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Abstract: The large-scale and deep-layer deep neural network based on the Transformer model is
very powerful in sequence tasks, but it is prone to overfitting for small-scale training data. Moreover,
the prediction result of the model with a small disturbance input is significantly lower than that
without disturbance. In this work, we propose a double consistency regularization (DOCR) method
for the end-to-end model structure, which separately constrains the output of the encoder and
decoder during the training process to alleviate the above problems. Specifically, on the basis of the
cross-entropy loss function, we build the mean model by integrating the model parameters of the
previous rounds and measure the consistency between the models by calculating the KL divergence
between the features of the encoder output and the probability distribution of the decoder output of
the mean model and the base model so as to impose regularization constraints on the solution space
of the model. We conducted extensive experiments on machine translation tasks, and the results
show that the BLEU score increased by 2.60 on average, demonstrating the effectiveness of DOCR in
improving model performance and its complementary impacts with other regularization techniques.

Keywords: cross-entropy loss; deep neural network; KL divergence; overfitting; transformer;
regularization

1. Introduction

End-to-end models [1–3] with different deep neural network topologies have excelled
in sequential tasks like neural machine translation (NMT). On the strength of its impressive
performance in recent years, Transformer [4], the most popular end-to-end model, has
evolved into the most fundamental model in NMT. Even so, the scale of state-of-the-art
Transformer neural networks is still linear in the number of training examples. In low-
resource task research, the amount of model parameters is much greater than the amount of
data. Therefore, a key point for research in low-resource tasks is how to solve Transformer’s
tendency to overfit small-scale labeled data [5–7].

Some academics employ semi-supervised learning to address the issue of less labeled
data and add a significant proportion of unlabeled data to the model training process to
address these issues [8]. This approach does not require specific labels and is frequently
based on the prediction vector produced by the model. By generating an unsupervised
regularization loss term between the disturbed prediction result and the normal prediction
result on the unlabeled data, this approach increases the generalization ability of the
model [9–11].

On the basis of supervised cross-entropy loss, the π model [9] adds unlabeled samples
in each round to different noises, propagates forward twice, and calculates the consistency
loss of the two prediction results. The final training target is the sum of the cross-entropy
loss and consistency loss. The temporal ensembling [9] model replaces the result of the
second forward propagation of the unlabeled data with the prediction results obtained in
the past epoch to calculate the consistency loss based on the π model. Mean teacher [10]
uses two models, in which the teacher model is updated by the exponential moving
average [11] (EMA) of the student model parameters so as to update the model weight
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online at each step and obtain the consistency loss by calculating the error between the
prediction results of the teacher model and the student model. Many variants were also
proposed later, such as dual students [12], Fast-SWA [13], virtual adversarial training [14],
interpolation consistency training [15], unsupervised data augmentation [16], etc.

These methods raise the training overhead due to the increase in the amount of data.
And the presence of some data in unlabeled data is harmful to the model. In this paper, our
strategy to solve the overfitting problem under the condition of scarce labeled data is to
introduce more regularization methods. We propose a consistent regularization method
for end-to-end model frameworks that can be used for supervised learning under few-
shot conditions called double consistency regularization (DOCR). DOCR encourages the
model to produce high-confidence and high-consistency feature extraction and prediction
outputs for inputs with similar distances in the feature space. In particular, data points with
different labels are separated in low-density regions based on the smoothing assumption
and the clustering assumption, and comparable data points have similar outputs. Therefore,
if the input of the model is slightly perturbed, then the encoder output and decoder
prediction results should not change significantly, and the output should be consistent,
thereby constraining the model. In contrast to the previous work that only imposed
constraints on the decoder’s output space, we impose double constraints on the solution
space of the model by measuring the consistency between the features extracted by the
two model encoders and the predicted probabilities of the decoder, and then we realize the
regularization model’s internal parameters.

