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Abstract: One of the features of network traffic in Internet of Things (IoT) environments is that various
IoT devices periodically communicate with their vendor services by sending and receiving packets
with unique characteristics through private protocols. This paper investigates semantic attacks in
IoT environments. An IoT semantic attack is active, covert, and more dangerous in comparison
with traditional semantic attacks. A compromised IoT server actively establishes and maintains a
communication channel with its device, and covertly injects fingerprints into the communicated
packets. Most importantly, this server not only de-anonymizes other IPs, but also infers the machine
states of other devices (IPs). Traditional traffic anonymization techniques, e.g., Crypto-PAn and
Multi-View, either cannot ensure data utility or is vulnerable to semantic attacks. To address this
problem, this paper proposes a prefix- and distribution-preserving traffic anonymization method
named PD-PAn, which generates multiple anonymized views of the original traffic log to defend
against semantic attacks. The prefix relationship is preserved in the real view to ensure data utility,
while the IP distribution characteristic is preserved in all the views to ensure privacy. Intensive
experiments verify the vulnerability of the state-of-the-art techniques and effectiveness of PD-PAn.

Keywords: Internet of Things; traffic anonymization; semantic attack; Crypto-PAn

1. Introduction

As network traffic analysis (NTA) grows more sophisticated, there is an increasing need
for organizations to outsource NTA tasks to third-party analysts. NTA uses network traffic
data to detect and investigate security threats and anomalous or malicious behaviors within
that network [1]. According to research from ESG [2], 87% of organizations use NTA tools
for threat detection and response today. Recent NTA services (e.g., Auvik [3], MixMode [4])
make use of deep learning techniques to provide comprehensive security monitoring
and analysis functionalities based on the cloud. In contrast with the convenience and
effectiveness achieved by using cloud-based NTA services, organizations have to upload
their network traffic data, thus raising significant privacy concerns.

IP anonymization techniques are typically used to preserve privacy in network traffic
logs. In NTA scenarios, the prefix relationship has to be preserved to ensure data utility.
Crypto-PAn [5] is the most widely used prefix-preserving IP anonymization technique.
However, it is vulnerable to semantic attacks [6,7]. A semantic attack is a combination of an
injection attack and a fingerprinting attack. The adversary passively waits for a target user
to initiate a communication, injects fingerprints into the traffic, identifies the traffic in the
anonymized log, and de-anonymizes all IP addresses with the same prefix as an IP in the
identified traffic. Multi-View [8] is a defense against semantic attacks. It generates multiple
fake traffic logs to conceal the real one. Due to this reason, even if the adversary identifies
the injected traffic and de-anonymizes the IPs within the traffic, they cannot de-anonymize
the other IPs. Thus, privacy is preserved.

However, Internet of Things (IoT) network traffic has its unique feature, which raises
new challenges in traffic anonymization. In this paper, we propose an IoT semantic attack
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that is active, covert, and more dangerous in comparison with a traditional semantic
attack. In an IoT environment, various IoT devices periodically communicate with their
vendor services. Thus, an adversarial or compromised server can perform injection and
fingerprinting attacks more covertly. Moreover, since the traffic generated by IoT devices
can be used to detect anomalies [9–11] and infer changes of the machine states [12–14], the
adversary who performs an IoT semantic attack not only de-anonymizes IPs of IoT devices,
but also infers private IoT events.

In contrast with the active, covert, and more dangerous IoT semantic attack, the
state-of-the-art defense (i.e., Multi-View) against semantic attacks suffers from significant
drawbacks. First, it suffers from poor data utility since the anonymization applied in Multi-
View causes a collapsed prefix domain and a destroyed prefix relationship. Second, Multi-
View is vulnerable to de-anonymization attacks since the unique distribution characteristic
within the real traffic log makes it distinguishable from other fake traffic logs.

In this paper, we propose PD-PAn, a traffic anonymization method that preserves
prefix relationships to ensure data utility while preserving IP distribution characteristics
to defend against semantic attacks. At the idea level, an IP anonymization operation
divides the IP prefix domain into several disjoint prefix sets. Each set can be abstracted as
a prefix ring, where each node on the ring is a prefix, and the next node can be obtained
by calculating the anonymized form of this prefix. To resist collapse of the prefix domain,
PD-PAn specifies parameters for the anonymization operation. Based on the prefix ring,
PD-PAn is able to generate a real view of the traffic log, which is prefix-preserving, by
simply using the prefix-preserving IP anonymization operation proposed in Cypto-PAn.
After that, PD-PAn has to construct multiple fake views to conceal the real view.

It is non-trivial to construct fake views that are indistinguishable from real views.
Fake views should neither be too similar nor too different from real views. On the one
hand, one can generate some views that are similar to the real view by simply using a
prefix-preserving IP anonymization operation again on the real view. However, views
generated in this way are, in essence, real views. Although they have different IPs in the
traffic, the prefix relationship among IPs is totally the same between the two views. Due
to this reason, analysts will generate the same report on different views. Moreover, if an
adversary performs a semantic attack, the de-anonymization results in different views will
be the same. Thus, all these views are still vulnerable to such attacks. On the other hand,
one can randomly construct some views so that these views are different from real views
(as in Multi-View). However, views constructed in this way can be easily identified based
on their IP distribution characteristics. PD-PAn first uses a sampling algorithm without
replacement to ensure that different IP prefixes can be anonymized to the same result in a
fake view. It then uses the Fisher–Yates shuffle algorithm [15] to ensure the IP distribution in
the real view and that in any fake view are indistinguishable.

