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Abstract: Unmanned aerial vehicles (UAVs) have gained considerable attention in the research com-
munity due to their exceptional agility, maneuverability, and potential applications in fields like
surveillance, multi-access edge computing (MEC), and various other domains. However, efficiently
providing computation offloading services for concurrent Internet of Things devices (IOTDs) remains
a significant challenge for UAVs due to their limited computing and communication capabilities.
Consequently, optimizing and managing the constrained computing, communication, and energy
resources of UAVs are essential for establishing an efficient aerial network infrastructure. To address
this challenge, we investigate the collaborative computation offloading optimization problem in
a UAV-assisted MEC environment comprising multiple UAVs and multiple IODTs. Our primary
objective is to obtain efficient offloading strategies within a multi-heterogeneous UAV environment
characterized by limited computing and communication capabilities. In this context, we model the
problem as a multi-agent markov decision process (MAMDP) to account for environmental dynamics.
We employ a multi-agent deep deterministic policy gradient (MADDPG) approach for task offload-
ing. Subsequently, we conduct simulations to evaluate the efficiency of our proposed offloading
scheme. The results highlight significant improvements achieved by the proposed offloading strategy,
including a notable increase in the system completion rate and a significant reduction in the average
energy consumption of the system.

Keywords: UAV-assisted MEC; multi-agent reinforcement learning; task offloading; multi-agent
deep deterministic policy gradient

1. Introduction

A variety of computationally and communication-intensive applications, such as
virtual reality, facial recognition, and autonomous driving, are anticipated to operate on
resource-constrained Internet of Things devices (IOTDs) [1,2]. Simultaneously, IOTDs
introduce a spectrum of requirements encompassing diverse service quality levels and com-
putational resources. Nevertheless, the limited computational resources pose a significant
impediment to the widespread adoption of these innovative applications. Multi-access edge
computing (MEC) emerges as an effective solution to tackle this challenge. By offloading
computational tasks from IOTDs with restricted computing capabilities and finite battery
power to edge servers located in close proximity, MEC has the potential to significantly
reduce both latency and energy consumption.

However, deploying edge servers in remote or underdeveloped terrestrial areas
presents significant challenges. For instance, establishing edge servers in sparsely popu-
lated regions like isolated mountains and islands may not be a cost-effective proposition.
In contrast, the UAV-assisted MEC environment offers a promising solution to meet the
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needs of underserved regions where terrestrial base stations are either absent or insuffi-
cient [3,4].

The UAV-assisted MEC environment harbors substantial potential in future wireless
systems, especially for maritime applications and emergency scenarios. This technology
can extend coverage to IOTDs in remote locations, hotspots, and emergency zones that
may have limited access to terrestrial base stations or are underserved by conventional
means [5–7]. Researchers are increasingly drawn to the UAV-assisted MEC environment
due to its adaptability and cost-effectiveness. A significant challenge in deploying the
UAV-assisted MEC environment lies in efficiently offloading a variety of tasks from diverse
IOTDs. This offloading should be based on considerations such as the computational
resources and energy consumption of the UAVs.

Numerous researchers have made significant contributions to the field of UAV-assisted
MEC environments, addressing various aspects such as energy efficiency [8], trajectory
planning [9], and the joint optimization of communication and computation [10]. However,
these existing research findings come with certain limitations. Firstly, a majority of current
scenarios center around a single UAV, necessitating the formation of UAV swarms to
distribute the computational workload due to the constrained processing capacity of
individual UAVs. Secondly, many approaches tackle computation offloading problems
using traditional optimization techniques, often as one-time optimizations that consider
a specific system state. Given the dynamic nature of UAV-assisted MEC environments,
effectively applying these methods proves to be challenging.

In response to this challenge, this paper conducts a comprehensive investigation into
the optimization problem of cooperative computing offloading strategies within UAV-
assisted MEC environments. The principal contributions of this study can be succinctly
summarized as follows:

• We investigate the problem of collaborative computation offloading involving multiple
UAVs under the constraints of limited communication range and latency. Our goal is
to collectively minimize the average energy consumption while increasing the overall
efficiency.

• We transform the optimization problem of cooperative computation offloading into
a multi-agent markov decision process (MAMDP). In this framework, each UAV
serves as an individual agent, and these agents make decisions by considering local
real-time observations and the current policy. These decisions involve selecting the
task offloading target and allocation ratio.

• We design an algorithm based on multi-agent deep deterministic policy gradient
(MADDPG). With offline training, each UAV can make real-time offloading deci-
sions. We conduct a series of simulation experiments to prove the effectiveness of the
algorithm in dynamic environments.

This paper employs a multi-agent reinforcement learning approach to address the
optimization of cooperative user computation offloading policies in a UAV-assisted MEC
environment characterized by constrained communication ranges and computing resources.
The remainder of the paper is arranged as follows. Section 2 reviews current literature
relevant to our study. Section 3 introduces the mathematical model for the considered
UAV-assisted MEC environment. Section 4 presents the solution based on the MADDPG
algorithm. Section 5 conducts a series of simulation experiments to demonstrate the
effectiveness of our proposed algorithm. Section 6 provides a summary of this paper.

2. Related Work

The computation offloading problem has consistently been a research focal point in
the context of UAV-assisted MEC environments, with numerous research contributions
of significant importance. To this end, we have conducted a comprehensive review of
existing research and categorized it into three key domains: optimization-based offload-
ing methods, game-theory-based offloading methods, and reinforcement-learning-based
offloading methods.



