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Abstract: This research paper addresses the challenge of designing a decentralized controller for
a discrete-time uncertain polytopic system with a linear large-scale (LSS) structure. Specifically,
we investigate this problem in cases where the subsystem’s output matrix lacks a decentralized
structure. Firstly, the proposed novel procedure of a decentralized controller design transforms the
LSS model to have a fully decentralized structure (both input and output matrices are block-diagonal).
Then, the robust stability boundary parameter is calculated for the open-loop system. This stability
boundary parameter is considered in robust decentralized controller design where an appropriate
controller design method is used. The entire process of designing a robust decentralized controller
takes place at the subsystem level, and the influence of interaction is considered through the robust
stability boundary parameter. Lastly, we present an example of a five-order system comprising two
subsystems to show the effectiveness of the new method.

Keywords: decentralized controller design; robust controller design; uncertain polytopic system;
output feedback; PID controller

1. Introduction

Having obtained its maturity during recent decades, decentralized and robust con-
trol ([1–6] and others mentioned in this article) still belong to the topical issues of control
theory and practice. The concept of a large-scale system highlights the fundamental fea-
ture of a complex system for which centralized control is challenging or unfeasible due
to its sheer size and complexity. This is the reason why such systems are divided into
independent subsystems for the purposes of control design, and subsequently controlled
in a decentralized way using an algorithm with information constraints. Decentralized
control consists of several independent controllers, each of which controls only the local
output using the local input of a corresponding subsystem. Since the 1970s, a large number
of suitable methods for a decentralized controller design have been developed in the time
domain, the frequency domain, and also using the approach of Variable System Structure
(switch systems approach).

In the time domain, the main results can be characterized as follows: methods based
on the aggregation matrix approach [7] and methods based on the Linear Matrix Inequality–
Bilinear Matrix Inequality (LMI-BMI) approach, where interesting results have been ob-
tained in the design of decentralized robust controllers [8]. The latter contributed signifi-
cantly to the advancement of the theory concerning the design of robust and decentralized
controllers, in [9–12] and others. The approach for designing adaptive decentralized con-
trollers with both state and output feedback was introduced in [13,14].
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The main results, i.e., methods developed in the frequency domain, can be summa-
rized as follows: sequential design, independent design [15], and the methods using an
equivalent subsystem approach [16]. The design of decentralized controllers in the field of
Variable-Structure Systems (VSS) was introduced in [17], where a decentralized VSS control
law for a robot manipulator was presented. Later, a diagonal-dominant approach to the
design of a decentralized controller for complex systems was proposed.

In [16], a presentation of decentralized control techniques for linear systems is pro-
vided for the frequency domain. Additionally, an exceptional overview of decentralized
controller design procedures for continuous- and discrete-time systems can be encountered
in [18] and the book in [19].

The new decentralized controller design approach presented in this paper represents
the integration of two methodologies from our earlier works [20,21], specifically tailored
for discrete-time systems in the time domain. Focused on discrete-time systems, the new
method offers a counterpart for continuous-time control [21], where specifics of discrete-
time system controller design are considered. Discrete-time systems prevail in real-world
applications, such as digital control and sampled data systems. Discrete-time models
more accurately capture the practical implementation of controllers in modern technology,
allowing for direct integration with digital hardware and offering inherent benefits in terms
of computational efficiency and ease of implementation.

This paper introduces a novel approach to designing a robust decentralized controller
for linear uncertain discrete-time systems whose structure is not decentralized: while an
input matrix is decentralized, an output matrix does not have a decentralized structure. The
method presented in this manuscript is executed in three sequential steps as outlined below:

During the first step, the state-space system with an output matrix with a general
structure is transformed to a large-scale uncertain descriptor system, with a fully decentral-
ized structure.

The second step includes the determination of whether the open-loop uncertain
descriptor system is stable and the stability degree is calculated. The overall system
stability degree sets the required properties of the corresponding closed-loop descriptor
subsystems such as their stability, robustness, and dynamic properties, which guarantees
the analogical qualities of the entire closed-loop descriptor system. The stability of the
entire descriptor system implies the stability of the original large-scale system.

