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Abstract: Mathematical expression retrieval is an essential component of mathematical information
retrieval. Current mathematical expression retrieval research primarily targets single modalities,
particularly text, which can lead to the loss of structural information. On the other hand, multi-
modal research has demonstrated promising outcomes across different domains, and mathematical
expressions in image format are adept at preserving their structural characteristics. So we propose a
multi-modal retrieval model for mathematical expressions based on ConvNeXt and HFS to address
the limitations of single-modal retrieval. For the image modal, mathematical expression retrieval is
based on the similarity of image features and symbol-level features of the expression, where image
features of the expression image are extracted by ConvNeXt, while symbol-level features are obtained
by the Symbol Level Features Extraction (SLFE) module. For the text modal, the Formula Description
Structure (FDS) is employed to analyze expressions and extract their attributes. Additionally, the ap-
plication of the Hesitant Fuzzy Set (HFS) theory facilitates the computation of hesitant fuzzy similarity
between mathematical queries and candidate expressions. Finally, Reciprocal Rank Fusion (RRF) is
employed to integrate rankings from image modal and text modal retrieval, yielding the ultimate
retrieval list. The experiment was conducted on the publicly accessible ArXiv dataset (containing
592,345 mathematical expressions) and the NTCIR-mair-wikipedia-corpus (NTCIR) dataset.The
MAP@10 values for the multimodal RRF fusion approach are recorded as 0.774. These substantiate
the efficacy of the multi-modal mathematical expression retrieval approach based on ConvNeXt
and HFS.

Keywords: mathematical expressions retrieval; ConvNeXt; FDS; HFS; multi-modal

1. Introduction

Mathematical expressions play a significant role in scientific communication and cal-
culations. Mathematical Information Retrieval (MIR) is a crucial component of Information
Retrieval (IR) that deals with searching for specific mathematical expressions, concepts,
or objects. Efficient indexing and retrieval of mathematical expressions have become the
most challenging part of MIR due to the growing use of mathematical content in various
scientific documents, educational materials, and web information in MathML or LaTeX for-
mat. Many academics have been working on mathematical information retrieval research
recently and have seen some success [1–3].

Due to the two-dimensional structure of mathematical expressions and the complexity
of mathematical symbol types and semantics, traditional search engines primarily designed
for plain text retrieval often struggle to fulfill the required criteria. Mathematical expression
retrieval encounters numerous challenges:

1. Mathematical Context: Understanding the context in which a mathematical expres-
sion is used is crucial, as the same notation can have different meanings in distinct
mathematical subfields or domains.
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2. Equivalent transformations of a mathematical expression: Mathematical expressions
in different forms may convey the same meaning (e.g., a× (x + z) and a× x + a× z ,
a

1
2 and

√
a ).

3. Multimodal Content: Multimodal content presents mathematical expressions in vari-
ous forms, in addition to textual modes like MathML and LaTeX, these expressions
can also be represented through images. Different modalities of mathematical expres-
sions exhibit distinct characteristics, necessitating the effective handling of diverse
data types.

4. Structure Complexity: Mathematical expressions can be symbolically complex, involv-
ing nested functions, subscripts, superscripts, and specialized symbols that require
intricate parsing and interpretation.

Current research in multimodal studies is expanding rapidly, exploring the integration
of various data types and modes to gain a more comprehensive understanding of complex
phenomena [4,5]. In response to the challenges outlined above, specifically Challenge 3
and Challenge 4, this paper makes the following contributions:

1. Introducing the image modality in mathematical expression retrieval. Images can
capture the visual aspects of mathematical expressions, providing a richer and more
comprehensive representation compared to plain text. Combining image modal
with text modal allows a more comprehensive understanding of mathematical con-
tent. This integration can enhance retrieval accuracy by considering multiple data
types simultaneously.

2. Building upon extracting image features from mathematical expression images, we
have devised a symbol-level feature extraction method to obtain a more comprehen-
sive set of image feature information. This enhancement ensures that the ranking re-
sults produced by the image modality retrieval module are more rational and accurate.