We conduct tests on small-sample machine translation tasks to test the efficacy of our
method, and the results demonstrate that DOCR may successfully enhance model perfor-
mance, decrease overfitting, and provide complementing effects with other regularization
techniques. Compared with the base Transformer model, DOCR improves the scores on
the IWSLT’14 German-English and IWSLT’15 English-Vietnamese datasets by 2.51 BLEU
and 1.87 BLEU points, respectively. When used in combination with other regularizations,
model performance improves by about 5.00 BLEU points. In addition, we conducted ex-
periments on the state-of-the-art kNN-KD model [17] in the field of knowledge distillation
and verified that our regularization method also has a certain improvement effect on the
strong baseline model.

In the field of deep learning, the low-resource problem is an urgent challenge. There
exists a large amount of low-sample data in tasks such as image recognition, machine
translation, and speech recognition. However, deep models perform poorly in the face of
these few-sample tasks due to the need to use a large amount of supervised data for training.
One of the difficulties faced is the overfitting problem. From the above experimental results,
our method can effectively mitigate the model overfitting phenomenon. Therefore, when
using large-scale deep learning models to train small-sample tasks, our method should be
used to alleviate the model overfitting phenomenon and thus improve model performance.

Our main contributions are summarized below:

• We propose DOCR, which adopts a two-model framework and utilizes consistent
regularization to alleviate the overfitting problem of large-scale models that are prone
to overfitting in the face of small-sample tasks.

• Extensive experiments on machine translation tasks verify the effectiveness of our
approach, and the model performance improves significantly after using DOCR, which
effectively mitigates the overfitting problem by constraining the encoder and decoder.

• We conduct a large number of ablation and analytical experiments to further analyze
the reasons for the improvement of the model.

2. Method

Our method introduces the mean model based on cross-entropy and constrains the
model solution space by regularizing the consistency loss between the mean model and the
base model [18]. The model framework is shown in Figure 1. Algorithm 1 illustrates the
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entire algorithm. The following three aspects are described in detail: model construction,
the noise model, and model training.

Basic
Encoder

Mean
Encoder

EMA

src
“ I find it ...”

Basic
Decoder

Mean
Decoder

EMA

Basic
Decoder

Mean
Decoder

EMA

Softmax KL Div.

KL Div.

tgt
“ Ich finde es ...”

CE Loss

Final Loss

Figure 1. Illustration of the double consistency regularization. KL Div. represents KL divergence.
The framework inputs the same vector into the base model and the mean model. The two models
have the same structure but different parameters. The mean model is updated using the exponential
moving average (EMA) of the base model parameters, while the base model is updated via parameter
backpropagation.The KL divergence between the output of two model encoders and decoders is
calculated to constrain the model solution space.The final training objective is the sum of the three
loss values in the figure.

2.1. Model Construction

We used the basic model of the previous step to build the mean model. The structure of
the two models is identical. We used the exponential moving average to set the parameter
update rule of the mean model as follows :

θm ← λθm + (1− λ)θb, (1)

where θb is the parameter of the base model, which is updated through backpropagation,
and θm is the parameter of mean model. If the starting model is given too much weight,
then the training effect will be quite weak due to the initial model’s low performance. To
balance the weight of the model parameters in the various training stages, we will therefore
adhere to the cosine schedule from 0.996 to 1 during the training period [19].

2.2. Noise Model

Before the model was trained, the input statements needed to be noised using a noise
model N(x). The noise model contained two different types of noise. The first type of noise
was words randomly discarded in the input sentences with a probability pw. The second
type of noise was a randomized arrangement of the input sentences following the condition

∀i ∈ {1, n}, |σ(i)− i| ≤ k,

where n is the sentence length, k is an adjustable parameter, and σ is the randomized
sentence. It has been proven that pw = 0.1, k = 2 are the parameter that enables the model
to achieve the best performance.