In the third step, parameters of the descriptor decentralized controller are calculated
at the subsystem level, to guarantee the required dynamic properties of the subsystems
obtained in the second step.

The findings presented in this paper introduce a novel approach to the design of
decentralized controllers, which involves the design of decentralized controllers for both
stable and unstable complex systems.

The structure of this paper is as follows: In Section 2, we present preliminary results
and formulate the problem. Section 3 introduces the transformation of a non-decentralized
structure of output subsystem matrices to a decentralized one and the calculation of
the robust stability boundary of a corresponding complex descriptor system. Section 4
provides complex descriptor system and subsystem models for a proportional–integral (PI)
or proportional–integral–derivative (PID) controller. Section 5 demonstrates the efficacy
of the proposed method through an example of a fifth-order model with two subsystems.
Section 6 summarizes the benefits of the proposed approach.

2. Preliminaries and Problem Formulation

In this section, the studied problem is introduced and a description of a considered
system and basic stability conditions are presented.
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2.1. System Description

Consider a large-scale uncertain linear discrete-time invariant system that is described
as follows:

x(t + 1) = A(ξ)x(t) + B(ξ)u(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rm a control input vector, y(t) ∈ Rl a controlled
output vector. The matrices

(A(ξ), B(ξ)) =
N

∑
i=1

(Ai, Bi)ξi (2)

belong to a polytopic uncertainty domain with N-vertices and uncertainties belonging to
the set

Ωξ = {ξi ≥ 0, i = 1, 2, . . . , N,
N

∑
i=1

ξi = 1}. (3)

Matrices Ai, Bi, and C have constant entries. We assume that system (1) consists of
M subsystems, the j-th subsystem has nj states, mj inputs, and lj outputs, and matrices
Bi, i = 1, 2, . . . , N have a decentralized structure [7].

Ai =


Ai11 . . . Ai1M
Ai21 . . . Ai2M

...
. . .

...
AiM1 . . . AiMM

 ∈ Rn×n,

Bi = blockdiag [Bi1 . . . BiM] ∈ Rn×m,

C =

 C1
. . .
CM

 ∈ Rl×n

(4)

where Aijk ∈ Rnj×nk , Bij ∈ Rnj×mj , Cj ∈ Rlj×n, ∑M
j=1 nj = n, ∑M

j=1 mj = m, ∑M
j=1 lj = l.

A general form of the output matrix C is considered, without assuming its decentralized
structure. Let us additionally presume that the complex system (1) is observable and
controllable under the decentralized control structure [22].

System (1) can be formally partitioned into subsystems through various formal decom-
position methods. In this manuscript, the segmentation of the aforementioned matrices
into submatrices is indicative of the intrinsic characteristics of the system, as discussed
by [7].

2.2. Stability Conditions

System (1) is said to be asymptotically stable if A(ξ) is Schur-stable for all ξi, i = 1,
2, . . . , N, that is, all eigenvalues of A(ξ) lie in the unit circle.

Next, Lemma 1 directly follows from the well-known Lyapunov stability theory and
Lyapunov matrix inequality for Schur-stable matrices.

Lemma 1. The summation of two discrete-time matrices, denoted as G + H ∈ Rn×n, exhibits
Schur stability if and only if there exists a positive definite Lyapunov matrix P > 0 satisfying the
condition that

(G + H)T P(G + H)− P < 0 (5)

holds.

Proof. Inequality (5) is a standard condition for matrix Schur stability written for the matrix
L = G + H.
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Let us consider an LSS with subsystems and interactions which can vary within the
specified limits as described in the next definition.

Definition 1. Consider the matrix Fs = { fij}M×M as the structured perturbation matrix for
system (1), where

• fij = 1, when an interaction exists between subsystems i and j;
• fij = 0, when no interaction exists between subsystems i and j.

To address varying levels of interaction between the subsystems, we consider setting the value
of fij ∈< 0, 1 >.

Definition 2 ([7]). A complex system (1) is connective-stable if and only if it is asymptotically
stable for all possible entries fij of the matrix Fs(eij).