Electronics 2023, 12, 4371 3 of 21

Optimization-based offloading methods. Optimization-based offloading methods
have found widespread application in task offloading within the UAV-assisted MEC en-
vironment. These algorithms primarily focus on single or multi-objective optimization to
enhance performance. Diao et al. [11] introduced an alternating optimization algorithm that
combines a greedy approach, successive convex approximation, and functional analysis
methods. They applied this algorithm to jointly optimize offloading parameters and UAV
trajectories with the goal of minimizing the average peak age of information, average
energy consumption of IOTDs, and average energy consumption of UAVs. Lv et al. [12]
employed Bayesian optimization to ascertain the optimal offloading decision, aiming to
minimize overall energy consumption while maintaining adherence to mission quality of
service requirements. Chen et al. [13] devised a parallel offloading strategy using Liapunov
optimization. This strategy efficiently identifies optimal decisions for latency-sensitive
and computation-intensive tasks, achieving joint optimization encompassing green energy
utilization, task division factors, CPU frequencies, and transmission power. Hu et al. [14]
introduced a three-step block coordinate descent algorithm. This algorithm concurrently
optimizes the reflection coefficient of reconfigurable intelligent surfaces, the received beam
formation vector at the access point, and the local energy allocation strategy for user equip-
ment. The aim is to maximize the total completed task input bits for all users. Guo et al. [15]
employed a Lyapunov-based approach to optimize multi-user partial computational of-
floading. Their goal was to minimize the energy consumption of all users while ensuring
compliance with time delay constraints. Luo et al. [16] introduced a particle swarm opti-
mization (PSO) algorithm for the joint optimization of offloading decisions, communication
allocation, and computational resources. Their objective was to minimize both latency
and cost. Abbas et al. [17] introduced a real-time computing task offloading and resource
allocation strategy with a user-centric approach. They employed the Lyapunov drift plus
penalty optimization method to create a dynamic partial offloading solution aimed at
minimizing energy consumption and monetary costs while maximizing task completion
rates. Sheng et al. [18] employed a joint optimization approach for offloading decisions
and resource allocation, utilizing a convex-concave iterative process. This method effec-
tively mitigates co-channel interference while addressing differentiated upload delays
among users.

Game theory-based offloading methods. Game theory-based offloading methods
have been successfully applied to formulate, design, or optimize operations in various
representative environments [19]. Zhou et al. [20] introduced a novel optimization model
designed to maximize the expected offloading rate of multiple agents. They achieved this
by optimizing the offloading threshold and then transformed the problem into a game-
theoretic framework. Their analysis included an examination of the existence of Nash
equilibrium strategies within this game-theoretic model. Pham et al. [21] formulated the of-
floading decision problem as a potential game and devised a distributed offloading scheme
with low complexity using a game-theoretic approach. Xiao et al. [22] addressed MEC
grouping for task offloading in MEC cooperation by framing it as a utility maximization
problem. They accomplished this by creating a non-cooperative game strategy choice using
regret matching. Chen et al. [23] framed the multiuser task offloading problem as a game
and derived a Nash equilibrium strategy for task offloading. Teng et al. [24] converted the
multi-server multi-task allocation and scheduling problem into a non-cooperative game.
They demonstrated the existence of a Nash equilibrium and introduced a low-complexity
response updating algorithm that converges to the Nash equilibrium. Fang et al. [25]
framed the problem of minimizing the overall latency for all users in the network as a
matching game considering heterogeneous demands. They employed a multi-round co-
operative matching algorithm to discover a stable match for this game. You et al. [26]
introduced a novel game-theoretic algorithm for multilayer computational and network
resource allocation in the context of computational offloading within the MEC environ-
ment. Zhang et al. [27] introduced a game-theory-based approach to determine the optimal
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offloading strategy aimed at minimizing the weighted cost associated with time delay and
energy consumption.

Reinforcement-learning-based offloading methods. Reinforcement learning meth-
ods have garnered substantial attention for resolving intricate decision problems in dy-
namic and uncertain environments [28]. Wang et al. [29] introduced a task offloading
method based on meta-reinforcement learning. This approach facilitates rapid and adap-
tive task offloading decisions in MEC environments by learning the initial parameters of
the task offloading policy. Liu et al. [30] presented a deep reinforcement learning-based
approach for offloading and resource allocation to enhance system performance and ef-
ficiency. Zhou et al. [31] proposed a combined strategy for computational offloading
and resource allocation utilizing deep reinforcement learning to decrease the energy con-
sumption of the entire MEC system. Tang et al. [32] introduced a distributed algorithm,
leveraging model-free deep reinforcement learning, to optimize offloading decisions with
the goal of minimizing expected long-term costs. Dai et al. [33] presented an asynchronous
actor–critic algorithm aimed at identifying the optimal stochastic computational offloading
strategy, with the objective of minimizing long-term energy efficiency in industrial net-
works. Gao et al. [34] proposed a framework based on the proximal policy optimization
algorithm. This framework addresses location privacy protection and facilitates effective
task offloading decisions, achieving a balance between computational task performance
requirements and user location privacy preservation. Wang et al. [35] achieved efficient
computational offloading by employing intelligent decision-making strategies within a
reinforcement learning framework. This approach is aimed at reducing the energy con-
sumption and latency of mobile devices. Lu et al. [36] introduced a deep reinforcement
learning-driven computation offloading approach that efficiently transfers computational
tasks to edge servers. This approach relies on intelligent decision-making strategies to
enhance computational performance and user experience.

To clearly distinguish our research and underscore its unique characteristics, we
conducted a comparative analysis between our study and the previously mentioned works.

• First, we address the problem of optimizing cooperative offloading involving multiple
UAVs. Considering the constraints of limited computing resource and communication
range, our primary goal is to minimize the average energy consumption of these UAVs
while ensuring latency constraints are met.

• Second, the predominant approaches in the current landscape heavily rely on game-
theory-based methods and optimization-based techniques, which are deterministic
optimization methods well-suited for static environments. However, their adaptability
diminishes when faced with dynamic environmental changes and the necessity for
continuous offloading. To address this dynamism and the continuous nature of
offloading decisions, we incorporate deep reinforcement learning methods.

• Third, the majority of existing research predominantly relies on single-agent reinforce-
ment learning algorithms, which makes it challenging to address cooperative issues
involving multiple agents. To overcome this limitation, we enhance our approach
by adopting the MADDPG framework, which transforms the multi-user cooperative
offloading game into a multi-agent model.