3. We employ algorithmic analysis to extract attributes from the textual modality of
mathematical expressions. Subsequently, we construct a table of attributes for tex-
tual modality expressions. By introducing hesitant fuzzy sets and leveraging their
advantages in handling multi-attribute evaluation criteria, we calculate the similarity
between expressions.

4. We opt for an appropriate fusion sorting method to combine and rank the retrieval results
from both image and text modalities, resulting in the final ranking outcome. Furthermore,
a subset of literature from the publicly accessible ArXiv dataset was extracted and utilized
to construct a dataset encompassing 592,345 mathematical expressions.

2. Related Work

Regarding mathematical expression retrieval of the text modal, expression trees are
widely used for storing and processing mathematical expressions and have been applied
to mathematical expression retrieval by many scholars. Goel et al. [6] have undertaken
studies on Math Word Problems, utilizing a tree-matching algorithm for the matching of
mathematical expressions; they performed pair-wise matching on expression trees through
post-order traversal. Pfahler et al. [7] incorporated unsupervised embedding learning and
Graph Convolutional Neural Networks (GCNNs) for learning mathematical representa-
tions. In order to facilitate effective nearest-neighbor queries, mathematical operations
represented in XML format were processed as graphical data and embedded into a low-
dimensional vector space. Schellenberg et al. [8] employed substitution trees to index and
retrieve mathematical expressions in LaTeX representation, but the insertion bias limits its
performance. Hu et al. [9] proposed WikiMirs, using a method of generalization that is
hierarchical to produce subtrees from the representation trees of mathematical expressions,
which can support substructure and similarity matching of mathematical expressions.
Zhong et al. [10] presented a dynamic pruning algorithm for inverted index, representing
mathematical expressions as OPTs (Operator Trees), which improves retrieval efficiency for
substructures of mathematical expressions.

Neural network methods have achieved significant progress in natural language-
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related tasks, but their performance on mathematical language-related tasks remains an
active research area. Gao et al. [11] proposed a formula vector generation method based
on “formula2vec” by analyzing feature differences between natural and mathematical
languages. In pursuit of attaining heightened semantic information during embedding,
Dadure et al. [12] proposed a contextual formula embedding method that retrieves syntac-
tically and semantically similar formulas, sub-formulas, and parent formulas, highlighting
the importance of formula context in mathematical information retrieval. Peng et al.’s
MathBERT pre-training model [13] can capture the semantic structure information of for-
mulas by concurrently training the formulas and the contexts that relate to them. Dai [14]
proposed NTFEM, which extends N-ary tree representations of MathML formulas to one-
dimensional linear sequences, uses a word embedding model to obtain the sub-structure
vector, and applies a weighting function to obtain a weighted average embedding vector.

In the realm of image-based mathematical expression retrieval, Marinai et al. [15] pro-
posed a mathematical symbol retrieval approach based on visual bag-of-words encoding,
which employed self-organizing maps to cluster shape context into appropriate visual
dictionaries, facilitating efficient retrieval of mathematical symbols. Zanibbi et al. [16] used
content-based image retrieval to match binarized and decomposed query images with
expression images.

In summary, current mathematical expression retrieval mainly focuses on unimodal
approaches. For text modal retrieval, methods based on representation trees and neural
networks embedding expressions into vectors predominate. However, these methods
may overlook structural information. Image modal retrieval, on the other hand, tends
to decompose mathematical expression images into symbol images or connected com-
ponents for retrieval, often emphasizing symbol similarity at the expense of semantic
information. To address these limitations, our study integrates image and text retrieval out-
comes, achieving a multimodal retrieval model based on mathematical expression images
and text. This approach considers both modalities’ similarities, leading to more rational
retrieval outcomes.

