety of forms that either result in the
desired action or not. It is impossible to observe how different conformations affect one
another. As a result, molecules must be viewed as a collection of shapes, which is why the
MIL formulation is used. Over the past 20 years, MIL has been employed more and more in
many different application sectors because of its appealing qualities, including image and
video classification, document and sound classification, sound classification, content-based
image retrieval, and face recognition. Apart from this, MIL is being used in various other
disciplines, such as medical imaging. Multiple instance learning is utilized to recognize
and classify cancers on whole slide images (WSI). In natural language processing, it is also
possible to classify documents based on their content [10].

In this paper, we will review various domains where MIL is applicable, along with
some MIL algorithms, some challenges while implementing MIL, and the conclusions. The
key contribution of this review is to create awareness by exposing the various application
areas in which MIL can be utilized for easy problem-solving in case of partially labeled
data availability scenarios. Specifically, we carried out an inventory of all the existing MIL
methods in their various application domains, on which we demonstrated the potential of
MIL to revolutionize problem-solving in a partially labeled data context.

2. Background Knowledge

The challenge of correctly predicting the degree of activity of medicinal drug molecules
served as the initial inspiration for the MIL study. Following that, numerous MIL techniques
were put out, including learning axis-parallel concepts Dietterich et al. [10], extended
Citation (kNN) k-nearest neighbors (Wang and Zucker) [11], and others. They have been
used for various tasks, from stock market forecasting to text classification and image
concept learning.

Dietterich et al. [10] looked at the issue of drug activity prediction in the early 1990s.
The objective was to give learning systems the ability to determine via analysis of a database
of existing molecules whether a novel molecule was suitable for producing a certain
medicine. The majority of medications or drugs are composed of tiny molecules that act
by attaching to bigger protein molecules like enzymes and cell-surface receptors. One of
the molecules’ low-energy configurations that are eligible to make drugs can bind to the
intended area tightly, whereas none of the low-energy configurations of molecules that are
not capable of making drugs can. The main challenge in predicting drug activity is that
every molecule could have a variety of alternative low-energy formations, as shown in
Figure 4. However, biochemists only knew whether a molecule was qualified to make a
drug or not which of its alternative low-energy shapes would result in qualification [5].
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Figure 4. Changing the shape of molecule w.r.t rotating internal bond [5].

By treating all of the low-energy configurations of the “good” molecules as positive
instances and all of the low-energy configurations of the “bad” molecules as negative
ones, supervised learning algorithms provide a clear answer. A “good” molecule can have
dozens of low-energy configurations, but only one of them may actually be a “good” shape,
as demonstrated by Dietterich et al. [10], leading to a large false positive noise that makes it
difficult for such an approach to be effective.

This multiple-instance learning problem was resolved using the APR algorithm. An
axis-parallel hyper-rectangle (APR) is looked up in the feature space. This APR should,
intuitively, include a minimum of one instance from every positive bag whilst dismissing
all cases from the negative bags. It attempts to locate suitable rectangles with parallel axes
by combining the qualities. To locate such a hyper-rectangle, Dietterich et al. [10] proposed
three algorithms: An “outside-in” algorithm builds the smallest APR that encapsulates
all instances in positive bags after that shrinks the APR to exclude false positives; The
smallest APR that confines all instances from positive bags is determined using a “stan-
dard” algorithm; an “inside-out” algorithm begins with a seed point and afterward grows a
rectangle from it intending to find the smallest APR that covers a minimum of one instance
per positive bag but no instances from negative bags. The approach was tested using the
Musk dataset, which serves as a real-world test set for drug activity prediction and the
truly well-known benchmark in multiple-instance learning. The APR algorithm “inside
out” delivered the greatest outcomes despite being created with Musk data in mind. Like-
wise, Qi Wang et al. [12] investigated saliency detection using multiple instance learning.
Furthermore, MIL can also be used for the classification of histopathology breast cancer
images [13].

Multi-instance learning is something that is not just limited to drug discovery. MIL was
initially used for image classification and categorization by Maron and Lozano-Perez [14]
and later created the Diverse Density framework in 1998. One or more fixed-size sub-
images are referred to as an instance of an image, and the entire picture is referred to as the
bag of instances. An image is classified as positive if it embodies the intended scene, such
as a waterfall; otherwise, it is classified as negative. One can employ Multiple instance
learning to discover the traits of the sub-images that make up the target scene. Since then,
various tasks, such as text classification and stock market forecasting, have been carried
out using these frameworks.

Danyi Xiong et al. [15] applied MIL for the detection of cancer using T-cell Receptor
Sequencing, also known as TCR sequencing. TCR sequences help distinguish cancer
cells from normal tissues and reflect a person’s T-cell immunity system, which explains
whether the cancer cells are increasing in the body or not. In the human body(bag), many
T-cells contain different TCRs(instances). It is possible to use TCR structural properties
to determine whether or not a patient has a tumor. TCR reconstruction software like
TRUST. A computational tool called TCR Receptor Utilities for Solid Tissue uses unselected
RNA sequencing data profiles from solid tissues, including malignancies, to assess TCR



Electronics 2023, 12, 4323 6 of 25

sequences and MiTCR (An open-source program called MiTCR analyzes hundreds of
millions of raw high-throughput sequencing reads, including sequences encoding human
or mouse T-cell antigen receptor (TCR) chains quickly, thoroughly, and robustly) is used to
identify the TCR sequences found in each of the sample from its raw sequencing reads.