2.3. Model Training

We input the given input x with different perturbations to the basic model and the
mean model, denoted as xb and xm, respectively, the feature outputs of the encoders of the
two models are denoted as fb(xb) and fm(xm), respectively, and the predicted outputs of
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the decoder are denoted as pb(yi | xb, y<i) and pm(yi | xm, y<i). Then, fb(xb) and fm(xm)
are transformed into probability distributions pb(xb) and pm(xm) by the softmax layer,
respectively. For the similar input, the model encoder and decoder should have consistent
outputs. Algorithm 1 illustrates the entire training process. We used the KL divergence [20]
to measure the distance between the encoder output and decoder output distributions of
the two models and define the consistency loss:

Lcon= ∑
i

DKL(pm,i(xm)‖pb,i(xb))

+ ∑
yi∈V

DKL(pm(yi | xm, y<i)‖pb(yi | xb, y<i)).
(2)

Algorithm 1: DOCR

1. Input: Batch data S, parallel corpus D, mean model M, base model B.
2. for each S in D do
3. Calculate the cross-entropy loss Lce.
4. Calculate the loss of consistency Lcon.
5. Calculate the total loss L.
6. Update the base model B via gradient backpropagation.
7. Update the mean model M← λM + (1− λ)B.
8. end

After our tests, the KL divergence was the more suitable objective function for our
framework. In addition to that, we also tested using the MSE loss, MAE loss, or JS
divergence as the objective function for consistency training in our experiments, the results
of which are in Section 4.2.1. When the MSE loss and MAE loss were used as the objective
functions for consistency training, we had

LMSE =
1
n

n

∑
i

∥∥pm,i(xm)− pb,i(xb)
∥∥2

2 +
1
n

n

∑
i
‖pm(yi | xm, y<i)− pb(yi | xb, y<i)‖2

2, (3)

LMAE =
1
n

n

∑
i

∥∥pm,i(xm)− pb,i(xb)
∥∥

2 +
1
n

n

∑
i
‖pm(yi | xm, y<i)− pb(yi | xb, y<i)‖2, (4)

where n is the number of samples in each batch. When the JS divergence was used as the
objective function for consistency training, we had

LJS =∑
i

DJS(pm,i(xm)‖pb,i(xb))

+ ∑
yi∈V

DJS(pm(yi | xm, y<i)‖pb(yi | xb, y<i)).
(5)

The final model training objective is defined as

L = Lce + αLcon, (6)

where α is a weight to balance the two loss values. In order to better balance the proportion
of consistency loss during training, we defined α with the function sigmoid [21] and made
a simple transformation of the function to make the previous function as small as possible.
Thus, the model pays more attention to the standard supervision training in the early stage
of training and pays more attention to the consistency training in the later stage. Here, α is
defined as

α = µ
1

1 + exp(−e− γ/2)
, (7)
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where µ and γ are hyperparameters and e is the epoch number. Because the teacher model
is greatly affected by the performance of the previous training model, the definition of α and
the choice of hyperparameters greatly affected the results of the experiment. In addition, we
also tested three other functions that met our requirements to define α (Figure 2): cosine [10],
linear, and Equation (8). In Section 4.2, we give a comparison of their effects:

α =

{
0.2µ, if e < γ
µ, otherwise

(8)

Figure 2. Illustration of the four functions: sigmoid, cosine, linear, and Equation (8) (µ = 0.5 and
γ = 40).

3. Experiments
3.1. Datasets

In order to prove the effectiveness and generalization of DOCR, we conducted experi-
ments on the machine translation small-sample task [2]. We conducted experiments on the
IWSLT’14 German-English (De-En) and IWSLT’15 English-Vietnamese (En-Vi) datasets. In
the experiment on the De-En dataset, the train set, vaild set, and test set sizes were 160,000,
7300, and 6500, respectively, and in the experiment on the En-Vi dataset, the train set, vaild
set, and test set sizes were 133,000, 1500, and 1300 respectively.