In the field of Mathematical Information Retrieval (MIR), precise assessment of ex-
pression similarity holds paramount importance. While prevalent models, such as those
proposed in [13,14], rely on cosine distance, the intricate two-dimensional characteristics of
mathematical expressions demand a more objective approach. The utilization of Hesitant
Fuzzy Set (HFS) theory emerges as an apt choice for addressing uncertainty and multi-
attribute evaluation, offering a versatile means of representing hesitant information [17–21].
The integration of HFS theory into mathematical expression retrieval enhances the holistic
assessment of diverse attribute features.

3. The Proposed Model Overview

Figure 1 represents the framework diagram of the multi-modal retrieval model for
mathematical expressions based on ConvNeXt and HFS. Users input images and text of
query mathematical expressions and receive a ranked list after retrieval. This system re-
trieves mathematical expressions from both image and text modalities. In the Image-Modal
Retrieval Module, ConvNeXt [22] is used for image feature extraction and Symbol Level
Features Extraction (SLFE) for symbol-level features of the mathematical expression im-
ages. Initial retrieval is conducted based on image features, followed by ranking based on
symbol-level similarity, yielding descending search outcomes. In the Text-Modal Retrieval
Module, the Formula Description Structure (FDS) [23] is utilized for the analysis of textual
expressions, resulting in multiple attribute features of mathematical symbols. Additionally,
the Hesitant Fuzzy Set (HFS) [24] is used to compute hesitant fuzzy similarity between
mathematical query and candidate expressions, with results returned in descending simi-
larity order. For result enhancement, the Rank Fusion Module employs Reciprocal Rank
Fusion (RRF) to combine rankings generated by distinct modules.
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Figure 1. Framework diagram of mathematical expression multi-modal retrieval.

In our research, we broaden the modal of mathematical expression retrieval to in-
clude both image and text forms, allowing retrieval from LaTeX and MathML formats.
Additionally, HFS enables a flexible representation of uncertain information, facilitating a
comprehensive assessment of attribute influences on decision-making. The membership
degrees of mathematical expression attributes obtained through FDS analysis are computed
using hesitant fuzzy sets, and the similarity between the query and candidate expressions
is determined based on the HFS similarity calculation formula.

It is essential to highlight that, as of now, the method proposed in this paper faces
limitations in retrieving semantically equivalent formulae to the queried ones. This is
attributed to the following factors: The transformation of semantically equivalent mathe-
matical expressions necessitates a profound understanding of domain-specific knowledge,
which currently poses challenges for automated processing. The inherent semantics of
mathematical expressions can be notably ambiguous, even for human comprehension, par-
ticularly when presented in isolation without adequate context. For example, the expression
“mn” can be interpreted either as a variable “mn” or as a multiplication operation between
“m” and “n”. This complexity further complicates machine-based semantic equivalence
determination.

4. Methods
4.1. Retrieval of Mathematical Expressions in Image Modal
4.1.1. Extraction of Mathematical Expression Image Features

While meeting the requirements, the configuration of ConvNeXt-Tiny is simpler and
has fewer parameters compared to other versions. It exhibits faster feature extraction
capabilities, facilitating the expedited construction of feature databases. Consequently, this
study employs the ConvNeXt-Tiny neural network model [22] for feature extraction in
the image modal of mathematical expressions. Figure 2 shows the network structure of
ConvNeXt-Tiny. It consists of four stages with different numbers of ConvNeXt blocks, each
producing a feature map with different dimensions. It has strong feature extraction ability,
few parameters, and low hardware requirements during training.
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Figure 2. Network structure of ConvNeXt-Tiny.

The Visual Transformer (ViT) [25] has emerged as an effective alternative to convo-
lutional neural networks for various computer vision tasks, exemplified by models such
as the Swin Transformer [26]. Leveraging the layer structure, downsampling techniques,
activation functions, data processing methods, anti-bottleneck architecture, and deep con-
volution inspired by the Swin Transformer, ConvNeXt [22] further enhances the image
feature extraction performance.

After extracting image features using the Convnext network, an image feature index
is constructed. During retrieval, cosine distance is employed to calculate the similarity
between feature vectors.