We conduct experiments on both a public dataset and a real-world private dataset to
evaluate privacy achieved by PD-PAn in terms of trace anonymity, and evaluate secrecy in
terms of the averaged number of leaked bits in IP addresses. Under the premise of prefix-
preserving, PD-PAn achieves an adequate level of privacy and secrecy. Even compared
with state-of-the-art defense against semantic attacks that are not prefix-preserving (i.e.,
Multi-View), PD-PAn still wins in both privacy and secrecy.

To summarize, this paper makes the following contributions:

• We propose PD-PAn, which is the first traffic anonymization method that is both
prefix-preserving and resistant to semantic attacks.

• We propose and investigate an IoT semantic attack that is active, covert, and more
dangerous than traditional semantic attacks.

• We conduct intensive experiments to validate the advancements of PD-PAn.

The rest of this paper is organized as follows. Section 2 introduces the background
related to this paper. In Section 3, we describe the adversary model, propose an IoT semantic
attack, and provide some insights into this attack. We then propose a novel method PD-PAn
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in Section 4. We perform a security analysis in Section 5. Section 6 evaluates PD-PAn, and
Section 7 gives a brief survey on related techniques. Section 8 concludes this paper.

2. Background

We consider scenarios where network traffic logs in an IoT environment need to be
transferred by the data owner, e.g., for security analysis outsourcing [8]. IP anonymization
techniques are always used to preserve privacy; however, they are vulnerable to semantic
attacks. In this section, the background of related techniques is introduced, and the
notations used throughout this paper are summarized in Table 1.

Table 1. Summary of Notations.

Symbol Meaning

PP(), RPP() Prefix-preserving operation of Crypto-PAn, reverse operation of PP

Lo , L, LR, LF , LS Original traffic log, encrypted log, real view, fake view, seed view

K1, K2 Key for generating encrypted log L, key for generating real view and fake views

dI , dP, bP Number of distinct IP addresses, number of distinct IP prefixes, number of bits in an IP prefix

m, G, c Prefix mask, prefix ring, group size used for prefix grouping

α, β Proportion of injected IP prefixes, number of injected IP addresses for each injected prefix

2.1. Crypto-PAn

Crypto-PAn [5] is a cryptography-based, prefix-preserving IP anonymization technique.
For a given n-bit IP address x = x1x2 · · · xn, let K be a private key specified by the user.
The anonymizing function PP(·, ·) is defined as

PP(x,K) = x′1x′2 . . . x′n.

where x′i = xi ⊕ fi−1(x1, x2, . . . , xi−1), f0 is a constant, fi is a function from {0, 1}i to {0, 1}
(i = 1, 2, · · · , n− 1), and ⊕ represents the XOR boolean operator,

fi = L(R(P(x1x2 . . . xi)),K), (i = 1, . . . , n− 1). (1)

where L(·) returns the least significant bit,R(·) is a block cipher, and K is the key used in
R, P(·) is a padding function that expands x1x2 · · · xi into a longer string that matches the
block size ofR. The anonymizing function PP can be used in an iterative fashion. For the
n-bit IP address x and the key K, PPj(x,K) implies that x is anonymized j times by using
key K.

One important feature of Crypto-PAn is prefix-preserving.

Definition 1 (Prefix-Preserving). For any given two IP addresses x and y, and any given key K,
the anonymized IP addresses PPj(x,K) and PPj(y,K) satisfy: if and only if x and y share a k-bit
prefix, PPj(x,K) and PPj(y,K) share a k-bit prefix, for any j ∈ N and any k ∈ [0, n].

An original IP address can be recovered from its anonymized form. This process is
known as reverse prefix-preserving (RPP), which can be formalized as a function RPP:

RPP(PP(x,K),K) = x.

where x is an arbitrary IP address, and K is an arbitrary key. RPP is also prefix-preserving.
When extending to the case of anonymization multiple times (i.e., PPj), the original IP
address can be recovered by performing RPP the same number of times (i.e., RPPj = PP−j).

2.2. Traditional Semantic Attack

A traditional semantic attack can be performed by an adversarial server to compute
true IP addresses from anonymized traces. It is composed of three phases.
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Phase 1: Passive Communication. In the first phase, the adversary waits for a target
user to initiate a communication request. Then, a communication channel is established.

Phase 2: Injection and fingerprinting. In the second phase, the adversary sends pack-
ets to the target in some unusual pattern to inject so-called quasi-identifiers (i.e., fingerprints,
including specific time, port, protocol, or other attributes) into the traffic [6,16,17].

Phase 3: De-Anonymizing. In the third phase, the adversary tries to acquire as many
real IPs as possible. They first obtain an anonymized traffic log. Within this log, they
identify the injected traffic and obtain a mapping from the prefix of an anonymized IP to
that of the injected IP. Then, by using this mapping, they de-anonymize all IP addresses
that share the same prefix with the injected one.