3. Main Steps for a Decentralized Stabilization Controller Design

This paper primarily addresses the task of devising a decentralized control

u(t) = Kdecy(t), Kdec = blockdiag[Kdec1, Kdec2, . . . , KdecM], (6)

or, in other words, to find a block-diagonal control gain matrix Kdec of dimensions corre-
sponding to dimensions of Bi, such that the corresponding closed-loop system is connec-
tively stable with the defined stability degree. The main aim is to develop a decentralized
controller design procedure at a subsystem level.

In this section, basic steps are studied, which are used in a proposed decentralized
control design in the next section. These steps can be summarized as follows.

• Transformation of the system to the form with an output block-diagonal matrix.
• Robust stability conditions for a descriptor system.
• Robust stability conditions of a large-scale system under decentralized control.
• Subsystem model augmentation for PID controllers designed at the subsystem level.

The presented material is based on our previous results from [20,21].

3.1. Transformation of the Output Matrix to a Block-Diagonal Form

In a recent work of two of authors [21], the transformation of a continuous-time
system is proposed based on the augmentation of a system to a descriptor one with a
block-diagonal output matrix. In this subsection, we present the discrete-time counterpart
for the previous result.

The system can be decomposed into individual subsystems and their interconnections.
We can split matrix Ai, i = 1, 2, . . . N from (2) and (4) to a diagonal and non-diagonal part,
Adi and Ami, respectively, where Adi = blockdiag[Ai11, Ai22, . . . , AiMM] corresponds to
subsystems and Ami to their interconnections.

Then, the following plant model is obtained for the i-th vertex of the uncertainty
domain

x(t + 1) = (Adi + Ami)x(t) + Biu(t), y(t) = Cx(t) (7)

i = 1, 2, . . . , N.
Recall that the j-th subsystem has nj states, mj inputs, and lj outputs. The correspond-

ing expression for the output matrix C is as follows:

y(t) =

 C1
. . .
CM

x(t) =


C11 C12 . . . C1M
. . .
Cj1 Cj2 . . . CjM
. . .

CM1 CM2 . . . CMM

x(t), j = 1, 2, . . . , M,

Cj ∈ Rlj×n, Cjk ∈ Rlj×nk , k = 1, 2, . . . , M.
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In order to transform the system to the form with a decentralized block-diagonal
structure of the output matrix, the following new state variable for the overall system
is defined:

xd(t)T =
[

x1(t)T y1(t)T x2(t)T y2(t)T . . . xM(t)T yM(t)T ]
where xj(t) ∈ Rnj are the state variables and yj(t) ∈ Rlj are the output variables of the
j-th subsystem. In this way, we can describe the large-scale linear uncertain system (1)
alternatively as a uncertain descriptor system having decentralized structure, with block-
diagonal input and output matrices B and C

Exd(t + 1) = A(ξ)xd(t) + B(ξ)ud(t), yd(t) = Cxd(t), (8)

where the descriptor system matrices are (A(ξ), B(ξ)) = ∑N
i=1(Ai, Bi)ξi,

Ai =

 Ai11 . . . Ai1M
. . . . . . . . .

AiM1 . . . AiMM



Aijj =

[
Aijj 0jj
Cjj −Inj

]

Aijk =

[
Aijk 0jk
Cjk 0

]
and j, k = 1, 2 . . . M, nj = nj + lj, Aijj ∈ Rnj×nj = Adij, Aijk ∈ Rnj×nk , 0jk ∈ Rnj×lk is a zero
matrix, Inj ∈ Rnj×nj is identity matrix.

The input matrix is then

Bi = blockdiag
[

Bi1 . . . BiM
]

Bij =

[
Bij
0

]
and the output matrix C has now a decentralized structure

C = blockdiag
[
[0n1 Il1 ]; [0n2 Il2 ]; . . . ; [0nM IlM ]

]
where 0nj ∈ Rlj×nj is a zero matrix, j = 1, 2, . . . , M.

The corresponding descriptor matrix in (8) is

E = blockdiag
[ [

In1

01

]
,
[

In2

02

]
,
[

. . .
]
,
[

InM

0M

] ]
where 0j ∈ Rlj×nj is a zero matrix, E ∈ Rn×n, n = ∑M

j=1 nj, rank(E) < n.
The above model (8) describes the uncertain polytopic descriptor system in the de-

centralized structure. In this way, the challenge of designing a decentralized controller
for an uncertain system (1) with a general (non-diagonal) output matrix is transformed
to a decentralized control design problem for a descriptor system with a block-diagonal
output matrix.