Each and every sample is viewed as a bag of TCR sequences (instances), which, in
the MIL architecture, practically function as text strings. Using the Tessa model, which
includes a deep learning auto-encoder that converts intricate information (such as strings
or sequences of amino acids) into numerical values, each TCR sequence is embedded into a
numeric vector. When tumor-specific TCRs are present in a bag (sample), the bag becomes
positive (a tumor sample), whereas negative TCRs are produced by host immune responses
that are not caused by cancer, nonetheless, by some other physiological processes like
autoimmune disorders infection [15]. The data processing flow of this MIL application for
TCR-based cancer detection is mentioned in Figure 5 below.
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Yan Xu et al. [16] explored the potential of multiple instance learning for the seg-
mentation and classification of histopathology cancer images. Moreover, MIL can also be
employed for diabetic retinopathy for retinal vessel segmentation [17]. Using a simple
grid sampling technique is challenging, as Marc and Veronica [18] showed, especially
when the receptive field is small compared to the size of the image’s key characteristics.
To overcome the problems with grid sampling, they employed a sequential Monte Carlo
sampling procedure for high-resolution images, sampling from the most pertinent regions
throughout the training phase. Using two simulated and two histological datasets, they
showed their competence for breast cancer and sun exposure categorization.

Maoying Qiao et al. [19] developed a supervised learning technique that utilized a
variety of MIL-diverse dictionaries to connect representations at the instance level to labels
on bags. The suggested technique makes use of labels at the level of bag data to train
class-oriented dictionaries. The suggested technique incorporates a diversity Regularizer
to prevent ambiguity between the class-specific dictionaries. This is considered the first
example in which the diversity prior has been used to address MIL issues.
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Stefanos and Lapata [20] proposed a neural network that gains the ability to predict the
sentiment of different text slices or segments, such as sentences or elemental discourse units
(EDUs), without segment-level supervision after being trained on document sentiment
labels. They also present a new dataset called SpoT (short for Segment-level POlariTy
annotations) for assessing MIL-based sentiment models, as well as an attention-based
polarity score system for distinguishing between positive and negative text samples. A
judgment elicitation study demonstrates that opinion extraction at the EDU level delivers
more useful summaries than sentence-based alternatives [20]. At the same time, experi-
mental findings show improved performance compared to numerous baselines. A sample
of a 2-star review based on EDU (elemental discourse unit), positive and negative snippets
is given in Figure 6.
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Michael et al. [21] explained the use of MIL in the field of pathology. The tremendous
amount of information included in digital whole-slide images is a major driving force
behind the creation of automated image analysis technologies. Concerning a variety of tasks
in the field of digital pathology, deep neural networks, in particular, exhibit great potential.
A drawback of most deep learning algorithms is that they need (human) annotations in
addition to the massive volumes of visual data to perform efficient training.

Without fully annotated data, multiple-instance learning demonstrates its potency as
a method for learning deep neural networks. Because labels for a complete whole slide
image are frequently taken routinely, but labels for patches, areas, or pixels that’s why MIL
methods are very practical in this field. Whole slide images is divided into small patches so
that MIL could be applied [22]. Figure 7 shows how a whole slide image is divided into
patches using MIL.

Already, a significant number of publications the majority of which were released in
the last three years, have been produced due to this potential. The availability of potent
graphics processing units shows a rise in this field, in addition to the availability of data and
a high incentive from the medical standpoint. The fundamentals of deep multiple-instance
learning systems are extensively and successfully employed [21]. A complete depiction of
how MIL from an advanced level is applied to WSIs. Patches that are recovered from the
input images are presented in Figure 8.
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Figure 8. In [21], MIL from an advanced level is applied to WSIs. Patches (b) are recovered from
the input images (a), followed by extraction of patch-level features (c), aggregation (converting
several patch-level features into a single bag-level feature), and (d) collective processing (resulting in
bag-level representations).

Xiangfa Song et al. [23] proposed a unique approach built on sparse coding along with
a classifier ensemble for the purpose of addressing the image categorization/classification
problems inside the multi-instance forming (MIL) framework. In particular, a dictionary
is acquired from all of the training bags’ instances. A sparse linear combination of each
basis vector in the dictionary is used to represent each instance of a bag, and the bag is also
represented by a single feature vector that is created by sparse representations of every
instance within the bag as shown in Figure 9.
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Annabella et al. [24] applied a Multiple Instance Learning (MIL) method (Lagrangian
relaxation) that is appropriate for use in image processing/classification applications. The
approach relies particularly on a mixed integer nonlinear formulation of the optimization
problem that needs to be resolved for MIL. The algorithm categorizes the images that
exhibit a particular pattern on a series of color images (Red, Green, Blue, RGB). They
evaluated this technique on an artificial dataset of 100 images, where the discriminant
was the presence of yellow. Even though these are early results, they seem promising and
reassuring for the design of future more sophisticated segmentation systems.

Weiss and Hirsh [25] suggested that a certain sort of time series analysis problem may
be solved using the multi-instance learning framework by transforming event prediction
into a multi-instance problem [26].
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Ruffo et al. [27] employed Relic, a multi-instance decision tree, to address network
management, intrusion detection, and password verification problems related to computer
security [28].