4.1.2. Symbol-Level Feature Extraction Module

Compared with other types of images, mathematical expression images have unique
features, and the extraction of symbol-level features is helpful to the retrieval of mathemati-
cal expressions. Mathematical expressions are distinct in their two-dimensional structure,
complex symbols, and specific spatial arrangements. To accurately retrieve and evaluate
mathematical expressions, it is essential to capture the symbol-level details, which are
crucial for understanding their meaning and structure.

The Symbol Level Features Extraction (SLFE) module extracts symbol-level fea-
tures from mathematical expression images by segmenting the input image into indi-
vidual symbol blocks. Given a query image of a mathematical expression EQ, consider
ES = {es1, es2, · · · , esn} as the set of symbol blocks representing expression elements and n
as representing the total count of these symbol blocks (esi ∈ R30×30). Position vectors are
calculated for element symbol blocks to retain spatial information. We use the connected
component labeling algorithm to obtain element symbol blocks in mathematical expression
images [27].

Figure 3a shows attached symbols “a” and “c”, which are separated using the con-
nected component labeling algorithm (Figure 3b). Each resulting component forms an
element symbol block of 30× 30 pixels. Position vectors Psi = {p1, p2, · · · , pn} of the ele-
ment symbol block esi are computed for the symbol block set S, where pj =

(
tj, dj, lj, rj, roj

)
represents the position vector for the j-th element symbol block (Figure 4).

Figure 3. Example image of segmentation (a) adhered grayscale image (b) two components after
segmentation (c) symbol block.
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Figure 4. Position vector feature map of the element symbol block.

Here tj, dj, lj, and rj represent the distance between the top, down, left, and right
edges of the j-th element symbol block and the top and left edges of the query image EQ.
The position vector elements are standardized to range between 0 and 1 using Equation (1),
where dmax = max{d1, . . . , dn}, rmax = max{r1, . . . , rn}, dmax

rmax
= roi are the height-to-width

ratio of EQ, for recording the size proportion of the expression.

pi =

(
ti

dmax
,

di
dmax

,
li

rmax
,

ri
rmax

,
dmax

rmax

)
(1)

In this study, we created a database of indexed mathematical expression images with
their image features and symbol-level features. During the query process, we retrieve
results based on image feature similarity, then sort by symbol-level feature similarity before
outputting the final results.

4.2. Retrieval of Mathematical Expressions in Text Modal
4.2.1. Parsing and Extraction of Textual Attributes in Mathematical Expressions

The FDS [23] is used to analyze mathematical expressions and extract their properties.
Each symbol in the expression has four attribute values: Number, Level, Operator, and Flag.
As shown in Equation (2), the attributes obtained by parsing and extraction using FDS are
represented as a quadruple array.

A(Si) = (Ni, Li, Oi, Fi) (2)

The meaning of each attribute value is as follows: (1) Ni denotes the sequence number
of Si in the expression. (2) Li represents the horizontal baseline position of the symbol Si in
the expression, as shown in Figure 5. (3) Oi is the function code of Si , indicating whether
the current symbol is an operator (Oi = 1) or an operand (Oi = 0). (4) Fi is the spatial flag
information of Si , which shows how the present symbol and the prior symbol are related.
Fi can take values from 1 to 8, representing “above”, “superscript”, “right”, “subscript”,
“below”, “contains”, “left-superscript”, and “left-subscript”. The main baseline’s symbols
have F = 0.

Figure 5. Sample plot of the baseline in the mathematical expression.
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4.2.2. Text Similarity Calculation of Mathematical Expressions

FDS analysis on mathematical expressions yields four attribute values. A single
distance calculation may introduce errors in similarity measurement. A fuzzy set [28]
is a group of items with a variety of membership grades. To deal with multi-attribute
evaluation indicators, we used hesitant fuzzy sets proposed by Torra [24] to calculate
the similarity.