3. Models and Problem Definition

In this section, we first formulate mathematical models to describe the UAV-assisted
MEC environment. We then provide a formal definition of the optimization problem
under consideration. The mathematical notations used in this paper are summarized in
Abbreviations, where the symbols are listed in the order introduced in the paper.

3.1. The UAV-Assisted MEC Environment

In this paper, we consider a computing environment comprising n UAVs (denoted as
UAV1, UAV2, . . . , UAVn) in addition to multiple IOTDs. Each UAV is equipped with limited
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computational and communication capabilities, serving as a task offloading provider for
the IOTDs [8,37], as illustrated in Figure 1.

Figure 1. A UAV-assisted MEC environment with multiple UAVs and multiple IOTDs.

We assume that each UAV adheres to a predetermined flight path while operating
independently. Positioned at fixed coordinates, a UAV can provide computation offloading
services to IOTDs within its coverage area. Periodically, UAVs receive computationally
intensive tasks of varying sizes from IOTDs. To ensure compliance with the latency
constraint due to limited computational and communication capabilities, each UAV offloads
tasks to other UAVs within its communication range. The main objective of this work is
to minimize the average energy consumption while maintaining the average response
latency constraint.

In this framework, we discretize the runtime into discrete time slots t ∈ {1, 2, 3, . . . , T},
where T represents the finite time horizon. UAVs receive computationally intensive tasks
from IOTDs at the initiation of each time slot. The UAVs tailor their offloading schemes
based on the state information of other UAVs observed in the environment. UAVi gauges
the communication circumstances with other UAVs in the prevailing environment through
multi-sensor information fusion techniques, denoted as Ui = (UAV1

i , UAV2
i , . . . , UAVn

i ).
UAVj

i = 1 signifies that UAVj falls within the communication range of UAVi; conversely,

UAVj
i = 0, with 1 ≤ j 6= i ≤ n indicates the opposite. Considering the energy constraints

of UAVs, it is essential that the energy consumed for computation and communication
remains within the limits of the UAV’s battery power. Addressing this, potential solutions,
such as current charging methods [38,39], could prevent battery depletion.

3.2. Offloading Schemes of UAVs

Typically, in UAV-assisted MEC environments, tasks can be executed locally or of-
floaded to a ground base station or a cloud center for processing. However, we introduce
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an innovative concept where tasks can also be offloaded to nearby UAVs for collabora-
tive computation. The aim of this innovative approach is to maximize computational
resource utilization across multiple UAVs, considering the limitations imposed by UAVs’
limited communication range, with the objective of improving task execution efficiency
and performance.

Let dt
i (measured in units of bits, 1 ≤ i ≤ n) denote the size of the offloaded compu-

tational tasks received by UAVi from IOTDs at the beginning of the time slot t. To ensure
the completion of these computational tasks within the predefined latency constraints,
each UAV is required to formulate its own offloading strategy based on the information it
gathers. That is, each UAV must determine the percentage of computational tasks to be
offloaded to other UAVs within its communication range.

We use vector
(

λt
i,1, λt

i,2, . . . , λt
i,n

)
to denote the offloading scheme of UAVi at time

slot t. In this representation, λt
i,i signifies the percentage of computational tasks that UAVi

handles locally, while λt
i,j (i 6= j) denotes the percentage of computational tasks that UAVi

offloads to UAVj for collaborative execution. Then, we have λt
i,1 + λt

i,2 + · · ·+ λt
i,n = 1.

Note that the UAVs that are not in the communication range of UAVi do not participate in
the offloading decision process, i.e., if UAVj

i = 0, then λt
i,j = 0.

Let us consider that the number of CPU cycles needed to execute 1-bit data on UAVi
is denoted as ci (measured in cycles/bit). Since the size of data not offloaded from UAVi to
other UAVs for processing at time slot t is λt

i,id
t
i bits, the number of CPU cycles required to

process this data is given by

Cloc,t
i = ciλ

t
i,id

t
i . (1)

Furthermore, UAVi also receives computational tasks from other UAVs at time slot
t, resulting in a total data size of the received computational tasks of ∑n

j=1,j 6=i λt
j,id

t
j bits.

Consequently, the CPU cycles required to process these computational tasks from other
UAVs on UAVi can be expressed as

Cacc,t
i =

n

∑
j=1,j 6=i

ci · λt
j,id

t
j. (2)

Therefore, the total number of CPU cycles required for all computational tasks to be
executed by UAVi at time slot t can be expressed as

Ct
i = Cloc,t

i + Cacc,t
i = ciλ

t
i,id

t
i +

n

∑
j=1,j 6=i

ci · λt
j,id

t
j = ci

(
λt

i,id
t
i +

n

∑
j=1,j 6=i

λt
j,id

t
j

)
. (3)

3.3. Energy Consumption Models

In this section, we discuss the energy consumption models of UAVs, which include
computational energy consumption and communication energy consumption.

3.3.1. Computational Energy Consumption

The computational energy consumption of UAVi refers to the energy consumption
generated by executing all computational tasks on UAVi.

In general, the computational power consumption of UAVi (measured in watts) can be
expressed as Pcomp

i = k · f 3
i , where k is a constant factor related to the CPU chip architecture,

and fi (measured in cycles/second) is the execution speed of UAVi [40]. Based on the
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previous description, it can be observed that the overall time required to perform all
computational tasks on UAVi during time slot t is

Tcomp,t
i =

Ct
i

fi
=

ci

(
λt

i,id
t
i +

n
∑

j=1,j 6=i
λt

j,id
t
j

)
fi

. (4)

Then, the computational energy consumption of UAVi during time slot t can be expressed as

Ecomp,t
i = Pcomp

i · Tcomp,t
i = kci fi

2

(
λt

i,id
t
i +

n

∑
j=1,j 6=i

λt
j,id

t
j

)
. (5)

3.3.2. Communication Energy Consumption

The communication energy consumption of UAVi refers to the energy consumption
generated by UAVi during the process of offloading computational tasks to other UAVs.