We also performed a bibliometric analysis of Multiple instance learning using some of
the highly relevant keywords like deep learning, self-supervised learning, weakly super-
vised learning image, MIL algorithm, etc. The knowledge graph is presented in Figure 10.
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3. Multiple-Instance Learning (MIL) Methods

There are multiple types of MIL methods. These categories include Instance-space
methods (IS), bag-space (BS), and embedded-space (EB) methods. Depending on how a
method uses the knowledge and information that is extracted and exploited from the MI
data, they are classified. These MIL methods are shown in Figure 11.

In Instance space methods, instance-level learning takes place, where f(x) is trained to
distinguish between positive and negative bag instances. Instance-level scores calculated
by f(x) are then merged to produce a classifier for bag-level F(X), in line with a plausible
MI assumption. In order to avoid ignoring more general properties of the entire bag, IS
approaches only take into account the attributes of specific instances.



Electronics 2023, 12, 4323 11 of 25
Electronics 2023, 12, x FOR PEER REVIEW  11  of  25 
 

 

 

Figure 11. Some of the popular MIL methods. 

In Instance space methods, instance-level learning takes place, where f(x) is trained 

to distinguish between positive and negative bag  instances. Instance-level scores calcu-

lated by f(x) are then merged to produce a classifier for bag-level F(X), in line with a plau-

sible MI assumption. In order to avoid ignoring more general properties of the entire bag, 

IS approaches only take into account the attributes of specific instances. 

The BS and ES techniques, in contrast, regard every other bag as a complete unit and 

train F(X) using the global bag-level data. While ES methods use a mapping function to 

embed multiple instances of a bag into a single “meta” instance defined on a new feature 

space, With  the help of distance-based classifiers  like k-Nearest Neighbors  (kNN) and 

Support Vector Machine (SVM), BS techniques try to determine how similar or far apart 

each pair of bags are from one another and predict the labels of the bags directly [29]. 

These are not MIL techniques in and of themselves, but this kind of approach has 

been utilized as a reference point in several works [30–32] to give an idea of the relevance 

Figure 11. Some of the popular MIL methods.

The BS and ES techniques, in contrast, regard every other bag as a complete unit and
train F(X) using the global bag-level data. While ES methods use a mapping function to
embed multiple instances of a bag into a single “meta” instance defined on a new feature
space, With the help of distance-based classifiers like k-Nearest Neighbors (kNN) and
Support Vector Machine (SVM), BS techniques try to determine how similar or far apart
each pair of bags are from one another and predict the labels of the bags directly [29].

These are not MIL techniques in and of themselves, but this kind of approach has been
utilized as a reference point in several works [30–32] to give an idea of the relevance of
employing MIL methods instead of typical supervised algorithms. In these techniques,
the bag label is allocated to each instance, and bag information is ignored. Each case
receives a label from the classifier during the test, and a bag is considered positive if it
has no less than one positive instance. In the case of SI-SVM-TH (Single Instance Support
Vector Machine with Threshold), the overall positive instances found are compared to an
optimized threshold using the training data.
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3.1. Instance Space Methods

IS methods disregard bag architecture and create classifiers at the level of instances
after propagating bag labels to the associated instances. Then, in order to create bag la-
bels, instance predictions are aggregated based on an appropriate MI assumption, such
as the standard assumption, the collective assumption (e.g., the sum or average of indi-
vidual instance predictions in a bag), and the maximum or the minimum of the instance
prediction [9]. Some IS methods are mentioned below.

3.1.1. MI-SVM (Multiple Instance Support Vector Machine) and mi-SVM (Mixture of
Multiple Instance Support Vector Machines)

To work in the MI setting, both MI-SVM (Multiple Instance Support Vector Machine)
and mi-SVM (mixture of Multiple Instance Support Vector Machines) [33] techniques are
extensions of SVM, sometimes known as a maximum-margin classifier. SVM identifies
a hyperplane for binary classification that produces the greatest margin (or separation)
between the two classes. All instances in negative bags have negative labels using mi-SVM,
but instances in positive bags have unknown labels. A soft-margin criterion defined at
the instance level is then maximized collectively over the hyperplanes and unobserved
instance labels in positive bags, resulting in all instances in each negative bag being located
on one side of the hyperplane and a minimum of one instance in each positive bag being
positioned on the other. An SVM classifier is created with each iteration, and instance labels
are changed. Once the imputed labels have stopped changing, the SVM is retrained to
further refine the decision boundary using the freshly assigned labels. The margin of a
positive bag is defined by the margin of the “most positive” instance, whereas the margin
of a negative bag is defined by the “least negative” instance. Instead of maximizing the
instance-level margin, MI-SVM represents each bag by one representative instance of the
bag and maximizes the bag-level margin. When the representative instance does not vary in
each bag, an SVM classifier is generated. The authors argued that mi-SVM is superior if one
wants to perform an accurate instance classification; otherwise, MI-SVM is more suitable.

3.1.2. EM-DD (Expectation–Maximization Diverse Density)

Expectation–Maximization Diverse Density (DD) algorithm [34] is an extension of the
Diverse Density (DD) [14] algorithm that looks for a point in the feature space with the
highest DD that is as close to a number of diverse positive bags as is feasible while being
as far away from the negative bags as is feasible given the neighborhood’s proportion of
instances of the bag. The maximum of the DD function is found using the Expectation-
Maximization approach by EM DD. The classification is dependent on how far away this
maximum point is.