2.3. Multi-View as a Defense

Multi-View [8] is a defense against traditional semantic attacks. Its core idea is to
construct and make use of multiple indistinguishable views of traffic logs, including a real
view and multiple fake views. In different views, the anonymized forms of the same IP
address are different; moreover, the same anonymized IP address can also be encrypted
from different original IPs. Due to this reason, the prefix relationship is totally destroyed
in both the real view and the fake view. Even if the adversary performs a semantic attack,
they can only de-anonymize the injected IP but not the other IPs.

Multi-View is mainly composed of three steps:
Step 1: Initialization. The data owner specifies two keys, denoted as K1 and K2. K1

is used to encrypt the original traffic log denoted as Lo. We use L to denote the encrypted
log, which is generated by using the PP operation:

L = PP(Lo,K1). (2)

Lo and K1 are no longer used to ensure their secrecy.
In subsequent anonymizing operations, only L and K2 are used.
Step 2: Real View Generation. The data owner specifies a k-bit prefix mask m (and

the inverse mask of m is 2n −m− 1 in binary), sets up a group for each k-bit prefix, and
moves all IP addresses with the same prefix in this group. After that, she randomly specifies
an order number for each group. Then, for each IP address, the data owner lines up the
IP and the inverse mask of m together to obtain a transformed IP (the prefix of which is
always 0), and anonymizes the transformed IP by performing the PP operation j times
where j is the order number of the group in which the IP belongs. After all IP addresses are
anonymized, the real view is generated.

Step 3: Fake View Construction. The process of constructing a fake view is similar to
that of generating a real view, except that all IP addresses are grouped randomly. Multiple
fake views are generated so as to conceal the real view.

2.4. Event Inference Attack in IoT

An IoT event inference attack can be performed to infer sensitive information about the
target IoT device by statistically analyzing its non-sensitive information. For example, to
perform an IoT event inference attack, an adversary first eavesdrops on the encrypted traffic
sent to/from an IoT device, then analyzes external attributes, e.g., packet length [12,18]
of the encrypted traffic, and determines the traffic fingerprints generated with certain IoT
events. It has already been verified by existing research that the traffic generated by an IoT
device can be used to infer an IoT event (e.g., change of the machine state) [12–14,18–22].
Another kind of IoT event inference attack classifies IoT traffic [23,24] based on machine
learning techniques.

3. Semantic Attack on Anonymized IoT Traces

In this section, we introduce the IoT semantic attack, highlight the difference between
this attack and the traditional semantic attacks, and provide some insights into this attack.
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3.1. Attack Model

The original traffic log Lo is a collection of network traces, and each trace contains mul-
tiple fields, including IP addresses, port numbers, timestamps, etc. IPs are identifiers, and
other fields are quasi-identifiers, i.e., the fingerprints. Lo should be anonymized/encrypted
before being transferred to a third-party analyst to protect privacy. However, an adversarial
or compromised analyst is still able to de-anonymize the IPs by making use of the finger-
prints. The adversary model considered in this paper is in commitment with previous
research [5,6,16,17]. The assumptions are as follows:

1. The analyst is honest but curious. After they obtain the anonymized IoT traces
transferred from the data owner, they will honestly perform security analysis and
return the analysis report, but also will try to de-anonymize as many IPs as possible
in the anonymized traces.

2. The prefix-preserving function PP() is public, but all the keys used in this function
can be kept as secret.

3. The communication channel between the data owner and the analyst is secure, that is,
issues related to integrity and availability are not taken into consideration.

3.2. IoT Semantic Attack

In an IoT environment, various IoT devices periodically communicate with their
vendor services to report an event, inform the status, receive a command, upload collected
data, or send/receive an ACK, etc. Such communication is always based on a private
protocol specified by the vendor service. Due to this reason, a semantic attack on IoT
network traces is active, covert, and more dangerous in comparison with a traditional
semantic attack. An IoT semantic attack is composed of three phases.

Phase 1: Active Communication. In the IoT scenario, an adversarial vendor service no
longer needs to passively wait for the establishment of a communication channel. Instead,
it simply uses the communication channel maintained by the IoT device and itself. Such
channels are essential for IoT functionalities like remote controlling, and are established
and maintained based on a private protocol, which is specified by the service itself.

Phase 2: Injection and Fingerprinting. The IoT devices communicate with the server
continuously and frequently, sending/receiving messages with distinct semantic charac-
teristics. An adversary can therefore perform an injection and fingerprinting attack more
conveniently and more covertly by using its private protocol.

Phase 3: De-Anonymizing and Inference. A traditional semantic attack can only
de-anonymize the IP address of an entity in a network that shares the same prefix with the
injected IP, thereby revealing the original network traces containing that IP, but still cannot
obtain the content of the traffic. However, for the IoT traffic logs, an adversary is able to
distinguish traffic features of different IoT events and perform an event inference attack to
infer the content of the traffic (e.g., an IoT event) so as to obtain the private usage pattern of
all IoT devices with the same IP prefix.

