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Abstract: Currently, dealing directly with in-phase and quadrature time series data using the deep
learning method is widely used in signal modulation classification. However, there is a relative
lack of methods that consider the complex properties of signals. Therefore, to make full use of the
inherent relationship between in-phase and quadrature time series data, a complex-valued hybrid
neural network (CV-PET-CSGDNN) based on the existing PET-CGDNN network is proposed in
this paper, which consists of phase parameter estimation, parameter transformation, and complex-
valued signal feature extraction layers. The complex-valued signal feature extraction layers are
composed of complex-valued convolutional neural networks (CNN), complex-valued gate recurrent
units (GRU), squeeze-and-excite (SE) blocks, and complex-valued dense neural networks (DNN).
The proposed network can improve the extraction of the intrinsic relationship between in-phase
and quadrature time series data with low capacity and then improve the accuracy of modulation
classification. Experiments are carried out on RML2016.10a and RML2018.01a. The results show that,
compared with ResNet, CLDNN, MCLDNN, PET-CGDNN, and CV-ResNet models, our proposed
complex-valued neural network (CVNN) achieves the highest average accuracy of 61.50% and 62.92%
for automatic modulation classification, respectively. In addition, the proposed CV-PET-CSGDNN
has a significant improvement in the misjudgment situation between 64QAM, 128QAM, and 256QAM
compared with PET-CGDNN on RML2018.01a.

Keywords: automatic modulation classification (AMC); complex-valued convolutional neural networks;
complex-valued neural networks (CVNNs); deep learning (DL); in-phase and quadrature time series
data

1. Introduction

Automatic modulation classification (AMC) plays a crucial role in the field of satellite
communication, particularly when reliable prior information is not readily available [1,2].
In the past few years, various deep learning (DL) networks, such as convolutional neural
networks (CNN), dense neural networks (DNN), residual neural networks (ResNet), and
recurrent neural networks (RNN), have been used in the field of modulation classifica-
tion because of their advantages of no manual feature extraction and high recognition
accuracy [1,3–6]. The research on the application of DL in communication is relatively
abundant; however, there are few examples considering complex representations of signal
attributes [7]. Some existing DL-AMC models consider the real and imaginary components
of complex-valued input as independent channels and do not fully exploit the inherent
interactions between them, which could degrade the performance of the model and hinder
its interpretability [7,8].