In a general context, UAVs establish communication with each other using wireless
channels within the airspace. According to Shannon’s theorem [41], the data transmission
rate Ri,j (measured in Mbps) for offloading tasks from UAVi to UAVj can be calculated as

Ri,j = Bi,jlog2(1 +
qi,jPcomm

i,j

Bi,jNi,j
). (6)

Here, Bi,j represents the channel bandwidth from UAVi to UAVj (measured in MHz), Pcomm
i,j

stands for the transmission power from UAVi to UAVj, qi,j indicates the channel gain from
UAVi to UAVj (measured in dBm), and Ni,j signifies the noise power spectral density from
UAVi to UAVj (measured in dBm/Hz).

The equation can be rearranged to determine Pcomm
i,j as follows:

Pcomm
i,j =

Bi,jNi,j(2
Ri,j/Bi,j − 1)
qi,j

. (7)

It can be observed that the transmission time required of UAVi to offload computa-
tional tasks to UAVj during time slot t is

Tcomm,t
i,j =

λt
i,jd

t
i

Ri,j · 106 . (8)

Hence, the communication energy consumption resulting from offloading computational
tasks from UAVi to UAVj during time slot t can be expressed as

Ecomm,t
i,j = Pcomm

i,j · Tcomm,t
i,j =

λt
i,jd

t
i

Ri,j · 106 ·
Bi,jNi,j

(
2Ri,j/Bi,j − 1

)
qi,j

. (9)

Then, we can represent the communication energy consumption of UAVi during time slot
t as

Ecomm,t
i =

n

∑
j=1,j 6=i

Ecomm,t
i,j =

n

∑
j=1,j 6=i

 λt
i,jd

t
i

Ri,j · 106 ·
Bi,jNi,j

(
2Ri,j/Bi,j − 1

)
qi,j

. (10)
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3.3.3. Average Energy Consumption

Based on the models of computational energy consumption and communication
energy consumption, the total energy consumption generated by UAVi during time slot t
can be expressed as

Et
i = Ecomp,t

i + Ecomm,t
i . (11)

Let dt denote the total size of offloaded computational tasks received by all UAVs

during time slot t, i.e., dt = ∑n
i=1 dt

i . Next, let dt
′

i denote the total size of all computational
tasks to be executed by UAVi at time slot t, i.e.,

dt
′

i = λt
i,id

t
i +

n

∑
j=1,j 6=i

λt
j,id

t
j. (12)

Then, we can obtain the average energy consumption at time slot t as

Et =
dt
′

1
dt Et

1 +
dt
′

2
dt Et

2 + · · ·+
dt
′

n
dt Et

i =
1
dt

n

∑
i=1

dt
′

i Et
i . (13)

3.4. Average Response Latency

In this section, we analyze the average response latency of all computational tasks in
the computing environment.

In our computing environment, tasks are either executed locally on a UAV or offloaded
to other UAVs. This distinction leads to different response latency calculations. Local
execution introduces computation latency, while offloading introduces both computation
and transmission latency.

Recall that we defined dt
i as the size of the offload computational tasks received by

UAVi from IOTDs at the beginning of the time slot t. These computational tasks were
proportionally distributed by UAVi, where data of size λt

i,id
t
i was executed locally on UAVi,

while data of size ∑n
j=1,j 6=i λt

i,jd
t
i was offloaded to other UAVs for collaborative execution. It

is clear that the response latency of the task assigned to itself by UAVi in time slot t can be
expressed as

Tloc,t
i =

Cloc,t
i
fi

=
ciλ

t
i,id

t
i

fi
. (14)

Since the response latency of the computational tasks that UAVi offloads to UAVj for
remote execution in time slot t (including computation and transmission latency) can be
expressed as

Toff,t
i,j =

cj · λt
i,jd

t
i

f j
+

λt
i,jd

t
i

Ri,j · 106 , (15)

the average response latency of the computational tasks offloaded by UAVi for remote
execution can be expressed as

Toff,t
i =

n

∑
j=1,j 6=i

(
λt

i,j

1− λt
i,i

Toff,t
i,j

)
=

1
1− λt

i,i

n

∑
j=1,j 6=i

(
λt

i,jT
off,t
i,j

)
(16)
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Then, the average response latency of computational tasks received by UAVi from
IOTDs during time slot t can be expressed as

Tt
i = λt

i,i · T
loc,t
i + (1− λt

i,i)T
off,t
i = λt

i,i · T
loc,t
i +

n

∑
j=1,j 6=i

λt
i,j · T

off,t
i,j . (17)

Therefore, the average response latency of all computational tasks in the computing
environment during time slot t can be calculated as

Tt =
dt

1
dt Tt

1 +
dt

2
dt Tt

2 + · · ·+
dt

n
dt Tt

n =
1
dt

n

∑
i=1

dt
i T

t
i . (18)

3.5. Problem Definition

In this section, we formally describe the optimization problem to be solved in this paper.
Given n UAVs, the communication circumstances Ui for all 1 ≤ i ≤ n; the execution

speed fi for all 1 ≤ i ≤ n; the task related parameters, including dt
i , ci for all 1 ≤ i ≤ n;

the communication-related parameters Ri,j, Bi,j, qi,j, Ni,j for all 1 ≤ j 6= i ≤ n; the constant
factor related to the CPU chip architecture k; and the latency constraint T∗, obtain the
optimal offloading scheme

(
λt

i,1, λt
i,2, . . . , λt

i,n

)
for each UAV in every time slot, aiming

to minimize average energy consumption while ensuring compliance with the average
response latency constraint. The optimization problem can be formulated as follows:

P1 : min Et,

s.t. C1 :

{
λt

i,j = 0, if UAVj
i = 0;

λt
i,j ∈ [0, 1], if UAVj

i = 1.
(19)

C2 : λt
i,1 + λt

i,2 + · · ·+ λt
i,n = 1, for all 1 ≤ i ≤ n,

C3 : Tt ≤ T∗, for all t ∈ {1, 2, 3, . . . , T}.