Suppose the complex system (1) is both controllable and observable in the centralized
sense, and there are no unstable fixed modes [22]. The current challenge lies in formulating
a decentralized controller for the j-th subsystem, j = 1, 2, . . . , M. The objective is to ensure
that this decentralized controller not only maintains the closed-loop stability, robustness,
and performance of each individual subsystem but also preserves the overall stability of
the complex descriptor system, while meeting the designer’s specified performance criteria.
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Then, the obtained decentralized controller ensure the stability of the original uncertain
large-scale system (1). For example, the controller can take the form of a proportional–
integral (PI), proportional–integral–derivative (PID), or any other suitable type.

Below, we will consider a control algorithm for a decentralized PID controller in the
following form:

uj(t) = kpjCjxj(t) + kijCj

∞

∑
t=t0

xj(t) + kdjCj∆x(t)j, (9)

where
∆xj(t) = xj(t)− xj(t− 1), j = 1, 2, . . . , M.

3.2. Robust Stability of Uncertain Descriptor System

Let us recall recent results of descriptor system regularity and stability [23–27], which
will be used in our further development

Definition 3 ([28]). The linear descriptor system

Ex(t + 1) = Ax(t), x(t0) = x0 (10)

is said to be regular if there exist s such that det(sE− A) 6= 0.

Definition 4 ([28]). A linear discrete descriptor system is said to be stable if (10) is regular and
all of its finite poles are in the unit circle and asymptotically stable if all finite eigenvalues of pencil
(zE− A) are inside the unit circle.

Lemma 2 ([28]). Linear discrete descriptor system (10) is regular, causal, and asymptotically stable
if and only if there exists a generalized Lyapunov function V(Ex(t)) = x(t)TET PEx(t) satisfying

∆V(Ex(t)) = V(E(x(t + 1))−V(Ex(t)) < 0 (11)

when Ex(t) 6= 0.

Robust controller design for an uncertain discrete-time descriptor system (8) is based
on Lemma 2, and follows the approach used for a robust controller design and discrete
descriptor system, which is summarized in the following theorem.

Theorem 1. Linear discrete-time descriptor polytopic system (8) is regular, causal, and asymptoti-
cally stable if and only if:

Case a. For the case without uncertainty (i = 1 in (8)), there exists a positive definite Lyapunov
matrix P > 0 such that the following inequality holds:

AT PA− ET PE ≤ 0. (12)

Case b. For the uncertain system with polytopic uncertainty (i = 1, . . . , N in (8)), there
exist auxiliary matrices N1, N2 ∈ Rn×n and positive definite matrices Pi such that the following
inequalities hold for i = 1, 2, . . . , N:[

N1 Ai + AT
i NT

1 − ET PiE −N1 + AT
i NT

2
−NT

1 + N2 Ai −N2 − NT
2 + Pi

]
≤ 0. (13)

Proof. Case A. Equation (12) directly follows from (11) after substituting for E(x(t + 1)
from (8).

Case B. Consider the following Lyapunov function for the uncertain system: V(Ex(t)) =
x(t)TET P(ξ)Ex(t). Substitute from (8) and (11) for A(ξ) and P(ξ) the following A(ξ) =
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∑N
i=1 Aiξi, P(ξ) = ∑N

i=1 Piξi and introduce two auxiliary matrices N1, N2 ∈ Rn×n such that
for the i-th vertex of uncertainty polytope

He([Ex(t + 1)− Aix(t)]T [−NT
1 x(t)− NT

2 Ex(t + 1)]) = 0 (14)

where i = 1, 2, . . . , N and He(X) denotes X + XT .
Introducing denotation vT = [x(t)T (Ex(t + 1))T ], stability condition (12) can be

rewritten as

∆V(Ex(t)) = vT
[
−ET

i PiE 0
0 Pi

]
v. (15)

Summing up (14) written in the matrix form using vector v and (15), inequality
(13) is obtained for the first difference of Lyapunov function (11), which proves the
necessary and sufficient robust stability conditions for the polytopic discrete uncertain
descriptor system.