Definition 1. Let X be a non-empty set. A hesitant fuzzy set [29] H is defined as follows:

H =
{
< x, hH(x) >| x ∈ X

}
(3)

In this context, hH(x) is the hesitant fuzzy element, which is a set of several possible degrees
of membership of an element x in the set H of the elements in X = {x1, x2, · · · , xn} [29]. Its
value range is [0,1].

Let M and N be hesitant fuzzy sets on the non-empty set X = {x1, x2, · · · , xn}. The gen-
eralized hesitant fuzzy standard distance and similarity [29] between M and N are respec-
tively defined as:

dghn(M, N) =

 1
n

n

∑
i=1

 1
lxi

lxi

∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ
1/λ

(4)

sim(M, N) = 1− dghn(M, N) (5)

In this equation, dghn(M, N) denotes the generalized hesitant fuzzy standard distance
between hesitant fuzzy sets M and N, while sim(M, N) represents their corresponding
similarity [29]. λ > 0 , when λ = 1 , dghn(M, N) is the hesitant fuzzy Hamming distance,

and when λ = 2 , dghn(M, N) is the hesitant fuzzy Euclidean distance; hσ(j)
M (xi) and hσ(j)

N (xi)
refer to the j-th largest element values in hM(xi) and hN(xi), respectively. Additionally,
lM(xi) and lN(xi) represent the number of elements in hM(xi) and hN(xi), respectively.
lxi = max(lM(xi), lN(xi)) .

The mathematical expression of the four-tuple attribute (Ni, Li, Oi, Fi) obtained from
FDS analysis is used to construct a hesitant fuzzy element set hA(x) =

{
µhN , µhL , µhO , µhF

}
as an evaluation attribute. µhN , µhL , µhO , µhF represent the hesitant fuzzy membership
functions corresponding to each evaluation attribute, as shown in Table 1.

Table 1. Formulas of hesitant fuzzy membership functions for evaluation attributes.

Membership Function Formula Function Description

µhN

(
MEDBi, MEQ

)
= e−

( NumberDBi−NumberQ
σ

)2 σ is a balancing factor that ensures the value of
µhN remains in the range of [0,1].

µhL

(
MEDBi, MEQ

)
= e−α|LevelDBi−LevelQ| α is a balancing factor that ensures the value of

µhL remains in the range of [0,1].

µhO

(
MEDBi, MEQ

)
= {(so, Operator(x))}

Operator(x) = 1 indicates that the current
symbol is an operator, and so = 1. Otherwise,
the current symbol is an operand, so = 0.5 .

µhF

(
MEDBi, MEQ

)
=
{(

fo, Flag(DBi,Q)

)} Flag(DBi,Q) is used to determine the spatial
positional relationship of identical terms in two

mathematical expressions. If the positional
relationship between the two is the same,

fo = 1; otherwise, fo = 0 .

Definition 2. Let MEQ be a query expression, MEDBi(i = 1, 2, · · · , n) be a dataset containing n
mathematical expressions.
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Definition 3. The formula for calculating the similarity between two mathematical expressions is
as follows:

sim
(

MEQ, MEDBi
)
= 1−

1
4 ∑

 1
lPp

lPp

∑
j=1

∣∣∣hσ(j)
MEQ

(
Pp
)
− hσ(j)

MEDBi

(
Pp
)∣∣∣λ
1/λ

(6)

Here, hMEQ

(
Pp
)

and hMEDBi

(
Pp
)

represent the sets of hesitant fuzzy elements corresponding
to MEQ and MEDBi , respectively. The elements in hMEQ

(
Pp
)

and hMEDBi

(
Pp
)

represent the
membership degrees of each attribute value of expressions MEQ and MEDBi , respectively. lPp

represents the number of evaluated attribute values, hσ(j)
MEQ

(
Pp
)

and hσ(j)
MEDBi

(
Pp
)

represent the

degree of membership values of the σ(j)-th factor in hMEQ

(
Pp
)

and hMEDBi

(
Pp
)

, respectively.