3.3. Limitations of Existing Defense

Drawback 1: Poor Data Utility.
Multi-View suffers from poor data utility (even in the real view) due to the following

two reasons.
Problem 1: Collapsed Prefix Domain.
In Multi-View, the number of distinct prefixes in all the views is always smaller

than that in the original traffic log. This is because different prefixes are anonymized by
performing the PP operation at different times on the same transformed IP prefix (which is
set to be 0). If the results generated are the same, then the anonymized prefixes of different
original prefixes are also the same. In this case, the prefix domain is collapsed. Consider
the size of a prefix domain is 2k. There is no guarantee that there are also 2k different results
of PPj(0,K2), ∀j ∈ N . Further consider a key K′ which satisfies PP(0B0000,K2) = 0B0000,
the size of the prefix domain is reduced from 24 to 1. Then, there is only 1 prefix in all the
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views; however, there can be up to 16 prefixes in the original traffic log. Due to this reason,
the analyst cannot distinguish all IP prefixes when performing security analysis.

Problem 2: Destroyed Prefix Relationship. The hierarchical (prefix) relationship [25]
plays an important role in NTA. However, Multi-View fails to preserve this relationship
even in the real view. Any IP address is first lined up with the inverse of the prefix mask m
to transform to an IP with prefix 0, and is then anonymized by using a PP operation several
times. Consider two IPs that have the same top-k bits but their prefixes are different, so
they are in different groups. Further, consider the order numbers of their groups are j1 and
j2, respectively. Then, the prefixes of the anonymized IPs are PPj1(0,K2) and PPj2(0,K2).
Since j1 6= j2, there is no guarantee that the two anonymized IPs still have top-k′ bits
in common. This means that the prefix relationship among the IP addresses is totally
destroyed. Therefore, the data utility of the generated views (including the real view) is
very poor.

Drawback 2: Vulnerable Anonymization. Multi-View is vulnerable when applied to
real-world network traffic since the generated real views and fake views can be distin-
guished due to the following reason.

Problem 3: Unique Distribution Characteristic.
In Multi-View, the real view can be identified by simply calculating a cumulative

density function (CDF) over top-d prefixes in population on different d. The CDF in
the real view is the same as that in the original traffic log (if the prefix domain is not
collapsed), but is very different from that in fake views as illustrated in Figure 1. The
difference between the CDFs in two fake views is almost negligible, while that between
a real view and a fake view is significant. This is because a real-world traffic log has its
unique distribution of IPs while the anonymized IPs in fake views are randomly generated
and evenly distributed. Even if one improves Multi-View by using different distributions
(e.g., normal distributions) to construct fake views, an adversary can still identify a real
view due to its unique distribution characteristic.
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Figure 1. In Multi-View, the real view is identifiable based on its unique distribution of IPs on top
rank prefixes in population.

3.4. Goal

The main goal of this paper is to provide a defense against semantic attacks while
ensuring data utility (i.e., prefix-preserving) in the traffic logs transferred to the analysts.
It has already been verified that any prefix-preserving IP anonymization algorithm is
vulnerable to semantic attacks [6,7]. Due to this reason, the defense should also generate
multiple views. On the one hand, the prefix relationship is preserved in the real view to
ensure data utility; on the other hand, the fake views are indistinguishable from the real
view to ensure privacy against semantic attacks.

4. Methodology

In this section, we propose a prefix- and distribution-preserving IP anonymization
method named PD-PAn.
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4.1. Overview

PD-PAn addresses the three problems discussed in Section 3.3. The basic idea to
address each problem is introduced as follows.

4.1.1. Idea 1: Collapse Resistant Key Selection

To ensure the data utility in the real view, the size of the prefix domain needs to be
maintained. The cryptography used in the PP operation in Multi-View is the key reason
for the prefix domain collapsing. We find that the key K2 used to generate multiple views
determines whether a prefix domain will collapse. For any given key and an IP prefix, we
can construct a prefix ring, where each node on the ring is a prefix, and the next node can
be obtained by calculating the anonymized prefix by using PP once to that node. Due to
this reason, our basic idea of PD-PAn to resist collapse in the prefix domain is to select an
appropriate key without reducing security to construct a prefix ring that holds enough
space for every IP prefix in the original log.

4.1.2. Idea 2: Prefix-Preserving Real View Generation

The real view should preserve the prefix relationship. In Multi-View, the prefix rela-
tionship is destroyed in the step of transforming IP addresses by lining up each IP with
the inverse of a prefix mask m. Due to this reason, our basic idea of PD-PAn to preserve
prefix relationships is straightforward, simply using prefix-preserving techniques, e.g., a
PP operation, in a reasonable way.

4.1.3. Idea 3: Distribution-Preserving Fake View Construction

To construct fake views that are indistinguishable from the real view, we have to ensure
that the IP distribution in all the views is unidentifiable. We consider two simple functions
that preserve the distribution of variables: the sampling function and the shuffling function.
The basic idea of PD-PAn to preserve the IP distribution is to combine the PP operation and
the two functions. We generate a number for each IP to determine how many times the PP
operation is performed by using the sampling function. Then, we use the shuffling function
to generate multiple orders, each of which represents a fake view. This method ensures
that the IP distribution characteristics in the generated logs are the same as those in the
original logs, thus avoiding the security risks caused by the IP distribution characteristics.