3.2. Preprocessing and Evaluation

We used the preprocessing steps provided by fairseq [22] to split the data for the
IWSLT’14 German-English dataset. The preprocessed dataset supplied by [23] was used
for the IWSLT’15 English-Vietnamese dataset, with tst2012 serving as the validation set
and tst2013 serving as the test set. Using the scripts that Moses provided [24], sentences
were tokenized and truecased. We used BPE [25] to extract shared subword units from
the combination of the source and target content. The size of the vocabulary in the IWSLT
De-En dataset was 10,000, and the size of the vocabulary in the IWSLT En-Vi dataset
was 17,000.

As is customary, the entire work was evaluated using the case-insensitive BLEU
score [26] determined by the multi-bleu.perl script [17].
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3.3. Competitive Models

Powerful and extensively utilized regularization techniques, including both classical
and semi-supervised methods, served as our primary baseline. We compared DOCR to
dropout [5], label smoothing [27], mean teacher [10], and unsupervised data augmentation
(UDA) [16]. On the dataset used in this research, we re-experimented with these algorithms,
and the settings were consistent with DOCR. We also verified the validity of DOCR on a
strong baseline: kNN-KD [17].

3.4. Training Settings

Our algorithms were all implemented using the fairseq toolkit [22]. In the kNN-KD
task, we followed the settings of [17] and adopted faiss [28] to replicate it. The mod-
els in the article all use the Transformer structure. The configuration we used, called
transformer_iwslt_de_en, includes six encoder layers, six decoder layers, an embedding
size of 512, a feedforward size of 1024, and 4 attention heads. We used a beam search with
a beam size of five. The hyperparameters of µ and γ were 0.5 and 40, respectively. On four
NVIDIA V100 GPUs, we trained our models using the Adam optimizer [29]. An overview
of the experimental set-up is shown in Table 1. Unless otherwise stated, when comparing
other algorithms, we similarly followed the hyperparameter settings in Table 1, which are
the most basic settings for model training and did not affect the results.

Table 1. Hyperparameter settings.

Hyperparameters Value

Max tokens 8192
Learning rate 5 × 10−4

LR scheduler Inverse sqrt
Minimal LR 1 × 10−9

Warm-up LR 1 × 10−7

Warm-up steps 4000
Gradient clipping 0.0
Weight decay 0.0
Optimizer Adam
-β1 0.9
-β2 0.98
µ 0.5
γ 40

4. Results of the Experiments
4.1. Main Results

We begin by confirming the DOCR’s efficacy and contrasting it with other widely used
regularization methods, and we also show that our method showed complementary effects
with other regularization methods. The experimental results are shown in Table 2.

Table 2. Experiments on IWSLT’14 German-English (De-En) and IWSLT’15 English-Vietnamese
(En-Vi) datasets. “↑” indicate that higher BLEU values indicate better model performance.

Models De-En (BLEU↑) En-Vi (BLEU↑)

Transformer (base) 31.01 27.06

+Dropout (0.3) 33.37 29.66
+Label smoothing (0.1) 32.89 28.97
+Mean teacher 33.03 29.32
+UDA 33.56 29.65

+DOCR 33.58 29.69
+Dropout (0.3) 36.13 32.22
+Label smoothing (0.1) 35.92 32.04
+Mean teacher 36.12 32.10
+UDA 36.39 32.43
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4.1.1. Comparison with Mean Teacher and UDA

We now compare DOCR with two related semi-supervised regularization methods.
The training data in the mean teacher and UDA methods are a mixed dataset of bilingual
data and monolingual data. The experimental results show that the model performance
improved by 2.02 and 2.26 BLEU points in the two translation tasks using the mean teacher
algorithm, 2.55 and 2.59 BLEU points using the UDA algorithm, and 2.57 and 2.63 BLEU
points using the DOCR algorithm. It can be seen that they all improved the performance of
the model, with DOCR having the best results. We believe that this was due to the fact that
the data processed by mean teacher and UDA contain additional monolingual data, and
some utterances in these monolingual data were harmful to the model. DOCR, on the other
hand, deals only with supervised data and produces regularization effects by restricting
the model output and thus constraining the model solution space. The DOCR approach
did not harm the model as much as the semi-supervised regularization approach.