3.1.3. RSIS (Random Subspace Instance Selection)

This method detects the witnesses in positive bags statistically by employing a tech-
nique based on random sub-spacing and clustering introduced in [35–37]. Training sub-
groups are sampled by applying the instances’ probabilistic labels to train a set of SVMs.

3.1.4. MIL-Boost

The technique provided in [37] was generalized to create the MIL-Boost algorithm [8].
With the exception of the loss function, which is based on bag classification error, the tech-
nique is substantially the same as gradient boosting [38]. The occurrences are categorized
separately, and bag labels are created by combining their labels.

3.1.5. SI-SVM (Single Instance Support Vector Machine) and SI-kNN (Single Instance
k-Nearest Neighbors)

When regular (single-instance) supervised classifiers are trained on MI data using
SI-SVM [30] and SI-kNN [3], the bag-membership knowledge about instances is completely
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disregarded. The bag label is inherited by every instance in their implementation, and the
SVM and kNN classifiers are tailored for the streamlined (single instance) problem.

3.1.6. mi-Net (Multiple Instance Neural Networks)

Wang et al. [39] coined the name “mi-Net” to refer to multiple instance neural networks
(MINNs), which forecast the likelihood that a specific instance will be positive before
combining instance-level probabilities to produce bag-level probabilities using a MIL
pooling layer. Let us assume that MINN is composed of L layers. Each instance is first
directed toward one of the numerous FC levels that serve as activation levels. After instance-
level probabilities are predicted from the last FC layer or the (L-1)th layer of the MINN,
the bag-level probability is collected from the last layer for each bag using a MIL pooling
function (such as maximum pooling, mean pooling, and log-sum-exp pooling).

3.2. Bag-Space Methods

Compared to IS methods, which ignore the bag architecture while learning, BS meth-
ods learn the distance or similarity among each set of bags. To put it simply, BS techniques
use a traditional supervised learning technique, like kNN and SVM, to learn the bag-to-
bag connection before employing a suitable distance or kernel function for integrating
the bags using their own member instances [15]. Some common bag-space methods are
mentioned below.

3.2.1. C-kNN (Citation-k-Nearest Neighbors)

CkNN (Citation-kNN) [14] is a variation of SI-kNN (Single Instance k-Nearest Neigh-
bors) tailored to MI data that determines the distance between two bags using the smallest
Hausdorff distance in order to make sure that the estimated distance is resilient to high
instance values. C-kNN is based on a two-level voting system that was motivated by
the idea of references and citations in research publications. The authors proposed the
terms “reference” and “citer,” where references are a given bag’s closest neighbors and
citers are bags that view the given bag as their closest neighbor. A bag is classified as
positive by employing references and citers collectively if the ratio of positive bags is higher
than that of negative bags between its citers and references. Consider a bag that contains
C = C+ + C- citers and R = R+ + R- references, where a subscript denotes the bag label.
R+ + C+ > R- + C- identifies the target bag as positive in this case. To lessen the likelihood
of producing false positives, which occur far more frequently in applications of machine
learning than false negatives, the bag is put in the negative class if there is a tie. This
algorithm can be modified to carry out instance classification [40].

3.2.2. MInD (Multiple Instance Learning with Bag Dissimilarities)

According to MInD [41], a vector with fields distinct from those of other bags is used
to represent each bag in the training data set. These feature vectors are categorized in
accordance with a standard supervised classifier, an SVM, in this instance. The publication
suggests a number of dissimilarity metrics; however, the mean min provided the best
overall performance.

3.2.3. NSK-SVM (Normalized Set Kernel-SVM)

An expanded version of kernel methods called NSK-SVM [42] proposes a normalized
set kernel (NSK), which is used for machine learning data. The selected instance-level kernel
serves as the source for the set kernel, which is particularly defined on bags. Common
options include matching kernel, polynomial kernel, and radial basis function kernel. In
order to lessen the influence of differing bag sizes, normalization, which is accomplished by
the averaged pairwise distances amongst every instance contained in two bags, is essential.
The NSK is then used to construct an SVM that can predict bag labels.
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3.2.4. The miGraph

MiGraph [43] is a proposed method for bag classification by the authors that can take
advantage of the relationships between instances by considering them as components of
the bag that are interconnected. The observation that was made by Zhou et al. [43] is
what inspired this methodology instances are hardly ever distributed (i.i.d.) independently
and identically in a bag. Each bag is represented by a graph in the miGraph method,
whose nodes are the instances. If the Gaussian distance across two instances is less than a
predetermined threshold (such as the average distance in the bag), then there is an edge
between the instances. Because instances may be reliant on one another, the weights they
contribute to the bag classification are altered by the cliques visible in the graph. An
SVM, along with a graph kernel (built with instance weights), classifies on the basis of
between-bag similarity after all bags have been represented by their respective graphs.
Utilizing an identity edge matrix (i.e., between any two instances there is no edge) can be
useful in handling independent and identical instances.

3.2.5. EMD-SVM (Earth Mover’s Distance-SVM)

To determine how similar any two bags are (let us say i and i’), the suggested method
uses Earth Mover’s Distance (EMD) [44,45]. EMD is a weighted average of the ground
distances between all pairs of instances (j, j’), where instance j (j’) is from bag i (i’), and vice
versa. In Zhang et al. [44], the Euclidean distance is used as the ground distance measure,
and the weights are obtained by resolving a linear programming issue. The obtained
distances are converted to a Gaussian kernel function and then employed in an SVM for
bag classification.