Usually, most of the collected signals, such as electromagnetic, optical waves, and RF
signals, are complex numbers [9]. For example, in the actual situation, the modulation
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signal in the communication field is complex and consists of in-phase (I) and quadrature
(Q) channel data, where the phase component represents the time course or position dif-
ference and the amplitude represents the energy or power of the wave [10–12]. Since
complex-valued neural networks (CVNNs) can directly process phase and amplitude infor-
mation and can completely extract wave information, the data expression ability can be
improved by using CVNNs, which is more suitable for processing wave-related informa-
tion processing models than real-valued neural networks (RVNNs) [13,14], and provides
a new solution for dealing with problems with complex characteristics or calculations
on a complex domain. Therefore, some researchers have researched CVNNs based on
deep learning. In 1990, CVNNs were first formally described by Clarke [11]. In 1992,
Hirose started to utilize complex weights and activation functions for building neural
networks [15,16]. Later, Hirose et al. explained the mathematical expressions of complex
numbers and connected them with the field of signal processing [11,17–19]. They found that
CVNNs can achieve easier optimization [20], better generalization characteristics [19], faster
learning [21], and allow for noise-robust memory mechanisms [22] compared with RVNNs.
For example, Wisdom et al. [23] and Arjovsky et al. [21] proved that complex-valued
RNNs could make the network have a richer representation ability. Danihelka et al. [22]
introduced complex expression into the Long Short-Term Memory (LSTM) network and
found that complex-valued LSTM had more advantages than real LSTM in retrieval and
insertion of associative memory. Until 2018, Trabelsi et al. [24] provided the key compo-
nents of CVNNs, which could realize convolution, activation, batch-normalization, and
other operations on complex-valued input data, and applied them to vision tasks, music
transcription, and speech spectrum prediction to achieve better performance than the
corresponding RVNN. In the field of communication signals, complex-valued CNN has
been applied to detect transmitted signals on spatial modulation [25], which could reduce
the computational complexity by 14.71% compared to the traditional approach. According
to Chang et al.’s research [26], signal equalization utilizing complex-valued CNN could
restore communication signals from noisy signals affected by wireless channels. In 2020,
Jakob Krzyston et al. [27] realized the calculation of complex convolution in real-valued
deep learning frameworks by way of a linear combination of real convolution and two
columns of real arrays. Compared with the RVNNs with the same number of parameters
on RML2016.10a, the improvement in the recognition accuracy of the CVNN is more than
30% when the signal-to-noise ratio (SNR) level is below −5 dB. However, this method
only solves the realization of complex convolution. At the same time, a complex-valued
DNN is proposed, which has a lower error rate and fewer parameters than real-valued
DNN and complex ResNets [5]. In 2022, to better improve the performance of the DL-AMC
models based on CVNNs, S. Kim et al. [12] extended max-pooling and softmax to complex
operations. To handle complex-valued data, complex-valued CNN and complex-valued
ResNet were developed based on the basic architecture of real-valued CNN and ResNet.
Compared with real-valued CNN and ResNet on different data, it is found that the pro-
posed classifier improves the SMR performance. The performance of the phase-dependent
modulation type is improved. Jie Xu et al. [28] proposed a complex-valued dense layer
to realize the extraction of complex features when calculating classification results. And
then complex-valued VGG and complex-valued ResNet are proposed and discussed for
their applicability to signal modulation classification and UAV recognition. The results
verify that, compared with the equivalent RVNNs, CVNNs have higher accuracy, lower
computational complexity, and fewer model parameters.

Although researchers have researched CVNNs in signal processing, there is still a
lack of CVNNs that can be used in signal modulation classification. Therefore, to make
full use of the inherent relationship between in-phase and orthogonal time series data and
enhance the feature extraction ability of the DL-AMC models for improving the accuracy
of model recognition, we propose a complex-valued hybrid neural network. Based on
the existing model in reference [29], the original in-phase and quadrature time series
data were first processed by phase parameter estimation and transformation, and then
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the complex-valued signal feature extraction layers were used to extract the spatial and
temporal characteristics of the signal for modulation signal recognition. The contributions
of this paper are summarized as follows: (1) We propose a method to extend the Gate
Recurrent Unit (GRU) to complex fields to reduce information loss in complex-valued input
data; (2) to fully exploit the inherent interrelations in in-phase and quadrature time series
data, we extend the PET-CGDNN model to the complex framework to realize complex
operations; (3) to better learn the relationship between different channels and effectively
extract the features of signal modulation classification, the squeeze-and-excite (SE) block as
the attention mechanism is introduced in the feature extraction layer.

The remaining sections of this article are organized as follows: In Section 2, we
introduce the signal model and provide an overview of complex-valued operation building
blocks, which include the architecture and principles of complex convolution, complex
batch-normalization, and other relevant modules. Then, we give the details of the proposed
CV-PET-CSGDNN model. Section 3 presents the experimental setup and evaluation method.
Furthermore, the experimental results of CV-PET-CSGDNN are analyzed and discussed in
Section 4. Finally, in Section 5, we provide a summary of the key findings and offer insights
into future directions for research in this field.

2. Signal Model and Proposed System Model

In this section, the complex-valued building blocks of CVNNs are presented, which
include complex convolution, complex ReLU, complex GRU, and complex softmax. And
then introduce our proposed complex-valued PET-CSGDNN model.