In this formulation, constraint C1 denotes the proportion of tasks that each UAV offloads
to other UAVs within its communication range as a value in the range [0, 1]. Constraint
C2 ensures that each UAV’s computational task has an appropriate executor and that all
tasks are executed. Constraint C3 specifies that the average response latency of the UAVs
in completing tasks within each time slot must be less than the defined latency constraint,
represented as T∗.

4. Our Solutions
4.1. Problem Transformation

In a dynamic UAV-assisted MEC environment, system state transitions at each time
slot t are contingent upon the real-time system state and the current task offloading policy.
Consequently, the offloading process within the UAV-assisted MEC environment consti-
tutes an MAMDP [42]. To address this optimization problem, we naturally consider the
application of deep reinforcement learning to train intelligent agents. These agents can be
deployed on edge service controllers to generate task offloading strategies based on the ob-
served system state. Subsequently, UAVs execute these task offloading actions, and rewards
are allocated to the agent upon successful execution. Meanwhile, the system proceeds to
the next state, and the agent refines its policy by leveraging the experiences gained from
these states, actions, and rewards. In this paper, we define the terms state, observation,
action, and reward as follows.
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State: The environment state is the information used to determine subsequent actions,
observations, and rewards, and it is a function of historical data. In the context of UAV-
assisted MEC environment, we define the environmental state for time slot t as follows:

st =
{

dt
1, dt

2, . . . , dt
n, G1, G2, . . . Gn

}
. (20)

We denote the set Gi to encompass various attributes of UAVi and communication-related
information as follows:

Gi ={ fi, ci, k, Bi,1, . . . , Bi,n, Ri,1, . . . , Ri,n, qi,1, . . . qi,n, Ni,1, . . . , Ni,n, Ui}. (21)

Observation: In our framework, we consider the data size of tasks received by UAVs
as our observation. The observation for time slot t can be expressed as

Ot =
{

dt
1, dt

2, . . . , dt
n
}

. (22)

Action: In the context of a UAV-assisted MEC environment, agent interactions are
facilitated through a predefined set of actions that encompass all possible choices. At time
slot t, each agent’s action involves determining the proportions λt

i,j by which UAVi offloads
tasks to UAVj within its communication range. Consequently, the action of UAVi at time
slot t is represented as

at
i =

(
λt

i,1, λt
i,2, . . . , λt

i,n
)
. (23)

Given the presence of n agents in the UAV-assisted MEC environment, we can derive the
set of actions for all n agents at time slot t as follows

at =
{

at
1, at

2, . . . at
n
}

. (24)

Reward: The reward is a function that assesses the impact of an action taken by an
entity in a specific state. In the context of the UAV-assisted MEC environment, our objective
is to ensure that the agent’s task offloading policy complies with the latency constraint
T∗ while minimizing the average energy consumption. To achieve this, we define the
following reward function

rt =

{
ωe
Et , if Tt ≤ T∗;
ωt
(
T∗ − Tt), if Tt > T∗.

(25)

In this context, ωe and ωt represent the coefficients of the reward function. Given that agents
in the UAV-assisted MEC environment collaborate to achieve optimization objectives, this
reward function is shared among all agents in this environment.

4.2. Preliminaries of the MADDPG

Reinforcement learning aims to find the optimal decision in uncertain environments
on the basis of qualitative and noisy on-line performance feedback provided by the envi-
ronments [43]. The agent corrects its policy in the environment by continuously interacting
iteratively, allowing the agent to learn the best or near-optimal solution by maximizing the
expected cumulative reward [44,45].

We employ the multi-agent deep reinforcement learning algorithm MADDPG to
collaboratively optimize the objective function defined in Equation (19). As depicted in
Figure 2, this algorithm integrates the deep deterministic policy gradient (DDPG) within
a cooperative multi-agent learning framework, where each agent receives the same im-
mediate reward. The MADDPG is built upon the actor–critic framework, leveraging both
centralized training and decentralized execution.
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Figure 2. The MADDPG framework in UAV-assisted MEC environment.

The MADDPG algorithm introduces several enhancements to both the actor–critic
and DDPG algorithms, addressing the limitations of traditional reinforcement learning
in coping with complex multi-agent environments while preserving DDPG’s efficiency
and applicability to continuous action spaces. In traditional reinforcement learning, each
agent is continually learning to enhance its policy, resulting in a dynamically unstable
environment from the perspective of each agent. This dynamic instability makes the
network environment non-stationary, thereby violating the markov assumptions necessary
for stable and convergent learning.

Unlike traditional single-agent algorithms, the MADDPG involves n agents. Let
π = {π1, π2, . . . , πn} represent the set of strategies adopted by all agents for selecting their
actions based on their observations, and let θ = {θ1, θ2, . . . , θn} denote the parameter set of
networks. Each agent updates its policy independently with the aim of maximizing the
expected cumulative reward. The expected cumulative reward of agent i is as follows:

J(θi) = Es∼pπ ,ai∼πi

[
T

∑
t=1

γt−1rt

]
. (26)

In this context, rt represents the reward obtained by agent i at time slot t. pπ signifies the
state distribution under the policy π. γ stands for the discount factor, utilized to discount
future rewards. The strategy gradient, a parameter that directly adjusts the strategy
gradient, aims to maximize J(θi) by taking steps in the direction of ∇θi J(θi). To maintain
clarity, we will exclude the time index in the forthcoming equations. In the context of a
stochastic strategy, the resulting strategy gradient formula is as follows:

∇θi J(θi) = Es∼ρπ ,ai∼πi

[
∇θi log πi(ai | oi)Qπ

i (x, a1, a2 · · · , an)
]
. (27)

Here, Qπ
i (x, a1, · · · , an) is a centralized action–value function that takes as inputs the

actions of all agents, a1, a2 · · · , an in addition to some state information x, and outputs
the Q-value for agent i. x represents the observations made by all agents, referred to as
x = [o1, o2, . . . , on].