4.3. Ranking Fusion of Multi-Modal Retrieval Results

The Reciprocal Rank Fusion (RRF) [30] combines the image and text modal retrieval
ranking. We use Equation (7) to calculate the fusion score SRRF of a mathematical expression
e, based on the retrieval ranking r(e) and a constant k to reduce the influence of highly
scored documents.

SRRF(e ∈ MEDBi) = ∑
r∈R

1
k + r(e)

(7)

To determine the optimal value for k, we conducted experiments with various values.
The experimental results are presented in Table 2. As seen in Table 2, with the increase
in the value of k, the MAP obtained from the fusion results initially increases and then
decreases. The maximum MAP value is achieved at k = 60. Therefore, in our experiments,
we choose a value of k equal to 60.

Table 2. The influence of k on the final MAP value of RRF fusion results.

k 20 40 60 80 100

MAP 0.763 0.767 0.774 0.771 0.769

Illustratively, taking the query expression “ME” as an example, the top 5 mathematical
expression IDs, ranks, and fusion scores for multimodal retrieval results are presented
in Table 3. This culminates in a retrieval ranking of {3,4,2,1,6,5}. In this case, the top five
results in the image-modal retrieval did not include the mathematical expression with
ID = 5. However, the top five results in the text-modal retrieval contained the expression
with ID = 5. This discrepancy might be due to the image modality retrieval method ranking
this candidate expression lower (beyond the 5th position), resulting in a score of 0 in the
image modality retrieval calculation. Consequently, SRRF(id5) =

1
60+5 = 0.01538,

Table 3. Illustration of fusion score calculation for multimodal retrieval results.

ID of Result Rank of Image Rank of Text Fusion Score

1 5 4 SRRF(id1) =
1

60+5 + 1
60+4 = 0.03100

2 4 2 SRRF(id2) =
1

60+4 + 1
60+2 = 0.03175

3 3 1 SRRF(id3) =
1

60+3 + 1
60+1 = 0.03226

4 2 3 SRRF(id4) =
1

60+2 + 1
60+3 = 0.03200

5 Null 5 SRRF(id5) =
1

60+5 = 0.01538
6 1 Null SRRF(id6) =

1
60+1 = 0.01639

This method is not affected by similarity scores and only depends on the ranking of
retrieval results. It gives higher rankings to result items that a ranking model strongly
prefers and ranks result items that are weakly preferred by multiple models less highly.
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5. Experimental Results and Discussion
5.1. Experimental Dataset and Environment

We obtained 592,345 mathematical expressions from 14,274 articles in the ArXiv, a free
and open dataset created by Cornell University researchers, and extracted 250,045 ex-
pressions from 11,770 articles in the NTCIR-mair-Wikipedia-corpus (NTCIR). We employ
the method proposed by Xu et al. [31] to extract mathematical expressions images from
scientific literature. The expressions are stored in both image and LaTeX text formats. The
experimental environment is shown in Table 4.

Table 4. Experimental environment.

Experimental Environment Configuration

Processor AMD EPYC
RAM 16 GB

Operating system Windows 10
Graphics card RTX A5000
Video memory 24 GB
Python version 3.8
Pytorch version 1.11.0

5.2. Evaluation Protocol and Metrics

We randomly select ten representative mathematical expressions from the dataset for
our experiments, as shown in Table 5. We employ Mean Average Precision (MAP) and
Discounted Cumulative Gain (DCG) [32] to evaluate the effectiveness of our method in this
paper. Three graduate students majoring in computer science have assigned a relevance
judgment to the top 20 retrieval results for query expressions. Relevance judgments range
from 1 (irrelevant) to 5 (highly relevant) based on the top-k retrieval results for all queries.
This approach simulates user assessment of retrieval results and allows us to calculate
Average Precision (AP), MAP, and nDCG to evaluate the effectiveness of our model.

Table 5. 10 query expressions in system experiment.