2.1. Signal Model

The complex baseband signal model, which includes I and Q components, can be
represented as follows:

y(l) = A(l)ej(ωl+ϕ)x(l) + n(l), l = 1, . . . , L (1)

where y(l) represents the received signal, which can be stored in discrete IQ data with
sample length L, A(l) denotes the wireless channel gain, and x(l) denotes the transmitted
signal. n(l) represents the complex additive white Gaussian noise.

To simplify satellite communication signal data processing and modulation identifica-
tion, the received signal can be written as:

Y = yI + jyQ =

[
yI
yQ

]
=

[
<{y[l]}, . . . ,<{y[L]}
={y[l]}, . . . ,={y[L]}

]
, yI ,yQ ∈ R (2)

where yI and yQ are the I and Q components, j denotes the imaginary unit with a value equal
to
√
−1. According to the mathematical expression, the I and Q components are equivalent

to the real and imaginary components with the corresponding mapping between them for
each multiplication, which is often ignored in most DL-AMC models [8]. In addition, it is
possible to express the amplitude of y(l) as a representation containing information about
the I and Q channels as follows:

YA =
√

y2
I + y2

Q (3)

2.2. Complex-Valued Operations
2.2.1. Complex Convolution (CConv)

To overcome the challenge of efficiently computing convolutions with complex-valued
inputs, a linear combination, and two-dimensional real convolution [27] are employed. We
introduce another I and Q time series data set h, which can also be called weights, that
contains M complex filter coefficients, where h′m and h′′m are the mth I and Q components of
h [27].

hm = h′m + jh′′m (4)
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Below is the depiction of Y and h in a two-dimensional (L × 2) format:
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By applying DL convolutions as a sliding window, the convolution of signals Y and h
results in ZDL. In Equation (6), ZDL is represented by three columns.
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Z = ZDL

 1 0
0 1
−1 0

 (9)

2.2.2. Complex ReLU (CReLU)

At present, the Rectified Linear Unit (ReLU) and its variants are the majority of
activation functions used in convolutional neural networks, whose expression is shown in
Equation (10). In order to deal with complex-valued representations of the communication
signal, the operation mode of ReLUs on the real and imaginary parts of the input, namely
CReLU, whose expression is shown in Equation (11) [10].

ReLU(l) =

{
l, l ≥ 0
0, l < 0

(10)

CReLU(l) = ReLU(<(l)) + iReLU(=(l)) (11)

2.2.3. Complex-Valued GRU (CGRU)

The goal of GRU is to address the issues of gradient disappearance and gradient
explosion in the training process of lengthy sequences. In this paper, the modulus of the
real and imaginary features extracted from the previous network layer is taken as the input
of this network layer to realize the complex-valued GRU, whose expression is shown in
Equation (12). 

xt =
√
(<(xt)

2 +=(xt)
2)

zt = σ(Wz · [ht−1, xt])
rt = σ(Wz · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht − 1 + zt ∗ h̃t

(12)
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where xt represents input information, which is the modulus of the real and imaginary
features extracted from the previous network layer; zt and rt denotes the update gate and
reset gate, respectively; h̃t,ht−1 and ht denotes candidate hidden states at the current time,
hidden states from the previous time, and hidden states from the current time, respectively.

2.2.4. Complex Softmax (CSoftmax)

Generally, to normalize the predictions to a probability distribution, softmax is typi-
cally the final step in DL-AMC models. In this paper, an extension of the real softmax to
the complex domain is achieved by using the magnitude of the complex data shown in
Equation (13) [12].