In contrast to random strategies, deterministic strategies dictate specific actions in
particular states. Extending the preceding stochastic strategy to a deterministic strategy,
denoted as µθi (abbreviated as µi), allows us to derive the gradient of the deterministic
strategy as follows:

∇θi J(µi) = Ex,a∼D

[
∇θi µi(oi)∇ai Q

µ
i (x, a1, a2, · · · , an)

∣∣∣
ai=µi(oi)

]
. (28)
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D is the experience replay buffer, retaining all the data generated through the agent’s
interactions with the environment, each composed of

(
x, x

′
, a1, a2, . . . , an, r

)
, where x

′
is all

agent observations at the next moment.
During the training phase, the parameters of both the actor and critic networks are

updated by randomly sampling a mini-batch of size κ from the experience replay buffer.
The gradient for the actor network of agent i can be computed using the following equation:

∇θi J(µi) ≈
1
κ ∑

j
∇θi µi

(
oj

i

)
∇ai Q

µ
i (xj, aj

1, aj
2, . . . , aj

n)
∣∣∣
ai=µi

(
oj

i

), (29)

where j is the index of the sample. The critic network of agent i can be updated by
minimizing the loss function as follows:

L(θi) ≈
1
κ ∑

j

(
yj −Qµ

i

(
xj, aj

1, aj
2 . . . , aj

n

))2
, (30)

where yj is the sum of the agent’s immediate reward and discount target Q-value. yj is
obtained from the following equation:

yj = rj + γQµ
′

i

(
x
′ j, a

′ j
1 , a

′ j
2 , · · · , a

′ j
n

)∣∣∣∣
a′k=µ

′
k

(
o
′ j
k

), (31)

where µ
′
=
{

µ
θ
′
1
, µ

θ
′
2
, . . . , µ

θ
′
n

}
is the set of target policies with delayed parameters θ

′
i .

To enhance the stability of the network training process, we will implement a soft update
strategy in which the target network parameters θ

′
i will be updated based on the current

network parameters θi according to the following equation:

θ
′
i ← (1− ε)θ

′
i + εθi, (32)

where 0 < ε� 1, which represents the smoothing factor. Upon completion of training, each
agent can independently choose its actions based on local observations without knowledge
of other agents’ information.

Algorithm 1 summarizes the detailed flow of the MADDPG algorithm for UAV-
assisted MEC environment proposed in this paper. First, we randomly initialize the agent’s
networks (lines 1–2) and initialize our replay buffer memory (line 3). The agents in the
environment obtain the initial state of the observation, and the agent selects the task
offloading percentage of UAVs within the communication range according to its policy
and exploration noise (line 8). We employ Gaussian noise to enhance the action detection
strategy, where ψ represents the Gaussian noise. After the agent performs the selected
action, the agent obtains a step reward, the next observation (lines 9–10). Then, the transition
experiences of each agent are stored in the replay buffer memory, and the scenario state
is updated to the next state (lines 11–12). The critic and actor network parameters of
each agent are updated based on Equations (30) and (29), respectively (lines 16–17). Then,
the target network parameters for each agent are updated according to Equation (32).
The algorithm is terminated when it reaches the defined maximum number of sets.
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Algorithm 1 MADDPG-Based Task Offloading Optimization in UAV-assisted MEC
Environment
Input:
{UAV1, UAV2, . . . , UAVn},U = {U1, U2, . . . , Un}

Output:[
(λt

1,1, λt
1,2, . . . , λt

1,n), . . . , (λt
n,1, λt

n,2, . . . , λt
n,n)
]

1: Randomly initialize the weights of actor and critic networks
2: Randomly initialize the weights of target actor and critic networks
3: Initialize the size of replay buffer memory
4: for episode e = 1 : EP do
5: Initialize a random process ψ for action exploration
6: Receive initial observations
7: for step t = 1 : ST do
8: For each agent i, select action at

i = µi
(
Ot

i
)
+ ψt w.r.t the exploration and current

policy
9: Execute the actions at =

{
at

1, at
2, . . . at

n
}

10: Obtain global reward rt, new observations Ot+1
i

11: Store the experience transitions in the replay buffer memory
12: x ← x

′

13: for agent i = 1 to n do
14: Randomly select a mini-batch of experience transitions κ from the replay

buffer memory
15: Set yj according to Equation (31)
16: Update the critic network through minimizing the loss based on Equation (30)
17: Update actor network utilizing the sampled policy gradient based on

Equation (29)
18: End for
19: Update target network parameters via Equation (32)
20: End for
21: End for

5. Performance Evaluation

We performed a series of simulations to assess the performance of the MADDPG-based
task offloading algorithm. Initially, we examined the impact of various parameters on the
MADDPG scheme’s performance. Subsequently, we compared the MADDPG-based task
offloading algorithm with four other schemes in diverse environments.

5.1. Simulation Settings

To assess the performance of our algorithm, we conducted simulations in two distinct
scenarios involving six UAVs and eight UAVs, respectively. In these scenarios, each UAV
follows a predefined flight path during independent operations. Positioned at fixed coordi-
nates, the UAVs offer computational offloading services to IOTDs within their coverage
zones. These UAVs receive computational tasks from IOTDs, with task sizes ranging from
10 Mb to 25 Mb. The parameters used in our experiments are as follows: constant factor re-
lated to the CPU chip architecture k = 10−27, number of CPU cycles needed to execute 1-bit
data ci ∈ {400, 500, 600, 800} cycles/bit, execution speed fi = 2.0+ 0.4(i− 1) GHz, channel
bandwidth Bi,j = 3.0 + 0.1(j− 1) MHz, data transmission rate Ri,j = 10 + 0.5(j− 1) Mbps,
noise power spectral density Ni,j = −174− 0.2(j− 1) dBm/Hz; all of the above i and j take
a range of values 1 ≤ j 6= i ≤ n , where n is the number of UAVs in the current environment.