4.1.4. High-Level Strategy

The high-level strategy of PD-PAn is to generate a real view and multiple fake views of
a traffic log. The goal of PD-PAn is two-fold. On the one hand, data utility, including prefix
relationships in the real view, has to be ensured. On the other hand, the indistinguishability
of the real view from the fake views should also be guaranteed. PD-PAn uses a three-step
procedure as illustrated in Figure 2 to achieve this goal. In the first step, two keys are
generated, where one of them is carefully selected so that PD-PAn is able to construct a
prefix ring that holds enough space for each distinct IP prefix. In the second step, the
real view is generated by simply using a PP operation on the encrypted log so that the
prefix relationship is preserved. In the third step, fake views are generated by jointly
utilizing a sampling function, a shuffling function, and the PP operation, to ensure the
indistinguishability of IP distributions in these views. By following an improved protocol,
multiple views can be generated at the side of the analyst to reduce transmission overhead.
This protocol is detailed in Section 4.3.
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Figure 2. Overview of PD-PAn.

4.2. Details
4.2.1. Step 1: Collapse Resistant Initialization

In this step, PD-PAn generates two keys: K1 and K2. K1 is randomly generated.
With K1, PD-PAn encrypts the original log Lo to generate an encrypted log L by using the
Crypto-PAn algorithm (i.e., the PP operation).

K2 is randomly picked by PD-PAn from a key pool that is constructed for each prede-
fined prefix mask m. We would like to note that K2 is not completely random generated
since it should be carefully selected or examined to meet the requirement that the number
of distinct prefixes in an anonymized view equals that of prefixes in the encrypted log.

For an IP address x and a prefix mask m, PD-PAn can construct for any given key K a
prefix ring denoted as GK to verify whether K can be selected. GK is constructed as follows.
Let jmin be the minimum positive integer satisfying that the prefix of IP x equals the prefix
of the IP generated by anonymizing x for jmin times, given by:

(PPjmin(x,K)&m) = (x&m). (3)

where (·&m) calculates the prefix of an IP by lining up this IP and m. PD-PAn obtains jmin
anonymized prefixes by calculating:

(PPj(x,K)&m), (4)

for all j ∈ N , 0 ≤ j < jmin. Let each anonymized prefix be a node, the anonymization
relation between two nodes as edges, and the prefix ring GK of size jmin is constructed. An
example prefix ring of size jmin = 8 is illustrated in Figure 3.

A=PP8(A, 𝒦2)

PP(A, 𝒦2)
PP(B, 𝒦2)

PP(C, 𝒦2)

PP(D, 𝒦2)
PP(E, 𝒦2)

PP(F, 𝒦2)

PP(G, 𝒦2)

PP(H, 𝒦2)
A: 0a.xx.xx.xx

E: 02.xx.xx.xx

C: 24.xx.xx.xx

G: 26.xx.xx.xx

H: 50.xx.xx.xx

B: 14.xx.xx.xx

D: 43.xx.xx.xx

F: 7a.xx.xx.xx

Figure 3. An example IP prefix ring composed of 8 prefixes.

Let dL be the number of prefixes in the encrypted traffic log L. PD-PAn has to ensure
dL is no greater than the size of the prefix ring jmin to resist collapse in the prefix domain
(we will later relax this constraint, detailed in Section 5.2), given by:

dL ≤ jmin. (5)
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PD-PAn generates in advance many random keys to compose a key pool, and computes
and records for each key the size of its prefix ring. We would like to note that for a given
key, there can be several prefix rings with different sizes. PD-PAn only records the size
of the ring containing the prefix of IP 0.0.0.0, and uses this ring as the default ring. In
generating K2, PD-PAn only needs to select a key from the key pool, and guarantees that
the size of the default ring constructed with this key is large enough.

PD-PAn is always able to find a key that meets the requirement in (5). Let bP denote
the number of bits in an IP prefix (which equals the number of 1 s in m), we have that the
maximum value of jmin should be 2bP . When jmin = 2bP , the prefix ring GK is a full ring.
In this case, the inequality in (5) always holds. After this step, K1 and Lo are never used
in PD-PAn and kept secret. K2 and L are used as the parameters in subsequent steps. To
facilitate the understanding of PD-PAn, now, we consider K2 and L are also kept secret.
Later in Section 5, we will explain why they can be set to be public in our improved protocol
without reducing security.

4.2.2. Step 2: Prefix-Preserving Real View Generation

In this step, PD-PAn generates a real view denoted as LR within which the prefix
relationship among IPs is preserved. PD-PAn simply makes use of the PP operation, which
itself is a prefix-preserving anonymization function.

There is still a problem dealing with computational overhead. In the subsequent step,
PD-PAn still needs to construct multiple fake views to conceal the real one. Due to this
reason, the PP operation will be performed multiple times to anonymize each IP. To reduce
computational overhead, PD-PAn specifies a parameter c to denote an upper bound on
the number of times that the PP operation is performed on an IP address. PD-PAn uses
a grouping strategy to put all IP prefixes in different groups by specifying a step number
equals c on the prefix ring. Within each group, there are at most c distinct IP prefixes that
are close to each other in the prefix ring, like the prefixes A, B, C, D in the figure. This
means that an IP prefix can be anonymized to any other prefix within the same group, by
performing PP operation (or RPP operation) at most c times.