CSo f tmax(l) =
exp(

√
<(y[l])2 +=(y[l])2)

J
∑

j=1
exp(

√
<(y[j])2 +=(y[j])2)

, j = 1, 2, 3, . . . , J (13)

2.3. The Proposed Complex-Valued PET-CSGDNN Model

In order to realize the complex number calculation, based on the existing PET-CGDNN
model [29], the network layers in the feature extraction, feature mapping, and classification
parts are extended to the complex number framework. In order to dynamically modify
the weights of various channels, SE block [30] which is a simple and lightweight channel
attention method, is introduced in channel feature extraction, as shown in Figure 1. Part
1 can estimate the phase parameters of the input signal by co-training with the following
model: The parameter transformation in Part 2 is a custom layer that uses the input signals
and phase parameters to carry out an inverse parameter transformation with input signals
and phase parameters. Part 3 consists of complex-valued CNN, complex-valued ReLU,
complex-valued GRU, complex-valued DNN, SE block, and complex softmax, and its main
function is to implement feature extraction and classification. Specifically, the first complex
convolutional layer has 75 filters and a kernel size of 2 × 8 to extract the spatial features
of the signal, while the second complex convolutional layer has 25 filters and a kernel
size of 2 × 5 to further compress the extracted features of the signal. The subsequent
complex-valued GRU layer extracts the temporal features of 128 units of signals. The SE
block is added to learn the connections between different channels and dynamically adjust
the weights of different channels so as to enhance the performance of the model. In the
SE block, the fully connected channel drops by a factor of two. The structure of the SE
module is depicted in Figure 1. Firstly, the spatial feature compression is performed on the
feature map, and the global average pooling is realized in the spatial dimension to obtain
the feature map of 1 × 1 × C. Then, the feature map with channel attention is obtained by
fully connected layer learning, and its dimension is still 1 × 1 × C. Finally, the feature map
with channel attention is output after the feature map of the original input and the feature
map of the channel attention have both been multiplied by the weight coefficient channel
by channel. Finally, the classification operation is performed by the complex dense layer
with the same number of hidden units (C) as modulation schemes. Complex ReLU is used
as the activation function in the first two convolutions, and complex softmax is used after
the last dense layer.
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3. Experiments

The proposed model is subjected to ablation tests in this section, along with a com-
parison to existing benchmark models. We will first introduce the datasets used in our
experiments, the experimental conditions, and the evaluation methods. Then, we will
introduce the experimental arrangement of the ablation experiment and the comparison
experiment, as well as the parameter settings of each benchmark model in the experiment.

3.1. Datasets and Experimental Conditions

The open-source modulation classification datasets named RML2016.10a and RML2018.01a
(as shown in Table 1), simulated and generated by the GNU Radio software platform, were
used for verification in the experiments [31]. The loss function is the cross-entropy loss
function. The optimizer is Adam; the initial value of the learning rate is 0.001, and when
the validation loss does not decrease in 10 epochs, it is multiplied by a coefficient of
0.5; the number of training rounds is 200; the trained model is saved with the highest
average accuracy; and the other hyperparameters are the default values. The GPU used in
the experiment was GeForce GTX 3090, the CPU was Intel (R) Xeon (R) Gold 6248R, the
operating system was Win 10 Education Edition, and the deep learning framework was
Pytorch1.11.0.

Table 1. AMC Open-source Dataset [31].

Dataset Modulation Schemes Sample
Dimension Dataset Size SNR Range (dB)

RML2016.10a
11 classes

(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM,
AM-DSB, AM-SSB, 64QAM, QPSK, WBFM)

128 × 2 220,000 −20:2:18

RML2018.01a

24 classes
(OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,

16PSK, 32PSK, 16APSK, 32APSK, 64APSK,
128APSK, 16QAM, 32QAM, 64QAM,

128QAM, 256QAM, AM-SSB-WC,
AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM,

GMASK, OQPSK)

1024 × 2 2,555,904 −20:2:30

3.2. Evaluation Method

In this paper, we introduce accuracy to measure the performance of the generalization
ability of the proposed model, as shown in Equation (14):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)
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According to the results of the true and predicted values, the whole sample set can be
separated into true positive (TP), false positive (FP), true negative (TN), and false negative
(FN), so the accuracy is the ratio of all correctly categorized samples to the total number of
samples.