3.3. Embedded Space Methods

Similar to BS approaches, ES methods summarize a bag that only uses a single feature
vector to extract information at the level of the bag from machine learning data and
then convert a machine learning problem to a standard supervised learning problem. ES
techniques, however, emphasize instance embedding [15]. Some of the embedded space
methods are given below.

3.3.1. CCE (Constructive-Clustering-Based Ensemble)

In order to represent each bag, a Constructive-Clustering-based Ensemble (CCE) [28]
first divides the training sets instances into C clusters using the k-means clustering algo-
rithm. If a bag contains no less than one instance from a cluster of instances named c,
the value for the associated cth feature component would be 1; if not, it is 0. An SVM
can be designed to classify bags using new bag-level features. It is suggested to train
several classifiers on the basis of various clustering findings and assumptions and then
aggregate their predictions by a vote of the majority because there are no limits on the
choice of C. In this way, CCE makes use of ensemble learning as well. Whenever there
is a new bag that is presented for classification, this CCE methodology re-represents it
by looking up the clustering results and then supplies the ensemble classifier with the
produced feature vectors to predict the label of the bag. Be aware that any other clustering,
classification, and ensemble methods in CCE may be used in place of k-means, SVM, and
majority voting, respectively.

3.3.2. BoW-SVM (Bag-of-Words-SVM)

The initial stage in applying a BoW approach is compiling a sample term dictionary.
By applying k-means clustering to all of the training cases, this is accomplished using
BoW-SVM [29]. The most similar term found in the dictionary is then used to represent
instances. The words’ frequency histograms serve as a representation of bags. An SVM
classifies histograms using a kernel designed for histogram comparison.
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3.3.3. MILES (Multiple-Instance Learning via Embedded Instance Selection)

MILES [46], which stands for Multiple-Instance Learning by Embedded instance Se-
lection, implies that only a portion of instances are in charge of the bag labels. Each bag
is mapped into a new feature space during the embedding step using a vector represent-
ing the score of similarities among the bags being used at the time and the collection of
examples from all the bags. This results in highly dimensional features, even those that
are repetitive or ineffective, with the resultant feature space’s dimensionality being equiv-
alent to the overall number of instances, which may be huge. Both choosing significant
features and building classifiers can be done simultaneously using SVM with the LASSO
penalty [47]. Additionally, by figuring out how much each instance contributes to the
classification of a bag depending on a predetermined threshold, MILES may be used for
instance classification.

3.3.4. MI-Net (Multiple Instance Neural Network)

It is the first MINN (Multiple Instance Neural Network) approach in the ES techniques
category. It learns how to represent bags from the features of the instances and then
accordingly classifies the bags. In contrast to mi-Net, which concentrates on computing
instance-level probabilities. Consider a MINN with L layers; MI-NET’s pooling process,
which is based on MIL, compiles all the instances into a single bag and represents it as a
single feature vector, which happens in the (L-1)th layer. With a sigmoid activation function,
the FC layer (also known as the Lth or the last layer) outputs bag-level probabilities from
the input bag representation. In addition to the basic version mentioned above, two MI-Net
variations have been proposed [39], one of which includes deep supervision [48] and the
other of which takes residual connections [49] into account. Both of these can occasionally
increase performance.

3.3.5. Adeep (Attention-based Deep)

Attention-based Deep MIL (ADeep) [50] is a MINN approach in addition to mi-Net and
MI-Net. It alters the ES technique to improve the understanding by utilizing a cutting-edge
multiple-instance learning-based pooling technique that depends on a unique attention
mechanism [51], where each instance is taken as an independent unit. A weighted average
of all the instances is calculated and is offered as an alternative to conventional pooling
operators like max and mean, which are already specified and untrainable. Instead, a
neural network consisting of two layers generates the weights and sums to 1, making them
unaffected by how big or small the bag is. Naturally, instances that are more probable to
be positive weigh more in the bag than the others, producing outcomes that are easier to
interpret. By offering instance weights as a substitute for instance probabilities, ADeep, in
this sense, connects the ES technique to the IS technique.

4. Applications of MIL

The application of a multi-instance framework in some real-life situations becomes
crucial because, in such cases, the objects are characterized as bags, and each and every
bag contains several feature vectors. There is no way to resolve this kind of issue by
applying standard supervised learning, so in these real-world settings, the application
of a multi-instance architecture becomes essential. Since it was first developed, multiple
instances of learning have continually been used to solve a variety of real-world issues,
including predicting drug activity, image retrieval, document classification, and document
classification; researchers have proposed new application scenarios in a variety of fields,
using multi-instance framework. In Figure 12. the application areas of multiple instance
learning have been presented.
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4.1. Drug Activity Prediction

MIL has been used to predict the biological activity of molecules or compounds in
drug discovery. Instances are molecular fragments or substructures, whereas bags are
molecules. MIL can handle circumstances where the activity of individual fragments is
uncertain or noisy by considering the activity of the bag (molecule) as a whole. Many
different types of challenges can naturally be formulated as MIL issues. As mentioned
above, the goal of the drug activity prediction problem is to determine whether a molecule
will cause a specific effect or to predict the biological activity of molecules or compounds.
A molecule can adopt a variety of forms that either result in the intended effect or not. It is
difficult to observe the effect of every single conformation. Consequently, molecules must
be viewed as a collection of conformations, which is why the MIL formulation is used. Bags
represent molecules, while instances represent molecular fragments or substructures. By
considering the activity of the bag (molecule) as a whole, MIL can handle situations where
the activity of individual fragments is unknown or noisy. Since then, MIL has been used in
numerous biological and pharmacological design applications [10].