4.2.3. Step 3: Distribution-Preserving Fake View Construction

In this step, PD-PAn constructs n-1 fake views. The IP distribution characteristic of the
encrypted log L should be preserved in each fake view, so that all fake views and the real
view are indistinguishable with each other. Let dP denote the number of all IP prefixes, jmin
denote the size of GK. PD-PAn uses the following procedure to construct a fake view:

1. For each prefix (denoted as p) in the encrypted log L, PD-PAn counts the number
(denoted as dp) of distinct IPs with this prefix. Then, PD-PAn randomly generates an
anonymized IP prefix (denoted as p′) by using sampling without replacement from all
the prefixes in the same group, and puts the pair (p′, dp) in an array. Finally, there are
dP pairs in the array.

2. For each anonymized prefix p′, PD-PAn randomly selects dp distinct IP addresses in
the same group. PD-PAn uses the Fisher–Yates shuffle algorithm [15] to accomplish the
assignments for a whole group all at once. Finally, each distinct IP address in L is
assigned an anonymized prefix.

3. For each distinct IP address x, calculate a number j satisfying that the assigned prefix
can be obtained by performing the PP operation j times (or by performing the RPP
operation −j times if j < 0) on x with K2. After all IPs are anonymized, a fake view
is constructed.

4.3. An Improved Protocol

Now we introduce an improved protocol to reduce the transmission overhead re-
quired by PD-PAn. The basic idea is to rely on the analysts to generate multiple views
by themselves. Given any view L′, a new view L′′ can be generated by applying the PP
operation on each IP address several times. Due to this reason, if we record the number
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of times that PP operation is performed for each IP address in an array, then anyone who
has a correct key is able to construct L′′ from L′ based on this array. Similarly, the real view
and all the fake views can also be generated from any given view. PD-PAn constructs a
seed view denoted as LS, which is transformed from the encrypted log L by performing
the RPP operation on each IP prefix a random number of times (this number is limited to
be no greater than c to limit the computational overhead). PD-PAn then calculates an array
for each view (real view or fake view), satisfying that the view can be constructed from
LS based on this array. After that, PD-PAn only needs to transfer the seed view LS and N
arrays to the analysts. The analysts will construct N views including a real view and N − 1
fake views.

The improved protocol makes the following changes to the three steps in PD-PAn.

1. In Step 1, PD-PAn generates a seed view denoted as LS. Both K2 and LS are
considered public.

2. In Step 2 and Step 3, the real view and the fake views are not transferred to the
analysts. Instead, PD-PAn transfers a key K2, a seed view LS and N arrays.

5. Analysis

PD-PAn uses the PP operations several times, but in a different way with Crypto-PAn
and Multi-View. The first difference is in Step 1, where K2 is not randomly generated but is
selected from a key pool. The second difference is in Step 2 and 3, where the PP operations
are performed with a public key K2. We now analyze the security consequence of these two
differences, to show that PD-PAn does not introduce new vulnerabilities while defending
against semantic attacks.

5.1. Analysis on Secrecy of K2

K2 is considered public, so the security level is reduced if PP(·,K2) is considered as an
encryption operation. However, the security level achieved by performing PP(·,K1) is not
reduced by a public K2 since K1 is always kept secret. From this point of view, PP(·,K2)
only serves as a public transformation operation. Due to this reason, PD-PAn is at least as
secure as Crypto-PAn.

5.2. Analysis on Randomness of K2

The randomness in generating K2 is reduced since it is selected from a key pool and it
has to satisfy the inequality in (5). We set m = 0xff000000, so there are 256 prefixes. We then
randomly generate 1000 keys, so we have 256,000 test cases. We count for each test case the
size of the constructed prefix ring. The results are as shown in Table 2. Only 3 keys can be
used to construct a full ring. This is the reason the IP domain always collapses by using
Multi-View. In PD-PAn, since the grouping strategy is used, we need to guarantee that the
size of the constructed prefix ring on a given IP is no less than the group size c. Otherwise
the anonymity level is reduced. If c = 32, there is already a chance of 31.75% that the
prefix ring, which contains a given prefix, is large enough. Most importantly, although the
randomness of K2 is reduced, this does not influence the security level achieved by PD-PAn
since K2 is considered public.

Table 2. Probability of the size of the prefix ring for a random key. The length of a prefix is set to
8 bits.

Size of Prefix Ring 28 27 26 25 24 23 22 21 20

Probability 0.3% 2.6% 9.73% 19.11% 22.38% 19.25% 12.86% 7.01% 6.77%

6. Evaluation

We conduct experiments on two datasets.
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• The unibs dataset [26,27]. A public dataset that is collected on campus border routers
and is already anonymized by using Crypto-PAn. In this dataset, 6483 distinct IP
addresses are unevenly distributed in 137 different/8 prefixes.

• The iot dataset. A real-world dataset that is collected within a laboratory IoT environ-
ment where 27 kinds of home IoT devices from 16 vendors are deployed. By using
Crypto-PAn, we obtain in total 850 distinct IP addresses within 50 different/8 prefixes in
this dataset. Similarly, the prefixes of these IP addresses are distributed non-uniformly.