Experiments were carried out on RML2016.10a and RML2018.01a. First of all, random
sampling without replacement was used with assignment ratios of 6:2:2 and 3:4:4, respec-
tively. Secondly, the training samples were trained, and the validation samples were used
to verify the model after each round of training. Then, after 200 rounds of training, the
model parameters with the highest recognition accuracy on the validation sample were
selected as the final model parameters. Finally, the test sample was input into the final
model to obtain the model recognition accuracy results.

3.3. Experiment Settings

Experiment 1 is the ablation experiment; the PET-CGDNN [29], CV-PET-CGDNN, and
CV-PET-CSGDNN models are compared under the RML2016.10a and RML2018.01a data
sets. Among them, CV-PET-CGDNN is the PET-CGDNN model extended to the complex-
valued framework according to the method in Section 2.2, aiming to verify whether the
proposed CV-PET-CGDNN is conducive to fully extracting features between in-phase and
quadrature time series data and improving the recognition accuracy of modulation modes.
CV-PET-CGDNN is the version of the CV-PET-CSGDNN model without an attention
module, which is designed to verify the effectiveness of the attention module introduced in
this model for the acquisition of channel relationship weights.

Experiment 2 is a comparison test. In order to verify the generalization and effective-
ness of the CV-PET-CSGDNN model, key AMC models are selected to provide benchmark
comparisons, including ResNet [2], CLDNN [32], MCLDNN [33], PET-CGDNN [29], and
CV-ResNet [12]. ResNet, CLDNN, MCLDNN, and PET-CGDNN are RVNNs. CV-ResNet
and CV-PET-CSGDNN are CVNNs. CLDNN, MCLDNN, PET-CGDNN, and CV-PET-
CSGDNN are all hybrid models, and the network structure and parameter settings are
shown in Tables 2 and 3, respectively. Other details of benchmark models are displayed in
Table A2.

Table 2. Structure of the compared network.

Model ResNet CLDNN MCLDNN PET-CGDNN

Input I/Q I/Q I/Q, I and Q I/Q
Convolution Layers 4 3 5 2

Kernel Size 3 × 1, 3 × 2,
3 × 1, 3 × 1 8 × 1 8 × 2, 7, 7, 8 × 1, 5 × 2 2 × 8, 1 × 5

Convolution Channels 256, 256, 80, 80 50 × 3 50 × 4 75, 25
LSTM Layers 0 1 1 0
LSTM Units 0 50 × 1 128 × 1 0

Dense 2 (128, C *) 1 (256, C *) 3 (128, 128, C *) 1 (C *)

* C is the number of modulation schemes.

Table 3. Structure of the complex-valued neural network.

Model CV-ResNet CV-PET-CSGDNN

Input I/Q I/Q
Complex Convolution 4 2

Kernel Size 3, 3, 3, 3 8, 5
Convolution Channels 64,64,20,20 75, 25
Complex-valued GRU 0 1 (128)

Complex-valued Dense 2 (128, C *) 1 (C *)
* C is the number of modulation schemes.
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4. Results and Discussions
4.1. Ablation Experiments

Table 4 shows the average classification accuracy of the improved model CV-PET-
CSGDNN proposed in this paper, the benchmark model PET-CGDNN, and the extended
complex framework CV-PET-CGDNN model on different datasets. It can be seen from
Table 4 that when the PET-CGDNN model is extended to the CV-PET-CGDNN for modu-
lation classification on RML2016.10a and RML2018.01a, the average recognition accuracy
is effectively improved by 0.30% and 1.38%, respectively. This shows that the expansion
of the CVNN is very beneficial to the feature extraction of the relationship between I/Q
channels and then improves the accuracy of modulation classification. When the model is
extended from CV-PET-CGDNN to CV-PET-CSGDNN, the average recognition accuracy on
different datasets are improved, which is 0.60% and 1.22%, respectively, indicating that the
introduction of the attention mechanism module effectively learns the relationship between
different channels and improves the performance of the model. Compared with the bench-
mark model PET-CGDNN on RML2016.10a and RML2018.01a, the average recognition
accuracy of the CV-PET-CSGDNN model proposed in this paper is increased by 0.90% and
2.60%, respectively. Similarly, from the magnification area of Figure 2, we can see that the
curve of CV-PET-CSGDNN is higher than the other two, indicating that the classification
accuracy of CV-PET-CSGDNN is higher than that of the other two models.