4.2. Bioinformatics

MIL is beneficial in bioinformatics [52], where it is necessary to classify biological
sequences like amino acids or DNA pairs. The objective is to identify if a protein performs
a particular function, and protein sequences are considered collections of subsequences or
motifs. To build a bag of overlapping sub-sequences, one common technique is to slide a
window across the sequence. Only one of the subsequences is believed to be responsible
for the behavior of the entire DNA or protein sequence [30].

4.3. Computer Vision

MIL is mostly applied in computer vision tasks for two major purposes: learning
from data with weak annotations and characterizing complex visual concepts using sets
of various subconcepts. MIL is becoming more popular in the field of medical imaging.
The most widespread MIL application is undoubtedly CBIR. CBIR aims to classify images
according to the objects they contain. It does not matter where an object is exactly located.
Images are typically divided into smaller segments and then defined using feature vectors.
The entire image represents a bag, whereas each part represents a single instance. There are



Electronics 2023, 12, 4323 17 of 25

numerous approaches to split images. The image, for example, can be divided up using
semantic regions, key points [53–55], or a regular grid [14]. In the latter scenario, advanced
segmentation techniques are used to separate the images.

4.3.1. Object Tracking

MIL can be used in object tracking applications, where bags represent video frames
or image sequences, and instances represent object proposals or bounding boxes. By con-
sidering the collective evidence from multiple instances, MIL enables robust and accurate
tracking even in occlusions or partial object visibility. The localization of objects in images
(or movies) requires MIL to identify instances by learning from bags. MIL is typically
utilized to train visual object identification image data sets with weak labels. Or, to put
it another way, labels are applied to whole images according to the items they contain.
These objects can be seen in numerous places in an image; they do not all have to be in the
foreground. MIL has been employed by the computer vision community to create object
detectors using the massive amount of poorly labeled images that are available online.
Description sentences [56–58], search engine results [59], tags connected with comparable
images, and terms discovered on web pages associated with the images can all point to
weak supervision of data [60].

4.3.2. Video Classification

MIL can be utilized for tasks like activity recognition or identifying anomalies in video
surveillance [61–63]. Bags represent video clips or sequences, while instances are specific
time frames inside such videos. MIL enables the recognition of complicated actions or
the detection of unusual occurrences by taking into account all of the activity in a video
clip. Sequences of the video are broken down into smaller sequences (instances), which are
then categorized separately to observe the overall quantity of information displayed in the
video. To identify scenes that are unsuitable for children, [64] also employs this problem
formulation. MIL techniques for object tracking in films were also suggested [65–67]. For
instance, in [65], a classifier is trained online to spot and follow an object of interest in
a series of frames. In order to train the MIL classifier, the tracker suggests candidate
windows that make up a bag. Similar to multiple instance clustering approaches [68,69],
the technique creates bags using a saliency detector, which eliminates background items
from positive bags to increase cluster purity. In order to build a mid-level representation
of actions from a group of actions (sub-actions) found in movies, a strategy based on
multiple-instance clustering is used [70].

4.4. Computer-Aided Diagnosis and Detection

MIL is increasingly being used for medical purposes. Strong labels, such as the location
of anomalies in a medical scan, are typically more challenging than weak labels, such as
a broad diagnosis of the person’s cancer detection in WSI images. The MIL structure is
helpful in this situation since patients’ medical scans show both problematic and healthy
parts, whereas healthy people only have healthy regions. Based on a number of diagnostic
tests or examinations, MIL can be used to determine whether a disease is present or not.
Patients are represented as bags, while specific test results or attributes are represented
by instances. MIL can manage situations where the disease may manifest differently in
various people by considering the entire test results for each patient. Applications include
identifying cancer in histopathology images [16], diabetes in retinal images [71], dementia
in brain MRI [72], tuberculosis in X-ray images [73], and the categorization of a chronic
lung illness in CT [74]. These applications have two primary objectives, similar to other
general computer vision tasks: diagnosis (i.e., predicting labels for subjects) and detection
or segmentation (i.e., predicting labels for a portion of a scan). These components could be
image patches, regions of interest, pixels, or voxels (3D pixels).
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4.5. Document and Text Classification

One of MIL’s first (1954) uses was document classification [75]. The BoW (Bag-of-
Words) model shows texts as frequency histograms that quantify each word’s frequency
within the text. Texts and web pages are multi-part entities in this scenario, demanding the
MIL classification framework. Texts can be modeled as bags since they frequently include
various topics. MIL can be used to formulate text classification issues at many levels.
Instances are words like in the BoW model at the lowest level. Alternatively, instances can
be phrases [30,76], paragraphs [77], or passages [33,78]. MIL enables the classification of
documents based on the presence or absence of relevant information without requiring
explicit labeling of each segment within the document.