To facilitate quantitative comparison between PD-PAn and Multi-View, we consider the
number of injected IP addresses for each injected IP prefix is fixed in an IoT semantic attack.
We use a pair of parameters (α, β) to specify an IoT semantic attack, where α denotes the
proportion of injected IP prefixes and β denotes the number of injected IP addresses for
each injected IP prefix. For example, (α = 0.1, β = 2) indicates that 10% of the IP prefixes
are injected, and for each injected IP prefix, 2 distinct IP addresses are injected.

With these settings, we conduct experiments to evaluate PD-PAn on privacy, security
and running time, and compare it with the state-of-the-art technique Multi-View. The
experiments are performed on an edge node of an IoT environment, which is an Intel NUC
Mini PC in Windows 10, with 16 GB memory and an Intel i7-1165G7 CPU @ 2.80 GHz. All
compared methods are implemented in Java.

6.1. Evaluation on Privacy in Term of Anonymity

PD-PAn makes use of multiple fake views to conceal privacy patterns in the real view.
We use the concept of k-anonymity to quantify privacy achieved by PD-PAn, and compare
it with that achieved by Multi-View.

A real/fake view can be identified in any of the following ways. (1) Given two packets
sent to/from the same injected IP prefix (i.e., one same injected IP address, or two injected
IP addresses with the same prefix), if the anonymized IP prefixes in the two packets are
different in a view, then this view is a fake view; (2) Given two different injected IP prefixes,
if their anonymized forms are the same, then this view is a fake view; (3) Given several
views, if the IP distribution in one view is different from that in other views, then this view
is a real view.

PD-PAn achieves a better privacy level in comparison with Multi-View on both datasets
as shown in Figure 4a. With the increase in the number of views v, the anonymity level
achieved by PD-PAn grows linearly. If 50 views are generated, PD-PAn achieves around
40-anonymity among all the views (i.e., 10 fake views can be identified). As a comparison,
Multi-View achieves hardly any privacy since the real view is always identifiable (recall
Problem 3 introduced in Section 3.3). Figure 5a depicts the anonymity level on the number
of views v with different settings on the prefix mask m. We consider three different
masks: 0xff000000, 0xffff0000, and 0xffffff00. The anonymity level achieved by PD-PAn
with all masks are close to each other. The proportion of indistinguishable fake views
is always above 80%. Figure 6a depicts the anonymity level on the number of views v
with different settings on the group size c. We consider five different grouping strategies,
and let c = 4, 8, 16, 32, 64, respectively. The anonymity level achieved by PD-PAn with all
considered group sizes is also close to each other. The proportion of indistinguishable fake
views is slightly higher (i.e., the privacy is better) with a relatively small prefix group size.
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Figure 4. Privacy and security achieved by PD-PAn, Multi-View, and Crypto-PAn on iot dataset and
unibs dataset (with m = 0xff000000, c = 32, α = 0.1, β = 1).
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Figure 6. Anonymity and security achieved by PD-PAN and Multi-View with different prefix group
size c (with m = 0xff000000, α = 0.1, β = 1).

We also evaluate anonymity achieved by PD-PAn and Multi-View under IoT semantic
attacks. In all situations, PD-PAn performs much better than Multi-View. We consider the
proportion of injected IP prefixes to be α, and the number of injected IP addresses for each
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injected IP prefix to be β. We first set β = 1, and consider α ranges in [0.1, 0.5]. The results
are shown in Figure 7a. We then set α = 0.1, and consider β ranges in [1, 4]. The results are
shown in Figure 8a. The anonymity level decreases with α or β increases. When α reaches
0.5, which means 50% of IP prefixes are injected, PD-PAn cannot provide any anonymity.
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Figure 8. Anonymity and security achieved by PD-PAn and Multi-View with different values of β

(with m = 0xff000000, c = 64, α = 0.1).

6.2. Evaluation on Secrecy in Term of Leaked Bits

We use the averaged proportion of leaked bits in an IP prefix to quantify secrecy
achieved by PD-PAn, and compare it with that achieved by Multi-View. Under a semantic
attack, some IP addresses are completely de-anonymized, and some IP addresses are
partially de-anonymized. Consider two IP addresses, x and y. Their anonymized forms
are x′ and y′, respectively. Further consider x is an injected IP address, so the adversary
is able to obtain a mapping from x to x′. If x and y have a same prefix, then y′ can be
completely de-anonymized. Otherwise, x and y share k bits in common, then y′ can be
partially de-anonymized (k bits).
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PD-PAn achieves a better secrecy level in comparison with Multi-View on both datasets
as shown in Figure 4b. With the increase in the number of views v, the averaged proportion
of leaked bits in PD-PAn first decreases rapidly (i.e., the secrecy level increases), then slows
down after generating 10 to 20 views, and eventually approximates a value. Figure 5b
depicts the secrecy level on the number of views v with different settings on the prefix
mask m. We again consider three different masks 0xff000000, 0xffff0000, and 0xffffff00. For
each mask considered, PD-PAn achieves a higher secrecy level than Multi-View. There is a
difference in the secrecy levels achieved by PD-PAn with different masks. The fewer bits
considered as prefixes, the more secrecy is better. Figure 6b depicts the secrecy level on
the number of views v with different settings on the group size c. We again consider five
different grouping strategies, and let c = 4, 8, 16, 32, 64, respectively. With a larger group
size, the secrecy achieved by PD-PAn is better. Since there are more prefixes in a larger
group, it is easier to make these prefixes confusing with each other. Even when the group
size is extremely small (c = 2), PD-PAn achieves a better secrecy level than Multi-View.