3.3. Robust Stability of Large-Scale System with Decentralized Control

This subsection states the robust stability boundary according to our recent results.
Consider the descriptor system (8) and split the system matrix Ai analogously as in (7)
Ai = Adi + Ami where Adi = blockdiag

[
Ai11, . . . , AiMM

]
. To study the stability of

a descriptor system considering its decentralized structure, let us introduce an unknown
positive coefficient α > 0 and modified system matrix Ai = αAdi + Ami. The next step is to
find a maximal value of α > 0 so that (12) or (13) hold, that is appropriate to the considered
case. According to the obtained value of α, it is possible to assess the stability of the overall
system, which can be summarized as follows:

• If the obtained α ≥ 1, the uncertain descriptor complex system is impulse-free and
asymptotically stable.

• If the obtained α < 1, the uncertain complex system is not stable.

The closed-loop stability condition for discrete-time descriptor complex systems can be
obtained from the following inequality, where a decentralized control ud(t) = Kdecyd(t) =
Kdecxxd(t) is considered:

(Adi + BiKdecx)
T(Adi + BiKdecx) ≤ (α2 AdT

i Adi).

Inequality (13) falls within the category of Bilinear Matrix Inequalities (BMI). When
dealing with complex systems of higher order, both the elimination lemma and the lin-
earization approach can be employed to derive a computationally manageable Linear
Matrix Inequality (LMI) representation of (13), as described in our earlier work.

According to the review paper on decentralized control [18], complex systems can be
split into two large groups: with strong or weak interactions. In this research, we classify
complex systems into stable and unstable categories. The parameter α obtained through our
analysis holds crucial significance in the formulation of resilient decentralized controller
designs. A robust stability boundary condition for complex systems can be set with respect
to subsystem eigenvalues λik = eig(Adi), k = 1, 2, . . . , n; i = 1, 2, . . . , N as follows:

Sc = α min
i

max
k
|λik|, k = 1, 2, . . . , n. (16)

The achieved result determines a sufficient condition for the size of the radius of the
circle, which determines the limit of robust stability for the complex system. If all the
eigenvalues of the closed-loop subsystems with a decentralized controller are placed inside
the determined circle, the complex system will be robustly stable. The result indicates the
possibility of designing decentralized controllers for individual subsystems, irrespective of
the presence of intersubsystem interaction links.
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Remark 1. If the positive coefficient Sc is known, the degree of stability αd for all subsystems
j = 1, 2, . . . , M is given as

αd = 1− S2
c .

The following condition must be satisfied for a stable complex discrete-time descriptor system:

∆Vj(x) ≤ −αdVj(x) j = 1, 2, . . . , M

where Vj(x), j = 1, 2, . . . , M represents the Lyapunov function for the closed-loop j-th subsystem.

3.4. PID Controller as a Static Output Feedback

For the design of a robust PID controller (9) for uncertain decentralized discrete de-
scriptor systems, we recall the procedure of transforming the PID(PI) controller design
problem to a static output feedback problem [12]. The new state variables are intro-
duced as follows: z(t) = [z1(t)T z2(t)T ]T , where z1(t) = ∑t−2

i=0 y(i), z2(t) = ∑t−1
i=0 y(i)

and then z2(t) − z1(t) = y(t − 1). On the base of the new state variables yn(t) =
[y(t)T z1(t)T z2(t)T ]T , the modified static output feedback PID algorithm is given
as follows:

u(t) = [kp + ki + kd kd ki− kd]yn(t) = Kyn(t). (17)

Discrete-time descriptor system matrices are augmented by also considering states
z1(t), z2(t) to include PID controller dynamics

An(ξ) =

 A(ξ) 0 0
0 0 I
C 0 I

; Cn =

 C 0 0
0 I 0
0 0 I

 (18)

and the input matrix
Bn(ξ)

T = [B(ξ) 0 0]T .