Table 4. (Ablation Experiments) Average recognition accuracy of the models on different datasets (A:
RML2016.10a, B: RML2018.01a).

Model
Dataset

A (6:2:2) B (3:4:4)

PET-CGDNN 60.60% 60.29%
CV-PET-CGDNN 60.90% 61.67%

CV-PET-CSGDNN 61.50% 62.89%
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4.2. Comparative Experiments of Different Networks

Table 5 shows the recognition accuracy of the proposed CV-PET-CSGDNN model and
other models on different datasets. Table 5 shows that the average recognition accuracy
of CV-PET-CSGDNN is the highest on RML2016.10a and RML2018.01a. Compared with
CV-ResNet, which is also a CVNN, the average accuracy under all SNR is increased by
15.23% and 12.95%, respectively, and the parameters are reduced by 76.22% and 96.61%,
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respectively. Compared with the MCLDNN model with a good average recognition accu-
racy, the number of parameters in CV-PET-CSGDNN is reduced by 78.64% and 77.91%,
respectively. Compared with the PET-CGDNN model, the average recognition accuracy
under all SNR is increased by 0.69% and 2.14%, and the average recognition accuracy under
SNR greater than 0 dB is increased by 0.81% and 2.77%.

Table 5. Model comparison on two datasets(A: RML2016.10a, B: RML2018.01a).

Model Data-
Sets Capacity *

Training
Time

(Second
/Epoch)

Test Time
(ms/Sample)

Average
Accuracy
(All SNR)

Average
Accuracy
(≥0 dB)

Highest
Accuracy

ResNet
A 3098 K 11.085 11.381 42.51% 65.89% 69.78%
B 2660 K 431.620 12.211 39.55% 57.89% 62.23%

CLDNN
A 76 K 23.055 0.540 59.14% 87.22% 88.45%
B 80 K 527.657 1.958 44.93% 64.85% 69.38%

MCLDNN
A 405 K 19.379 0.023 60.51% 89.37% 90.73%
B 408 K 427.981 0.850 61.84% 90.86% 97.29%

PET-
CGDNN

A 71 K 12.200 0.010 60.60% 89.80% 91.27%
B 75 K 181.658 0.237 60.25% 87.80% 95.45%

CV-ResNet
A 364 K 11.980 0.010 46.27% 69.45% 71.45%
B 2660 K 183.692 0.397 49.97% 74.95% 84.15%

CV-PET-
CSGDNN

A 86 K 15.147 0.023 61.50% 90.90% 92.32%
B 90 K 384.298 0.827 62.92% 91.67% 97.75%

* Capacity is the number of parameters.