We also evaluate secrecy achieved by PD-PAn and Multi-View under IoT semantic
attacks. We first set β = 1, and consider α ranges in [0.1, 0.5]. The results are shown in
Figure 7b. We then set α = 0.1, and consider β ranges in [1, 4]. The results are shown in
Figure 8b. In the overall trend, the averaged proportion of leaked bits decreases with the
number of views increases, and finally approximates a convergence value. In all situations,
PD-PAn performs better and more steadily than Multi-View.

6.3. Evaluation on Running Time

We compare the running time of PD-PAn and that of Multi-View. We set the number of
views v = 200, and the prefix mask m = 0xff000000, 0xffff0000 or 0xffffff00. In addition, we
set the group size c = 2, 4, 8, 16, 32 for PD-PAn. The results are as shown in Table 3.

Table 3. Running time (seconds).

Method m = 0xff000000 m = 0xffff0000 m = 0xffffff00

PD-PAn (c = 2) 0.731 1.102 117.82
PD-PAn (c = 4) 0.710 1.096 57.911
PD-PAn (c = 8) 0.757 1.102 52.785

PD-PAn (c = 16) 0.831 1.147 50.894
PD-PAn (c = 32) 1.043 1.194 51.459

Multi-View 44.253 80.813 66.191

In most situations, PD-PAn is performed much faster than Multi-View, especially when
the prefix domain is relatively small (when m = 0xff000000 or 0xffff0000). The running time
required by PD-PAn is only about 1/50 of that by Multi-View. However, when the prefix
domain is large (m = 0xffffff00), the running time of PD-PAn increases greatly. If the group
size is very small (c = 2), there will be two many prefix groups. Due to this reason, PD-PAn
requires an indeed large memory space to manage the grouping structure for all the IP
prefixes. Without an additional user-space memory management policy, the IP prefixes will
be frequently paged in/out, and thus, the whole process starts thrashing.

7. Related Work

Traffic anonymization enables organizations to preserve privacy in outsourcing NTA
tasks. In this section, we briefly survey the traffic anonymization techniques, the de-
anonymization attacks and existing defenses.

7.1. Network Traffic Anonymization

The problem of prefix-preserving IP anonymization has been widely studied for
decades. Among the existing techniques, there are two most important algorithms:
TCPDpriv [28], which was proposed in 1996, and Crypto-PAn [5], which was proposed in
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2004. Other prefix-preserving NTA tools and services are mainly based on either of these
two algorithms. TCPDpriv [28], proposed by Greg, uses random mapping tables to achieve
anonymity. This algorithm is adopted in some NTA tools including IPSumDump [29],
Zeek (formerly Bro) [30] and TCPDump Anonymizer [31], etc. Crypto-PAn [5] proposed
by Fan et al. is a prefix-preserving IP anonymization algorithms based on cryptography.
It has been deployed, implemented, or extended by a wide range of NTA tools and ser-
vices including CoralReef [32], FLAIM [33], NFDump [34], TCPmkpub [35], PktAnon [36],
Libtrace [37], etc.

7.2. Defenses against De-Anonymization Attacks

Researchers have proposed various de-anonymization attacks. Most of these attacks
are based on traffic injection [38,39], fingerprinting [40,41] and crypt-analysis [5]. Attacks
based on crypt-analysis can be defended against by employing new cryptography-based
schemes. A semantic attack is a combination of traffic injection and fingerprinting. It has
already been verified that any prefix-preserving IP anonymization algorithm is vulnerable
to this attack since an adversary is able to make use of preserved prefixes to de-anonymize
IP addresses [6,7]. Due to this reason, most existing defenses against this attack suffer from
a drawback in either the effectiveness or functionality of NTA. A recent approach [8,42]
uses multiple views of traffic logs to defend against semantic attacks. The data utility is
preserved in the real view (but the prefix relationship is not preserved), and the privacy
is preserved since the real view and fake views are indistinguishable. It has already been
adopted in some research [43–46]. However, this technique has its limitations, as discussed
in Section 3.3. The proposed method named PD-PAn can address these issues, which
is the first traffic anonymization method that is both prefix-preserving and resistant to
semantic attacks.

8. Conclusions

We investigated the semantic attacks in IoT scenarios. In contrast with the active,
covert, and more dangerous IoT semantic attacks, we show that the state-of-the-art defense
against semantic attacks suffers from significant drawbacks. We proposed PD-PAn, a prefix-
and distribution-preserving traffic anonymization method, which ensures both data utility
and privacy of network traffic logs. We also conducted intensive experiments on a public
dataset and a private real-world dataset. The results validate the advancements of PD-PAn.
However, PD-PAn requires large memory space to manage the grouping structure for all
the IP prefixes. We leave the algorithm optimization for PD-PAn as future work.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
NTA Network Traffic Analysis
PP Prefix-Preserving
RPP Reverse Prefix-Preserving
CDF Cumulative Density Function
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