Our simulations were implemented in the PyCharm development environment using
PyTorch and Python 3.7.3. In our algorithm, each agent is equipped with both a critic net-
work and a actor network. these networks are four-layer fully connected neural networks,
commonly referred to as multilayer perceptrons. Specifically, the hidden layers in these fully
connected neural networks were set to [512, 256] and [256, 128] , respectively, with ReLU
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serving as the activation function in the hidden layers. The important hyperparameters
used in the experiments are shown in Table 1.

Table 1. Experimental parameters.

Parameter Definition Setting

EP Episode 1,000,000
D Replay buffer size 1,000,000
ωe Coefficient for reward function 1000
ωt Coefficient for reward function 10
σ Gaussian noise variance 0.05∼0.5

ST Steps 1
γ Discount factor 0.1
α Critic network learning rate 0.01
β Actor network learning rate 0.01
ε Softupdate factor 0.01
pi Number of iterations 200
pn Number of particles 100
c1 Acceleration coefficients 1.5
c2 Acceleration coefficients 1.5
pw Inertia weight 0.5

5.2. Parameter Analysis

The training regimen for our scheme unfolds as follows: The initiation process encom-
passes the initialization of the agent network and the replay buffer memory. The agents
within the environment receive initial observations. Each agent independently selects the
task offloading ratios for UAVs within their communication range, guided by a combi-
nation of their individual strategies and exploration noise. Following the execution of
their chosen actions, agents receive step rewards and the subsequent set of observations.
The experiences of each agent are recorded within the replay buffer memory. Concurrently,
the environment’s state transitions to the subsequent state. Agents update their network
parameters based on their interactions with the environment. The algorithm will terminate
when the predefined maximum number of episodes is reached.

During the training process, we investigate the impact of learning rates and discount
factors on the convergence of the MADDPG-based scheme proposed in this study.

5.2.1. Impact of Learning Rate on Convergence

Figure 3a depicts the convergence performance of the Adam optimizer in the MAD-
DPG algorithm for three different learning rates. As seen in Figure 3a, the total reward for
all learning rates increases with increasing learning time and converges within a specific
range. This is because, as the learning episodes increase, the actor and critic networks
adjust their parameters to fit the optimal strategy and action values. Furthermore, we can
find that setting the learning rate to 0.01 obtains rewards higher than 0.1 and 0.001. This is
because the learning rate determines the step size of the change in the weights with the
direction of the gradient. The larger the learning rate, the more significant the change in
weights. Therefore, a large or small learning rate can make the network fall into a local
optimum solution.

5.2.2. Impact of Discount Factor on Convergence

Figure 3b depicts the convergence performance of three different discount factors in
the MADDPG algorithm. In this experiment, the discount factor γ is set to 0.1, 0.5, and 0.9,
respectively. It can be seen from the figure that the algorithm converges with the highest
reward when the discount factor is set to 0.1. This is because the discount factor impacts
the balance between current and future rewards. Given our optimization objective, which
prioritizes immediate rewards, setting the discount factor to 0.1 results in higher rewards.
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Figure 3. Convergence performances of MADDPG with different parameters. (a) Different learning
rates. (b) Different discount factors.

5.3. Comparison Experiments

To evaluate the efficacy of our solution in the context of the UAV-assisted MEC
environment, we conduct comparisons with the following benchmark solutions in scenarios
involving six and eight UAVs, respectively.

• PSO scheme: We treat the set of offloading decisions made by all UAVs in the current
environment as a particle, utilizing Equation (25) as the fitness function for the PSO
algorithm. The parameters for the PSO algorithm are presented in Table 1.

• URM scheme: In the URM scheme, each UAV first determines the number of UAVs
within its communication range (denoted as m). It then distributes the tasks equally
between itself and the other UAVs within its communication range. Thus, the size of

the task that UAVi shares with other UAVs in its communication range is dt
i

m+1 .
• Proximal policy optimization (PPO) scheme: Each UAV has an independent PPO [46]

model and each UAV makes independent offloading decisions.
• DDPG scheme: Each UAV operates autonomously with its independent DDPG model,

devoid of a centralized critic network and local information sharing. Each UAV
autonomously makes offloading decisions. We employ the neural network structure
consistent with the MADDPG algorithm for both the actor and critic networks of the
DDPG.

We employ the MADDPG algorithm alongside PPO and DDPG algorithms to itera-
tively interact with the environment and update network parameters within a specified
environment. This allows us to conduct a comparative analysis of their convergence
performance by recording the average reward per 100 episodes.

As depicted in Figure 4, we have compared the convergence performance of our
approach with that of the PPO and DDPG algorithms across various environments. In the
initial phase, the average reward is relatively low due to the random initialization of
network parameters. During the initial 20,000 training episodes, both the MADDPG and
DDPG algorithms interacted with the environment to accumulate experiences for each
agent, which were subsequently stored in the replay buffer memory. After completing these
initial 20,000 episodes, network parameters are updated based on the data stored in the
replay buffer memory. It is essential to note that the PPO algorithm operates as an online
algorithm, necessitating the generation of data using the current policy and updating the
policy based on this data. As depicted in Figure 4, MADDPG outperforms DDPG and
PPO in terms of average reward. MADDPG achieves these outstanding results because
during training, the critic of each agent in MADDPG has access to information regarding
the actions of other agents.
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Figure 4. Convergence performance of our approach, DDPG, and PPO in various environments.
(a) Six-UAV environment. (b) Eight-UAV environment.

Based on the environmental parameters in Section 5.1, we randomly initialized five
states to assess the performance gap between our scheme and other benchmark algorithms.
These states consist of sets of task sizes received by UAVs from the IOTDs. These tasks vary
in size from 10 Mb to 25 Mb and are generated following a uniform distribution. Within each
state, the offloading policies prescribed by our scheme and the other benchmark algorithms
are evaluated, and the average energy consumption and average task execution latency for
various offloading policies are computed.