4.6. Computer Audition

MIL applies to computer auditions as well. A bag is created by breaking an audio
file or audio clip into multiple instances, each of which possesses properties peculiar to
a particular frequency range [8,79]. Some sound classification tasks can be modeled as
MIL. The goal is to identify the genre of musical samples automatically. Labels are given in
training for complete albums or artists but not for each snippet. The bags are collections of
single-artist or album snippets. Different musical genres might be included on the same
album or by the same performer; thus, the bags may have both good and bad examples.
In [80], MIL is used to recognize bird songs in recordings made using single outdoor
microphones. Various bird species and other noises can be heard in sound sequences. The
goal is to recognize each bird’s Song independently while practicing exclusively on sound
files with weak labeling.

4.7. Sentiment Analysis

When performing sentiment analysis or opinion mining tasks, MIL can be used. In
these tasks, instances stand in for words or text segments and bags for documents or text
segments. MIL provides sentiment categorization or polarity prediction by taking into
account the overall tone of a document or segment, which eliminates the need for explicit
sentiment annotations at the word level. Multi-instance learning is an effective way to
solve text mining challenges by converting the sentences as instances and by the use of
statements that are grammatically sound and have standalone representation to address the
issue of text’s lacking semantic richness. In the past several years, experts have proposed
employing multi-instance learning for the representation of different text-related tasks. The
text is divided into different sentence units; it can then be viewed as a bag of sentences.

4.8. Web Page Classification

The MIL framework can also be used to naturally simulate web pages [81]. Like texts,
websites frequently cover a wide range of subjects. For instance, a news channel’s website
has a number of articles on various topics. MIL, depending on a user’s browsing history,
has been utilized for web index-page recommendations [81,82]. Links, page names, and
occasionally short descriptions of web pages are all found on an index page. A web index
page is a bag in this instance, and the connected web pages are the instances. MIL can also
be applied to web page classification tasks, where bags represent web pages, and instances
represent snippets or regions within those pages. It allows the classification of web pages
based on their overall content without the need for precise labeling of each region within
the page [83].

A user is thought to be interested in at least one of the pages connected to a web
index page if they have marked it as a favorite. The list of most common terms found on a
web page serves as its representation. Advertisers tend to stay away from certain pages
with sensitive information like adultery or war in virtual online advertisements. In [77],
a MIL classifier evaluates web page content to determine which pages are appropriate
for advertisements.
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4.9. Intrusion Detection

MIL can be applied to detect network intrusions by considering network traffic data as
bags. The aim is to classify a bag as malicious if it contains instances representing suspicious
network activities. It is useful to handle packets as continuous streams in order to identify
different sorts of attacks and decrease repeated alarms on the same attack. In [84], a new
method is put forward for handling groups of related packets, whereas existing anomaly
detection based on machine learning treats a packet as a fundamental unit. The proposed
technique is in accordance with a BAG unit and a BAG creation algorithm that organizes
packets. Some other common applications of MIL are mentioned in Table 1.

Table 1. Some common applications of MIL.

Application of MIL Author Name Description

Sound Classification M. I. Mandel, D. P. W. Ellis [85].

It is possible to cast some sound classification tasks as MIL. The
goal of [85] is to automatically identify the genre of musical

snippets. Labels are given in training for complete albums or
artists but not for each snippet. The bags are collections of

single-artist or album snippets. Because numerous musical genres
might be included on the same album or by the same singer, the

bags might include both positive and negative instances.

Recognition of different
bird songs F. Briggs, X. Z. Fern, R [80].

MIL is used in [80] to detect bird songs in recordings made using
microphones. Various bird species and other noises can be heard

in sound sequences. The goal is to recognize each bird song
independently while restricting training to sound files with

inadequate labeling.

Determining Personality
traits using audio signals

M.-A. Carbonneau, E. Granger, Y.
Attabi, G. Gagnon [86].

According to [86], a BoW (Bag-of-words) framework is used for
determining personality qualities from audio signals represented

as spectrograms. In that situation, the spectrogram’s discrete
regions are instances, and the complete voice signals are bags.

Human activity sensors

X. Guan, R. Raich, W.-K.
Wong [87] and

M. Stikic, D. Larlus, S. Ebert, B.
Schiele [88].

In [87,88], Wearable body sensors are used with MIL to identify
human activity. The users’ declaration of the actions that were

carried out during a specific time period results in weak
supervision. Activities typically do not last the entire period, and

each period could have a distinct set of activities. In this
configuration, instances are sub-periods, while full periods

are bags.

Prediction of hard
drive failure

J. F. Murray, G. F. Hughes, K.
Kreutz-Delgado [89].

Time series are a collection of measurements on hard drives taken
at regular intervals, and they are used alongside MIL to predict

hard drive failure [89]. The objective is to predict when a product
will fail. Time series suggest the underlying structure of bags that

should not be disregarded.

Detection of
buried landmines

Manandhar, K. D. Morton, L. M.
Collins, P. A. Torrione [90].
A. Karem, H. Frigui [91].

MIL classifiers in [90,91] use ground-penetrating radar signals to
find buried landmines. At different depths in the soil,

measurements are taken when a detection takes place at a specific
GPS position. The feature vectors for various depths are

contained in a bag at each detection location.

Predicting the
performance of stocks O. Maron, T. Lozano-P’erez [14].