For PI controller one, kd = 0 is set and the variable z1(t) is omitted. The PI control
algorithm is then in the form

u(t) = [kp + ki ki]yn(t)

and dynamic model (18) reduces to

An(ξ) =

[
A(ξ) 0

C I

]
; Cn =

[
C 0
0 I

]
; Bn(ξ)

T = [B(ξ) 0]T .

In the following text, we assume that without a change in denotation, the discrete-time
descriptor system matrices comply with robust PID or PI controller design.

4. Robust Decentralized Controller Design

The decentralized controller design procedure for a discrete-time large-scale system
is presented in this section. Controller design is realized at the subsystem level where
an overall system parameter α and robust stability boundary Sc (see (16)) are considered
to guarantee the robust stability of descriptor system (8). In order to design a (robust)
PID decentralized controller, the method of the regional pole placement approach gives
promising results [10]. The formulation of the corresponding stability condition for a
descriptor system is presented in the next subsection.

4.1. Regional Pole Placement Approach to Descriptor Systems

Following [10], the DR region in a complex domain is defined as

DR = {z ∈ C : R11 + R12z + RT
12z∗ + R22zz∗ < 0} (19)
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where R11 = RT
11 ∈ Rd×d, R12 ∈ Rd×d, and R22 = RT

22 ∈ Rd×d; we consider R22 ≥ 0. A
matrix A is considered to exhibit DR stability when all of its eigenvalues are situated within
the designated DR region. The condition of DR stability for a matrix A is equivalent to the
existence of a positive definite matrix P that satisfies the following inequality:

R11 ⊗ P + R12 ⊗ PA + RT
12 ⊗ AT PT + R22 ⊗ AT PA < 0 (20)

where ⊗ denotes the Kronecker product. For a discrete-time system x(t + 1) = Ax(t),
a necessary and sufficient DR stability condition can be formulated in matrix form for a
positive definite matrix P such that

∆Ve = vT
[

R11 ⊗ P R12 ⊗ P
∗ R22 ⊗ P

]
v ≤ 0 (21)

where vT = [(1d ⊗ x(t)T) (1d ⊗ x(t + 1)T)], 1d denotes a column vector of d ones and ∗
denotes the conjugate transpose of the symmetrically placed submatrix. Following [10] and
using (15) and (21), the DR robust stability condition for closed-loop descriptor system (8)
with a system matrix Adci = Adi + Bi ∗ Kdec can be formulated in the matrix form as

∆Vd = vT
d

[
R11 ⊗ (−ET ∗ P(ξ) ∗ E) R12 ⊗ P(ξ)

∗ R22 ⊗ P(ξ)

]
vd ≤ 0. (22)

For a disk region with the center in origin and radius r, we have R11 = −1, R12 =
0, R22 = 1

r2 , d = 1 and DR robust stability is reduced to

∆Vexd = vT
d

[
R11 ⊗ (−ET ∗ Pi ∗ E) 0

0 R22 ⊗ Pi

]
vd ≤ 0. (23)

Robust stability condition (23) for a descriptor system will be used in the decentralized
controller design.

4.2. Robust Decentralized Control for Descriptor Systems

The design of a robust decentralized controller is based on the closed-loop robust
stability condition. This condition is derived in a matrix form by analogy to the continuous-
time result presented in our recent paper [21]. A disk DR region with radius r = Sc, where
Sc is given by (16), is considered for individual subsystems to achieve stability of the overall
system. To obtain the closed-loop robust stability condition, DR stability condition (23) is
considered for a descriptor system (8) with augmented matrices (23). Descriptor system
model (8) and decentralized control law (6) are considered for individual subsystems
and uncertainty domain vertices as constraints, and auxiliary matrices N3, N4, N5, N6 of
corresponding dimensions are included analogically to N1, N2 in (14), resulting in system
constraints (24) and (25). All conditions are formulated and solved on a subsystem level (in-
dex j denotes the j-th subsystem; subsystem matrices corresponding to the i-th uncertainty
domain vertex are Aij and Bij; subsystem controller parameters are in a matrix Kdecj).