4.1.2. Comparison with Dropout and Label Smoothing

We also compared DOCR with the dropout and label smoothing methods, which are
currently widely used regularization methods applicable to any domain. The dropout
methods achieve regularization by temporarily dropping neural network units from the
network with a certain probability during the training process of a deep learning network.
Dropout methods are also similar to a data augmentation approach. Label smoothing
generates soft labels by applying a weighted average between the uniform distribution and
hard labels to transform the hard labels into soft labels for smoother network optimization.

We compared DOCR with these two methods. The experimental results show that
the model performance improved by 2.36 and 2.60 BLEU points in the two translation
tasks using the dropout algorithm, 1.88 and 1.91 BLEU points using the label smoothing
algorithm, and 2.57 and 2.63 BLEU points using the DOCR algorithm. It can be seen that
all three methods can enhance the model. Compared with dropout and label smoothing,
the process of regularizing the solution space can improve the performance of the model
better or equally. This illustrates that regularizing the model solution space imposes more
constraints on the model than adding noise. Therefore, it is proven that DOCR has some
regularization effect.

4.1.3. Integration with Other Regularization Techniques

In addition to this, we further conducted experiments to verify that DOCR is com-
plementary to other regularization techniques. We used DOCR together with other reg-
ularization techniques, and the results are shown in Table 2. The experimental results
show that the model performance was greatly improved by using the dropout algorithm,
label smoothing algorithm, mean teacher algorithm, and UDA algorithm on the basis
of the DOCR algorithm. It can be seen that combining DOCR with other regularization
techniques can improve the model performance to a greater or lesser extent, which suggests
that the method of constraining the model solution space is complementary to the current
popular regularization methods. The model performance was stronger when multiple
regularization methods were used simultaneously, and no single method could completely
solve the overfitting problem.

4.1.4. Results for the Base Model and kNN-KD

DOCR was used to solve the problem that the model is prone to overfitting in the
bilingual corpus-constrained situation, and kNN-KD is a nonparametric knowledge dis-
tillation method proposed in [17] in 2022 which can significantly improve the model
performance without additional data, and it is highly suitable for the bilingual corpus-
constrained situation, which is in line with the application scenario of our method. The
current state-of-the-art (SOTA) model for supervised training in machine translation is
kNN-KD. Therefore, in addition to the basic Transformer model, we further tested the
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effectiveness of our method on kNN-KD, which is the best-performing supervised training
algorithm at present.

We performed experiments on the basic Transformer model as well as on the strongly
baseline kNN-KD model. Following the literature [17], we used dropout (0.3) and label
smoothing (0.1) when conducting experiments on the kNN-KD model. The experiment
results are shown in Table 3. In the table, kNN-MT [2] is the baseline model of the kNN-KD
method (i.e., the kNN-KD method was improved with the kNN-MT method). The most
primitive Transformer model was highly improved after using the DOCR method; kNN-
KD-supervised training of the SOTA model in the field of machine translation improved
the BLEU scores by 0.13 and 0.19 compared with the once SOTA model kNN-MT for both
translation tasks. Our method improved the BLEU scores by 0.49 and 0.55 over kNN-KD,
which is a relatively successful improvement.

Table 3. Results for the base model and kNN-KD. “↑” indicate that higher BLEU values indicate
better model performance.