No. Query Expressions No. Query Expressions

1 M(x, y) = 1
2

(
1− erf

[√
πd(x,y)

δ

])
6 cos(θ)

2 a
b 7 L =

N
∏
i=1

p(ηi, Ei, φi, Π, η0)

3 K =

 f · µx γ ux
0 f · µy uy
0 0 1

 8 Ω(t) =
∞
∑

k=0
Hk(t)

4 x + y 9 Ω̂s =
∫ τ

0 P̂(S | T = t, H)dt

5 σ(x) = 1
1+exp(−x) 10 ṙ(0) ∆

= lim
τ→0

dr(τ)
dτ

5.3. System Experiment

The average precision and MAP were calculated for ten query expressions, as shown
in Table 6.

Table 6. The average precision and MAP@k of the multi-modal retrieval method on the two datasets.

Dataset P@3 P@5 P@10 P@20 MAP@3 MAP@5 MAP@10

ArXiv 0.833 0.800 0.690 0.500 0.858 0.833 0.787
NTCIR 0.800 0.720 0.630 0.405 0.825 0.818 0.760

Because there were more similar expressions in the ArXiv dataset, the results were
consistently better than those from the NTCIR dataset. The low P@20 values are be-
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cause there are fewer than 20 expressions in the dataset which are highly similar to some
complex queries.

5.4. Ablation Experiments

Through experiments, we observed that the SLFE module prioritizes results that
exhibit greater structural and length similarity to the query expression. The relevance
scores of the retrieved expressions were used to calculate P@k, MAP@10, and nDCG@10
values. We evaluated the impact of SLFE re-ranking on image-modal retrieval by comparing
P@k, MAP@10, and nDCG@10 values. The results in Figure 6 show that SLFE significantly
improves both retrieval accuracy and ranking results by attending to symbol-level features.

P@3 P@5 P@10 MAP@10 nDCG@10
0.0

0.2

0.4

0.6

0.8

1.0
 BASE
 SLFE

Figure 6. Ablation experimental results of the SLEF module.

The image-modal retrieval method is Method 1, the text-modal retrieval method is
Method 2, and the image-text modal RRF method is Method 3. For the query O(log 1

γ ),
the top 5 results from Method 1 and Method 2 are shown in Table 7. Both methods retrieve
exact matches as the first formula. Method 1 places a stronger emphasis on the structural
information of mathematical expressions. For instance, because the candidate expression
Õ(log 1

γ ) closely aligns with the query expression O(log 1
γ ) in terms of structure, it is ranked

higher. Additionally, method 1 can retrieve formulas that share the same structure but
have different symbolic representations, such as expression O(log ε

γ ). On the other hand,
method 2 prioritizes the symbols within the expressions, such as candidate expressions
that all contain log 1

γ .

Table 7. Method 1 vs. Method 2 results for query: O(log 1
γ ).

Rank Method 1 Method 2

1 O(log 1
γ ) O(log 1

γ )

2 Õ(log 1
γ ) d ·O(log 1

γ )

3 O(log ε
γ )

1
γ2 O(log 1

γ )

4 O(Clink · d log 1
γ ) T = O(log 1

γ )

5 Õ( 1
γ2 log2( θ

ε )) O(Clink · d log 1
γ )

The average P@k and MAP@k of the three methods are summarized in Figure 7. Text-
modal retrieval outperformed image-modal retrieval because FDS is more concerned with
the type of the symbol itself (e.g., whether the symbol is an operator, operand, constant,
or variable). However, we found that within the results of image modality retrieval,
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expressions more structurally similar to the query image are ranked higher. This suggests
that image modality retrieval methods are more adept at capturing structural information
inherent in expressions. The integration of both modalities can lead to more accurate and
effective retrieval results. The image-text modal RRF method was effective, as the fusion
ranking of two modal retrieval results was better than the single modal retrieval ranking,
demonstrating the complementary results of the two modal retrievals.