Figure 3 shows the recognition accuracy of each model on RML2016.10a and RML2018.01a.
As shown in Figure 3, the recognition accuracy of the proposed CV-PET-CSGDNN model
performs the best compared to other models. In particular, when the SNR is 18 dB, the
recognition accuracy of the model is 92.30% on RML2016.10a. When the SNR is 30 dB,
the recognition accuracy of the model is 97.52% on RML2018.01a. Figure 4 shows the
confusion matrix of the proposed CV-PET-CSGDNN and other benchmark models on
RML2016.01a when the SNR is 0 dB. Figure 5 shows the confusion matrix of the proposed
CV-PET-CSGDNN and other benchmark models on RML2018.10a when the SNR is 30 dB.
In a confusion matrix plot, the color depth represents the intensity or density of the values
in each cell. Therefore, the color depth means less misjudgment and high classification
accuracy. According to Figures 4 and 5, compared with benchmark models, the diagonal
relationship of CV-PET-CSGDNN is more obvious, which indicates that its recognition
effect is the best. As shown in Figure 5f, there are mainly misjudgments in the classification
of two groups of modulation schemes: AM-DSB-WC and AM-DSB-SC, AM-SSB-WC and
AM-SSB-SC, so that the average recognition cannot reach 100% when the SNR is 30 dB. For
an amplitude modulation signal, only the amplitude of the carrier changes in proportion to
the amplitude of the information signal [12]. In other words, a pure amplitude modulation
signal only consists of a real part and no imaginary part. Therefore, it might be the main
reason for the misjudgment of AM modulation signals in AMC models based on CVNNs.
Such a situation also exists in other CVNNs [2]. There are also some misjudgments among
similar modulation methods in RVNNs, so that the average recognition accuracy cannot
reach 100% under high SNRs [2]. In addition, it is apparent that the proposed CV-PET-
CSGDNN has a significant improvement in the misjudgment situation between 64QAM,
128QAM, and 256QAM compared with PET-CGDNN on RML2018.01a, as shown in Fig-
ure 5. Furthermore, the classification accuracy of PET-CGDNN and CV-PET-CSGDNN for
each modulation scheme on RML2018.01a is displayed in Figure 6. The recognition accu-
racy of most modulation schemes improves, especially 64QAM, 128QAM, and 256QAM,
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which could also verify that the proposed CV-PET-CSGDNN can improve the accuracy of
model recognition.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

SNR is 18 dB, the recognition accuracy of the model is 92.30% on RML2016.10a. When the 

SNR is 30 dB, the recognition accuracy of the model is 97.52% on RML2018.01a. Figure 4 

shows the confusion matrix of the proposed CV-PET-CSGDNN and other benchmark 

models on RML2016.01a when the SNR is 0 dB. Figure 5 shows the confusion matrix of 

the proposed CV-PET-CSGDNN and other benchmark models on RML2018.10a when the 

SNR is 30 dB. In a confusion matrix plot, the color depth represents the intensity or density 

of the values in each cell. Therefore, the color depth means less misjudgment and high 

classification accuracy. According to Figures 4 and 5, compared with benchmark models, 

the diagonal relationship of CV-PET-CSGDNN is more obvious, which indicates that its 

recognition effect is the best. As shown in Figure 5f, there are mainly misjudgments in the 

classification of two groups of modulation schemes: AM-DSB-WC and AM-DSB-SC, AM-

SSB-WC and AM-SSB-SC, so that the average recognition cannot reach 100% when the 

SNR is 30 dB. For an amplitude modulation signal, only the amplitude of the carrier 

changes in proportion to the amplitude of the information signal [12]. In other words, a 

pure amplitude modulation signal only consists of a real part and no imaginary part. 

Therefore, it might be the main reason for the misjudgment of AM modulation signals in 

AMC models based on CVNNs. Such a situation also exists in other CVNNs [2]. There are 

also some misjudgments among similar modulation methods in RVNNs, so that the aver-

age recognition accuracy cannot reach 100% under high SNRs [2]. In addition, it is appar-

ent that the proposed CV-PET-CSGDNN has a significant improvement in the misjudg-

ment situation between 64QAM, 128QAM, and 256QAM compared with PET-CGDNN 

on RML2018.01a, as shown in Figure 5. Furthermore, the classification accuracy of PET-

CGDNN and CV-PET-CSGDNN for each modulation scheme on RML2018.01a is dis-

played in Figure 6. The recognition accuracy of most modulation schemes improves, es-

pecially 64QAM, 128QAM, and 256QAM, which could also verify that the proposed CV-

PET-CSGDNN can improve the accuracy of model recognition. 

  
(a) (b) 

Figure 3. Classification accuracy of different networks on RML2016.10a (a) and RML2018.01a (b) It 

is noted that “[%]” represents the average classification performance when the SNR is the highest. 
Figure 3. Classification accuracy of different networks on RML2016.10a (a) and RML2018.01a (b) It is
noted that “[%]” represents the average classification performance when the SNR is the highest.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

   
(a) ResNet (b) CLDNN (c) MCLDNN 

   

(d) PET-CGDNN (e) CV-ResNet (f) CV-PET-CSGDNN 

Figure 4. Confusion matrices of the proposed and benchmark models on RML2016.01a when the 

SNR is 0 dB. 