Models De-En (BLEU↑) En-Vi (BLEU↑)

Transformer (base) 31.01 27.06
+DOCR 33.58 29.69

kNN-MT 36.17 32.08
kNN-KD 36.30 32.27

+Mean teacher 36.42 32.41
+UDA 36.76 32.80
+DOCR 36.79 32.82

In addition to this, we conducted experiments to evaluate the impact that other
consistency regularization methods have on kNN-KD. We tested the change in model
performance after using the mean teacher and UDA consistency regularization methods on
top of kNN-KD. The experimental results show that in the two translation tasks, the model
performance improved by 0.12 and 0.14 BLEU points using the mean teacher algorithm,
0.46 and 0.53 BLEU points using the UDA algorithm, and 0.49 and 0.54 BLEU points using
the DOCR algorithm. It can be seen that our method performed equally as well as the best
among the three consistency regularization methods, which suggests that constraining
the encoder and decoder can be more effective in improving the model performance and
mitigating the overfitting phenomenon.

4.2. Ablation Studies

In this section, dropout and label smoothing are used in the experiments.

4.2.1. Effect of Loss Used to Calculate the Consistency

Referring to the work of [10,18,30], we further investigated the performance of the
model when using the MAE loss, MSE loss, JS divergence, and KL divergence as the
consistency loss. We conducted experiments on the De-En dataset. The results are shown
in Table 4, and they show that DOCR performed best when using the KL divergence as the
consistency loss while fixing our hyperparameters.

Table 4. BLEU scores of model when using different loss values as consistency loss.

Loss De-En

MAE Loss 35.65
MSE Loss 35.84
JS Divergence 36.36
KL Divergence 36.41
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4.2.2. Effect of the Hyperparameters

The hyperparameters α of DOCR determine the proportion of consistency loss in
the total training objective. We analyzed its definition and its hyperparameters µ and
γ. In terms of their definition, we fixed the hyperparameters µ and γ to be 0.5 and 40,
respectively, and investigated four functions: sigmoid, cosine, linear, and Equation (8).
As shown in Table 5, the effect of using the sigmoid function was obviously better than
those of the other functions, and it was more suitable for the teacher model update rules
in this experiment. In terms of hyperparameter selection, we studied the two parameters
separately. We fixed µ to 0.5 to discuss how to choose γ and γ and 40 to discuss how to
choose µ. As shown in Figure 3, the results show that the BLEU score first increased with
the increase in µ and γ and reached the maximum when µ was 0.5 and γ was 40. And then,
with the increase in the parameters, the performance decreased, and the phenomenon of
non-convergence occurred. This shows that the model can achieve its best performance
when µ is 0.5 and γ is 40.

Table 5. BLEU scores when using different functions as weight β.

Functions BLEU

Eq 35.90
linear 35.88
cosine 36.29

sigmoid 36.41

(a) (b)

Figure 3. BLEU scores with different µ and different γ on the validation set of IWSLT’14 De-En
dataset. (a) BLEU scores with different µ and fixed γ (γ = 40). (b) BLEU scores with different γ and
fixed µ (µ = 0.5).

4.2.3. Effect on Different Parts

In this section, we examine how consistency regularization affects various model
components. We applied consistency regularization to the encoder, decoder, and the entire
model. “Encoder” indicates that we only trained the encoder for consistency, and the
encoder did not make any changes compared with standard end-to-end training, and
“Decoder” and “All” are similarly defined. The results are shown in Table 6, where it is
clear that the strong regularization effect made the proposed method more effective when
applied to the whole model. In addition to this, there was some improvement in the model
performance when consistent regularization was applied to either the encoder or decoder
alone. Each component in DOCR had a positive effect on improving the performance of
the model, and the removal of any of the components negatively affected the model.
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Table 6. BLEU scores of models when using consistency regularization on different parts.