P@3 P@5 P@10 MAP@3 MAP@5 MAP@10
0.0

0.2

0.4

0.6

0.8

1.0

 Method 1 for ArXiv     Method 1 for NTCIR
 Method 2 for ArXiv     Method 2 for NTCIR
 Method 3 for ArXiv     Method 3 for NTCIR

Figure 7. The average P@k and MAP@k values of the three methods.

5.5. Contrast Experiments

SearchOnMath [33] is a retrieval tool for scientific literature and Wikipedia pages
based on mathematical expressions. Tangent-CFT [34] is a mathematical expression em-
bedding model that represents mathematical expressions using Operator trees (OPTs) and
Symbol Layout Trees (SLT) and ultimately generates formula embeddings using fastText.
Experimental trials were conducted utilizing the mathematical expressions from Table 5.
A comparative analysis was performed between our proposed approach and other methods.
The results for MAP@k and average P@k are presented in Table 8. The proposed image-text
modal RRF method achieves an accuracy of 0.660 and an average precision of 0.774 for the
top 10 results. The nDCG@10 results for each expression retrieval outcome under various
methods are depicted in Figure 8.

Table 8. Comparison of P@k and MAP@k between other methods and the proposed method.

Method P@3 P@5 P@10 MAP@3 MAP@5 MAP@10

Image modal retrieval method 0.784 0.680 0.535 0.796 0.787 0.749
Text modal retrieval method 0.833 0.720 0.590 0.816 0.805 0.760

Image-text RRF method 0.817 0.760 0.660 0.842 0.826 0.774
Search on Math 0.600 0.620 0.520 0.717 0.709 0.664

Tangent-CFT 0.820 0.683 0.583 0.809 0.785 0.739

The method proposed in this paper, which combines the attribute features of math-
ematical expression text and images, is able to simultaneously consider both the holistic
characteristics and symbol-level features of the image modality, as well as the symbol
types characteristic of the text modality. This results in ranking outcomes that better align
with user requirements. Therefore, the NDCG@10 value of the method proposed in this
paper is generally higher compared to the contrastive methods. In comparison to the
SearchOnMath and Tangent-CFT methods, our approach offers user convenience, avoiding
the cumbersome manual input of mathematical expressions. Additionally, it effectively
balances the structural information of the image modality and the symbolic attributes of
the text modality, optimizing the output ranking. Consequently, it efficiently circumvents
the issue of mathematical expression text losing structural features.
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Figure 8. Comparison of nDCG@10 of the proposed method and other methods.

6. Conclusions

We have constructed a multimodal mathematical expression retrieval model by lever-
aging the RRF method to fuse the retrieval results from both image and text modalities.
In this model, the image-modal retrieval module employs the ConvNext and SLDE modules
to extract mathematical expression image features and symbol-level features, respectively.
Based on the similarity of these features, the results are then outputted in descending
order. Meanwhile, the text-modal retrieval module analyzes and extracts attribute values
of textual expressions using FDS. To determine the hesitant fuzzy similarity between the
candidate expression and the mathematical query expression, the hesitant fuzzy set theory
is introduced in the meantime. The RRF amalgamates image and text modality retrieval
outcomes, culminating in the ultimate combined result. Concurrently, a subset of literature
from the publicly accessible ArXiv dataset was extracted and utilized to construct a dataset
encompassing 592,345 mathematical expressions.

The multimodal retrieval model eliminates constraints on the user’s input modalities
for mathematical query expressions, thereby ensuring a comprehensive evaluation of both
modality similarities. This approach enhances the rationality of retrieval outcomes.

In the future, our research will further explore multimodal mathematical expression
retrieval in the following areas:

1. Enhancing image modality feature extraction by incorporating contextual parsing of
mathematical expressions, thereby preserving a richer semantic understanding.

2. Extending the application of the proposed method to scientific literature retrieval.
This involves integrating mathematical expressions with intrinsic attributes of scien-
tific literature, including keywords, to enhance retrieval accuracy during scientific
literature searches.
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