MIL is employed to choose stocks in [14]. The 100
best-performing stocks are gathered into positive bags each
month, while the five worst-performing stocks are placed in

negative bags. Based on these bags, an instance classifier chooses
the best stocks.

Prediction for
film nominations A. Mcgovern, D. Jensen [92]

A strategy for predicting which films will be nominated for an
award is described in [92]. A graph is created that represents a

movie’s relationships to stars, studios, genre, release date, etc. In
order to assess whether test cases were successful, the MIL

algorithm determines which sub-graph explains the nomination.
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5. Challenges while Deploying MIL

For multiple instances of learning deployment to be successful, there are a number of
issues that must be resolved. Here are a few of the main difficulties:

• Ambiguity in Instance Labels: One of the main problems with MIL is the difficulty in
deciding which labels to provide for the different instances that make up a bag. The
precise labeling of individual instances is still unknown because the bag is labeled
according to whether or not there are positive instances. The learning task may become
more difficult as a result of this ambiguity, and robust algorithms are needed to handle
it correctly [93].

• Bag-level labeling: MIL requires bag-level labels, whereas conventional machine learn-
ing techniques work at the instance level. Due to this distinction, specific algorithms
that can use bag-level data to anticipate the future must be created. For accurate
multiple-instance learning deployment, it is essential to design efficient bag-level
labeling mechanisms [82].

• Feature representation: The selection and depiction of features from the bags of
instances presents another difficulty. MIL algorithms typically work with the instances
in each bag’s aggregated features. Achieving good performance depends on selecting
the right features that capture the bag-level information while maintaining relevant
instance-level properties [33].

• Complexity of Computation: The necessity to evaluate bags with several instances
makes MIL methods computationally demanding. As the quantity of instances per
bag rises, complexity also rises. It is difficult to deploy large-scale MIL issues without
first developing effective algorithms and optimization strategies [29].

• Lack of Labeled Bags: In many practical applications, getting labeled bags might be
expensive or difficult. The lack of readily available labeled bags makes it difficult to
train and test MIL algorithms. The performance of MIL models must be enhanced
using strategies like active learning, semi-supervised learning, or utilizing additional
data to address a lack of labeled bags [3].

Challenges within the Realm of Machine Learning, Large Language Models, and XAI

Multiple instance learning faces various challenges in the realm of machine learning,
large language models, and explainable artificial intelligence. Interpretability and explain-
ability are the main focus of XAI and large language models. However, due to the inherent
ambiguity in labeling and reliance on bag-level representation, sometimes MIL may not
provide good interpretability results. Scalability and efficiency, data bias, and fairness
of the model are also some of the key challenges. Likewise, integrating active learning
and weak supervision strategies with XAI and large language models is also one of the
research challenges.

6. Conclusions

MIL is a key area for machine learning research. This research work reviews the
potential of MIL and outlines the key concepts of a few MIL-based methodologies. There
are multiple areas where MIL could be used with promising performance, as demonstrated
in this study. Multiple instance learning is a weakly supervised learning where the learning
dataset contains bags of instances instead of a single feature vector; bags could be either pos-
itive or negative. MIL can be implemented using different methods. Each MIL method can
be divided into three categories: instance-space (IS), bag-space (BS), and embedded-space
(EB) methods. MIL’s applications in various fields, including medical imaging, computer
vision, image segmentation, computer audition, bioinformatics, and text categorization,
are also explained. Finally, a few of the challenges encountered during the deployment
of MIL are mentioned. MIL is a more adaptable form of weakly supervised learning.
Furthermore, while multiple instances describe the examples better than a single instance
in some scenarios, it also increases the size of the data set, so more attention must be paid
to multi-instance learning optimization in order to apply the multi-instance framework to
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large-scale data sets. The aim of this study is to highlight the potential areas where MIL
could be helpful in addressing the challenges in respective domains, for example, cancer
diagnosis in whole slide images, drug activity prediction, intrusion detection, and others.
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Abbreviations

Abbreviations Description
MIL Multiple Instance Learning
RL Reinforcement Learning
AI Artificial Intelligence
WSI Whole Slide Images
KNN K Nearest Neighbors
APR Axis-Parallel Hyper-Rectangle
TCR-Sequence T-cell Receptor-Sequence
EDUs Elemental Discourse Units
EB Embedded-Space
IS Instance-Space
BS Bag-Space
MI-SVM Multiple Instance Support Vector Machine
EM-DD Expectation–Maximization Diverse Density
RSIS Random Subspace Instance Selection
BoW Bag of words
mi-SVM Mixture of Multiple Instance Support Vector Machines
SI-SVM Single Instance Support Vector Machine
SI-kNN Single instance k-Nearest 353 Neighbors
mi-Net Multiple instance Neural Networks
FC layer Fully Connected Layer
CKNN Citation-kNN
MInD Multiple Instance Learning with Bag Dissimilarities
NSK-SVM Normalized Set Kernel-SVM
EMD-SVM Earth Mover’s Distance-SVM
CCE Constructive clustering based Ensemble
MILES Multiple-Instance Learning via Embedded Instance Selection
DNA Deoxyribonucleic Acid
CT Computerized Tomography
GPS Global Positioning System
MRI Magnetic Resonance Imaging
XAI Explainable Artificial Intelligence
Mathematical symbols
Symbols Description
C Citer
R Reference
L layers Number of layers
(j, j’) Pair of Instances
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