Figure 5 illustrates the average latency and average energy consumption of offload-
ing policies provided by five different algorithms in environments with six and eight
UAVs across five distinct states. The latency constraints in the environments with six and
eight UAVs were 1.45 s and 0.95 s, respectively. Figure 5a,b show the simulation environ-
ment with six UAVs, and Figure 5c,d show the simulation environment with eight UAVs.
We observe a significant reduction in the average response latency for performing compu-
tational tasks received from IOTDs within each time slot as we increase the computational
resources, specifically the number of UAVs. It is also relatively easy to find that the average
energy consumption required for the computation is much higher because the increase in
the number of UAVs means more computational tasks from IOTDs are accepted. From
Figure 5a,c, we can easily find that the offloading decisions made by the MADDPG algo-
rithm satisfy the latency constraint for the random five states. Figure 5b,d demonstrate
that the average energy consumption for processing the computational tasks using the
MADDPG algorithm consistently outperforms the other baseline algorithms.

Figure 5 shows the comparative effect of our algorithm and the baseline algorithm for
only five random states. To evaluate the real effectiveness of the algorithms in practical
environments, we expanded the initial five random states to a total of 1000 random states.
Employing the same methodology as described above, we collected offloading strategies
from various schemes across different states. Subsequently, we computed the average
energy consumption and average latency associated with these offloading strategies for
task execution. It is worth noting that we only calculate the sum of the average energy
consumption when all algorithms meet the latency constraints, as there may be cases
of violation.
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Figure 5. Average latency and average energy consumption of different schemes. (a) Six-UAV
environment. (b) Six-UAV environment. (c) Eight-UAV environment. (d) Eight-UAV environment.

In environments featuring six and eight UAVs, the DDPG baseline algorithm breached
latency constraints 187 and 3 times, respectively. The PSO baseline algorithm exceeded
these constraints 233 and 90 times in the corresponding scenarios, while the PPO baseline
algorithm did so 3 and 16 times in the same contexts. Notably, neither the MADDPG
algorithm nor the URM algorithm violated the latency constraint. Figure 6 displays the
total average energy consumption of the five algorithms across 1000 random states, where
all algorithms successfully adhere to the latency constraints. The results indicate that our
scheme, employing the MADDPG algorithm, achieves lower average energy consumption
in comparison to the benchmark algorithm. For instance, with n = 6, the offloading scheme
offered by MADDPG exhibits an average energy consumption that is 21.06% lower than
that of DDPG, 16.72% lower than that of PPO, 8.93% lower than that of URM, and 6.99%
lower than that of PSO.

In conclusion, our scheme, employing the MADDPG algorithm, effectively reduces
average energy consumption while adhering to latency constraints in diverse environments.
This affirms the efficacy of our approach across various scenarios.
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Figure 6. The total average energy consumption of various schemes meeting the latency constraint in
1000 random states.

6. Conclusions

In this paper, we investigate the problem of collaborative computation offloading in-
volving multiple UAVs under the constraints of limited communication range and latency.
Our primary objectiveis is to minimize the average energy consumption of these UAVs
while ensuring latency constraints are met. To address the high dynamism and complexity
of this problem, we formulate the cooperative offloading problem as an MAMDP and use
a cooperative algorithm based on the MADDPG to tackle it effectively. The MADDPG
algorithm significantly reduces energy consumption in UAV-assisted MEC environment
by facilitating cooperative computational offloading while meeting the latency constraints.
Simulation results demonstrate the superiority of the MADDPG algorithm over existing
methods. It is worth noting that in this article we simplified the process through which
UAVs receive tasks from IOTDs. In our upcoming research, we will delve into the opti-
mization of computational offloading for IOTDs.
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Abbreviations
Mathematical Notations and Definitions.

Symbol Definition
n Number of UAVs
Ui Communication circumstances of UAVi
dt

i Data size of tasks received by UAVi from IOTDs at time slot t
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λt
i,i The percentage of tasks that UAVi handles locally at time slot t

λt
i,j The percentage of tasks that UAVi offload to UAVj at time slot t

ci Number of CPU cycles needed to execute 1-bit data on UAVi

Cloc,t
i CPU cycles required by UAVi to perform local tasks at time slot t

Cacc,t
i CPU cycles required by UAVi to perform tasks from other UAVs at time slot t

Ct
i Total CPU cycles required by UAVi to perform all tasks at time slot t

Pcomp
i Computational power consumption of UAVi

k Constant factor related to the CPU chip architecture
fi Execution speed of UAVi

Tcomp,t
i Overall time required to perform all tasks on UAVi during time slot t

Ecomp,t
i Energy consumption required to perform all tasks on UAVi during time slot t

Ri,j Data transmission rate between UAVi and UAVj
Bi,j Channel bandwidth from UAVi to UAVj
Pcomm

i,j Transmission power from UAVi to UAVj

qi,j Channel gain from UAVi to UAVj
Ni,j Noise power spectral density from UAVi to UAVj
Tcomm,t

i,j Transmission time required of UAVi to offload tasks to UAVj during time slot t
Ecomm,t

i,j Energy consumption due to task offloading from UAVi to UAVj during time slot t
Ecomm,t

i Communication energy consumption of UAVi during time slot t
Et

i Total energy consumption of the UAVi during time slot t
dt Data size of the tasks on all UAVs at time slot t

dt′
i Data size of all tasks to be executed by UAVi at time slot t

Et Average energy consumption at time slot t
Tloc,t

i Response latency of the task assigned to itself by UAVi in time slot t
Toff,t

i,j Response latency of tasks that UAVi offloads to UAVj for execution in time slot t

Toff,t
i Average response latency of tasks offloaded by UAVi for execution in time slot t

Tt
i Average response latency of tasks received by UAVi from IOTDs in time slot t

Tt Average response latency of all tasks during time slot t
T∗ Latency constraint
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