Models
Loss

Encoder Decoder All

Transformer (base) 35.52 35.87 36.41
kNN-KD 36.41 36.56 36.79

5. Analysis
5.1. Using Logit Is Better Than Using Features

We considered using the features output by the last layer of the encoder and decoder
instead of the probability distribution (logit) as the item for calculating the consistency
loss [30], which can regularize the parameters of the model more finely. The consistency
loss is defined as

Lcon= ∑
i

DKL( fm,i(xm)‖ fb,i(xb))

+ ∑
yi∈V

DKL( fm(yi | xm, y<i)‖ fb(yi | xb, y<i)),
(9)

where fb(yi | xb, y<i) and fm(yi | xm, y<i) are the outputs of the last layer of the decoder.
We conducted the same experiment as in Section 4.1, and the results are shown in

Table 7. For both datasets, feature-based consistent regularization gave poorer results
compared with probability distribution-based consistent regularization. This is due to the
coarse-grained nature of the text, and too much regularization will harm the NMT model,
according to our analysis.

Table 7. BLEU scores of models when using features as terms for computing consistency loss.

Models De-En En-Vi

Transformer (base) 31.01 27.06
+double consistency 36.41 32.48
+double feature consistency 35.65 31.83

5.2. Hallucinations

The model’s attention mechanism might not accurately reflect the model’s actual
attention. The authors of [31] proposed the concept of hallucinations to further understand
the NMT model. If modest input changes cause rapid changes in the output, then the model
is hallucinating and is not really paying attention to the input. In order to verify that the
model is more robust, we followed the algorithm in [32], used the 50 and 100 most common
subwords as perturbations, and tested the model’s performance under input perturbations.

Table 8 shows the number of hallucinations of the model on the De-En test set in the
baseline and DOCR. In DOCR training, tests were performed using both the basic and
mean models. The number of hallucinations dropped on average by 30% in the basic
model and 40% in the mean model compared with the supervised MT. This indicates that
the model in our approach is more robust to interference and more focused on the input
content. The results show that there were fewer hallucinations in the mean model than in
the basic model, proving that it is a more stable model overall. This further confirms the
implementability of the internal logic of our method.

Table 8. Number of distinct sentences which caused hallucinations in the baseline and MFSD models.

Models
Hallucinations

50 Subwords 100 Subwords

Transformer 24 47
Basic Model 16 33
Mean Model 13 29
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5.3. Computation Overhead

Our approach employs a teacher-student framework to further strengthen the machine
translation model, which increases the training complexity to some extent. On the IWSLT
De-En standard dataset, we compared the computational overhead of the DOCR algorithm
with the comparison algorithm. The experiments were run on four NVIDIA V100 GPUs.
The comparison models included a supervised model without any algorithm, a model
obtained by training with the mean teacher algorithm, and a model obtained by training
with the UDA algorithm. The experimental results show that it took a total of 20 h to train
the model using the simple supervised training method. The training of the model using
the mean teacher algorithm took 26 h, which was 30% more than the supervised training
took. The model using the UDA algorithm took 27 h to train, which was 35% more than
supervised training. Our method increased the training time from 20 h to 24 h, which
was 20% more than supervised training. Our method is more computationally expensive
than supervised training because DOCR uses two models and needs to generate two
generations of models. However, our method takes less time and improves performance
more significantly than other consistency regularization methods. This is due to the fact that
on top of the teacher-student framework, the mean teacher and UDA algorithms perform
consistency regularization by adding monolingual data, which undoubtedly increases the
amount of computation by a very large amount. DOCR does not increase the amount of
data by consistency regularizing the outputs of the model encoder and decoder.

6. Conclusions

In this paper, we proposed a dual-consistency regularization method to address the
problem of model overfitting under small-sample conditions so as to make more effective
use of the few labeled data in low-resource situations. Based on the dual-model training
framework, consistency regularization constraints were applied to the encoder and decoder
parts separately, resulting in a robust improvement in the model performance. By con-
ducting experiments on standard low-sample machine translation tasks and comparisons
with classical regularization methods, it was demonstrated that this method can effectively
improve the model performance and can complement other regularization methods to
effectively alleviate the overfitting phenomenon and improve the model generalization
ability. The analysis experiments further validate that our method can make the model
more focused on the inputs, and our method can produce better results with less training
overhead than other regularization methods.
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