He([Ejxj(t + 1)− Aijx(t)− Biju(t)]T [−NT
2 Exj(t + 1)− NT

1 xj(t)− NT
3 uj(t)]) = 0, (24)

He([−KT
decjxj(t) + uj(t)]T [NT

4 xj(t) + NT
5 Ejxj(t + 1) + NT

6 uj(t)]) = 0. (25)

Vector v(t) from (15) is further extended to vT
uj = [xj(t)T (Ejxj(t + 1))T uj(t)], and

formulas (24) and (25) are rewritten in a matrix form and add up to (23) so that the final
robust stability condition is achieved as

vT
ujWjvuj ≤ 0 (26)
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where a symmetric matrix Wj = (wik) and for i = 1, . . . , N

w11 = He(N1 Aij − N4Kdecj) + R11 ⊗ (ET
j PijEj)

w12 = −N1 + AT
ij N

T
2 − KT

decjN
T
5

w13 = N1Bij + N4 − KT
decjN

T
6 + AT

ij N
T
3

w22 = −N2 − NT
2 + R22 ⊗ Pij

w23 = N2Bij − NT
3 + N5

w33 = He(N3Bij + N6).

The decentralized controller design for system (1) with an already decentralized input
matrix (4) can be summed up as follows:

• Transform a system into the fully decentralized form using an auxiliary descriptor
system (8).

• Calculate the robust stability boundary Sc as in (16).
• For a PID controller, use the augmented subsystem description according to (17) and (18).
• Solve BMI matrix inequality (26) for each subsystem considering the DR region com-

plying with the value of Sc (disc region with radius Sc).

5. Example

The next example illustrates the detailed procedure for designing a decentralized con-
trol for the complex linear discrete-time system. We consider a fifth-order system with two
subsystems, second and third order, respectively. The aim is to design a PID decentralized
controller for the mentioned system. The structure of the example is typical of some practi-
cal applications, e.g., control of the active power of a turbo unit and control of the terminal
voltage of a synchronous generator. Here, the models used for the decentralized controller
are simplified. We consider two cases: Case A—only the nominal system is considered;
Case B—an uncertain system is considered, where uncertainties are in the interactions.

The nominal system parameters are as follows:
first subsystem, j = 1

A11 =

[
0.517 0.7
0.1 0.23

]
B1 =

[
1
0

]
C1 = [1 0 0.05 0.06 0.078];

second subsystem, j = 2

A22 =

 0.59 0.37 0.28
0.0143 0.04 0.1

0.3 0.41 0.12

 B2 =

 1
0
0


C2 = [0 0.1 1 0.05 0.01];

interactions

Am =


0 0 0.02 0.07 0.3
0 0 0.09 0.05 0.1

0.027 0.04 0 0 0
0.012 0.05 0 0 0
0.07 0.04 0 0 0

.

It is assumed that the interaction matrix is stable; in our case all eigenvalues of Am lay
within <−0.16, 0.0459>. In the first step, described in Section 3.1, the system is transformed
into the descriptor form with a block-diagonal output matrix. The descriptor state vector is
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chosen as [x1, x2, y1, x3, x4, x5, y2] and the corresponding descriptor systems (8) is obtained
in the form

A1 =



0.517 0.7 0 0.02 0.07 0.03 0
0.1 0.23 0 0.09 0.05 0.1 0
1 0 −1 0.05 0.06 0.07 0

0.027 0.04 0 0.59 0.37 0.2 0
0.12 0.05 0 0.0143 0.04 0.1 0
0.07 0.04 0 0.3 0.41 0.12 0

0 0.1 0 1 0.05 0.01 −1


C1 = [0 0 1] and C2 = [0 0 0 1], C = blockdiag[C1, C2], the descriptor matrix is

E = diag{1, 1, 0, 1, 1, 1, 0}.
Checking the stability condition Ai = αAdi + Ami (Section 3.3), and maximizing α,

one obtains α = 1.16 with stability radius to complex descriptor system Sc = 0.8922. The
value of α implies that the complex system is stable, near to the stability boundary.

Case A (interactions Am)

Utilizing the regional pole placement approach for a circle centered in origin with a
radius corresponding to Sc, the obtained PID controller parameters are as follows:
first subsystem
kp1 = 0.9544, ki1 = 0.9541, kd1 = −5.8218e− 005;
second subsystem
kp2 = 0.9744, ki2 = 0.9740, kd2 = −6.3422e− 005.