  
(a) ResNet (b) CLDNN 

Figure 4. Confusion matrices of the proposed and benchmark models on RML2016.01a when the
SNR is 0 dB.



Electronics 2023, 12, 4380 11 of 14

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

   
(a) ResNet (b) CLDNN (c) MCLDNN 

   

(d) PET-CGDNN (e) CV-ResNet (f) CV-PET-CSGDNN 

Figure 4. Confusion matrices of the proposed and benchmark models on RML2016.01a when the 

SNR is 0 dB. 

  
(a) ResNet (b) CLDNN 

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

  
(c) MCLDNN (d) PET-CGDNN 

  
(e) CV-ResNet (f) CV-PET-CSGDNN 

Figure 5. Confusion matrices of the proposed and benchmark models on RML2018.10a when the 

SNR is 30 dB. 

  
(a) PET-CGDNN (b) CV-PET-CSGDNN 

Figure 5. Confusion matrices of the proposed and benchmark models on RML2018.10a when the
SNR is 30 dB.



Electronics 2023, 12, 4380 12 of 14

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

  
(c) MCLDNN (d) PET-CGDNN 

  
(e) CV-ResNet (f) CV-PET-CSGDNN 

Figure 5. Confusion matrices of the proposed and benchmark models on RML2018.10a when the 

SNR is 30 dB. 

  
(a) PET-CGDNN (b) CV-PET-CSGDNN 

Figure 6. Classification accuracy for each modulation scheme on RML2018.01a.

5. Conclusions

In this paper, a complex-valued hybrid neural network based on complex-valued CNN
and complex-valued GRU is proposed, which can identify the original I/Q waveform of
each modulated signal inherent to the coherence information of the signal, making full use
of the intrinsic relationship between in-phase and quadrature time series data. Experiments
show that the proposed model can robustly and efficiently identify the signal modulation
from the original signal without any prior knowledge. Compared with ResNet, CLDNN,
MCLDNN, PET-CGDNN, and CV-ResNet, our proposed CVNN achieves the highest
average accuracy of 61.50% and 62.92%, respectively, for AMC with a relatively low number
of parameters. In addition, the proposed CV-PET-CSGDNN has a significant improvement
in the misjudgment situation between 64QAM, 128QAM, and 256QAM compared with
PET-CGDNN on RML2018.01a. Therefore, our proposed CVNN has superior performance,
which has the potential to be applied in scenarios with limited computing power and
storage space and can be applied to satellite on-orbit applications in the future. And future
research could focus on addressing the misjudgment issue of AM modulation signals in
AMC models that rely on CVNNs. Additionally, new techniques for data preprocessing or
augmentation could be explored to improve the robustness of the model to variations in
the input signals.
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Appendix A

Table A1 lists the abbreviations of neural networks mentioned in this paper, and
Table A2 shows the details of the benchmark models.
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Table A1. Abbreviations of neural networks and their explanation.

Abbreviations Explanation

CNN Convolutional Neural Network
GRU Gate Recurrent Unit
DNN Dense Neural Network

ResNet Residual Neural Network
RNN Recurrent neural Network
LSTM Long Short-Term Memory
CVNN Complex-valued Neural Network
RVNN Real-valued Neural Network

Table A2. Details of the benchmark models.

Abbreviations Author Details

ResNet Liu et al. [32] ResNet
CLDNN Liu et al. [32] CNN + LSTM

MCLDNN Xu et al. [33] CNN + LSTM (Multi-channel)
PET-CGGDNN Zhang et al. [29] CNN + GRU + DNN

CV-ResNet Kim et al. [12] Complex-valued CNN + Complex-valued DNN
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