The designed decentralized controller is checked for the overall system by computing
closed-loop system eigenvalues and using simulations. The corresponding subsystem
eigenvalues are as follows:
first subsystem closed-loop eigenvalues
−0.9643, 0.4015± 0.1254i,−0.0001;
second subsystem closed-loop eigenvalues
−0.9256, 0.4194± 0.1761i,−0.1114,−0.0001.

Note that each subsystem has two extra eigenvalues since PID controller dynamics
are included.

The eigenvalues characterizing the behavior of the entire closed-loop complex sys-
tem are:
−0.9437± 0.068i, 0.4647± 0.1976i, 0.4057, 0.2864,−0.0937,−0.0001,−0.0001.

Note that the complex system with the designed decentralized controller is asymptoti-
cally stable.

Case B (uncertain interactions Am to 3Am)

In this scenario, we consider the design of a robust PID controller for the previously
discussed complex system, taking into account uncertainties in the interactions within
the subsystems. Therefore, we consider polytopic uncertainty with two vertices, where
for i = 1 the interaction matrix Am1 is the same as for Case A, and for the second vertex
(second working point), i = 2, the interaction matrix is equal to Am2 = 3Am1. For these
different values of interactions, we design a decentralized PID controller such that the
closed-loop complex system will be stable over the uncertainty domain. Increasing the
interactions, the corresponding complex system is unstable, α = 0.7. A regional pole
placement approach gives the results, which are very close to those in Case A. Therefore,
we check the same decentralized controller as in Case A for the case with interactions 3Am1.
The closed-loop eigenvalues of the complex system in the second vertex are
−0.9873± 0.0853i, 0.613± 0.2944i, 0.5258,−0.0684± 0.1142i,−0.0001,−0.0001.

The complex system for Case B is asymptotically stable.
The dynamic response of the closed-loop system for Case A is depicted in Figure 1

(ξ1 = ξ2 = 0.5). The impact of interactions is evident from the simulation results, particu-
larly on the output y2 at times of 20 and 60 s and with smaller interactions at times of 0 and
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40 s. The dynamic response of the closed-loop system for Case B, characterized by increased
interactions, is illustrated in Figure 2 (ξ1 = ξ2 = 0.5). This simulation demonstrates higher
levels of interactions and the stability of the closed-loop system. The simulation results
substantiate the precision of the numerical computations and affirm the soundness of the
proposed control method.
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Figure 1. The plot depicting the time responses of the controlled outputs in Case A.
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Figure 2. The plot depicting the time responses of the controlled outputs in Case B.

6. Conclusions

This paper addresses a key challenge in decentralized control of linear discrete-time
complex systems. Concerning a decentralized control design, a decentralized (block-
diagonal) structure of the input and output matrices is typically assumed. However, many
real-world plants do not meet this requirement.
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In this paper, we introduce a novel approach that transforms the model of a complex
plant when the output matrix does not possess a decentralized structure. This transfor-
mation converts the plant’s model into a descriptor complex uncertain matrix, ensuring
that both the input and output matrices become block-diagonal. Subsequently, we apply
a recently developed decentralized control design method [20] to design a decentralized
controller at the subsystem level for the transformed decentralized system.

Our method focuses on the relationship between subsystems and the interaction
matrix, prioritizing stability considerations over strong or weak interactions between
subsystems. The outcomes achieved in the presented paper are the following:

1. A novel transformation method for discrete-time dynamic systems is proposed, en-
abling the transformation of a linear state-space system into an uncertain descriptor
system with a decentralized structure of input and output matrices appropriate for a
decentralized controller design.

2. Derivation of conditions for determining the stability boundaries of complex descrip-
tor systems and their use in subsystem controller design [20].

3. Validation of the proposed discrete-time system transformation method using the
recently developed decentralized control design approach.

4. Modification of the regional pole placement method to accommodate descriptor systems.
5. Demonstration of the effectiveness of the proposed decentralized control design

procedure through a practical example.

It is important to highlight that the robust decentralized controller design process
is executed at the subsystem level, with due consideration to the interactions introduced
through design parameters, while the interactions between subsystems are not explicitly
considered in this process.
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