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Abstract: Reconstructing dynamic human body models from multi-view videos poses a substantial
challenge in the field of 3D computer vision. Currently, the Animatable NeRF method addresses this
challenge by mapping observed points from the viewing space to a canonical space. However, this
mapping introduces positional shifts in predicted points, resulting in artifacts, particularly in intricate
areas. In this paper, we propose an innovative approach called Deform2NeRF that incorporates
non-rigid deformation correction and image feature fusion modules into the Animatable NeRF
framework to enhance the reconstruction of animatable human models. Firstly, we introduce a
non-rigid deformation field network to address the issue of point position shift effectively. This
network adeptly corrects positional discrepancies caused by non-rigid deformations. Secondly, we
introduce a 2D–3D feature fusion learning module with cross-attention and integrate it with the NeRF
network to mitigate artifacts in specific detailed regions. Our experimental results demonstrate that
our method significantly improves the PSNR index by approximately 5% compared to representative
methods in the field. This remarkable advancement underscores the profound importance of our
approach in the domains of new view synthesis and digital human reconstruction.

Keywords: computer vision; NeRF; deep learning; digital human; point cloud; image synthesis

1. Introduction

Recently, obtaining a three-dimensional model of the human body through dynamic
video or multi-view images has become a popular research topic in the computer vision
field. This technology has significant applications in the meta-universe, virtual reality,
animation, and more. However, modeling the dynamic human body solely based on
multi-view images [1–4] is challenging because human motion typically involves non-rigid
transformations. Additionally, due to occlusion and limited views, accurately estimating
human poses from multi-view images is an extremely difficult problem [5].

With the increasing popularity of NeRF research, one of the mainstream approaches
is to render new perspectives and postures using NeRF [6–8]. Studies such as NT [9],
NHR [10], and Animatable NeRF [1] utilize multi-view images to obtain rendered new-
view images and create a rough human body model. Animatable NeRF also introduces the
SMPL [11] model as an a priori model for the first time, which plays a role in constraining
the movement of points and has achieved good results. However, the SMPL model has
limited effectiveness in modeling large non-rigid deformations of the human body. Previous
studies [1–3,12] also have certain artifacts and issues with view inconsistency. Moreover,
these studies only utilized multi-view images for light sampling and did not effectively
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utilize 2D–3D feature fusions. Therefore, we aim to leverage 2D–3D feature fusion more
effectively to eliminate artifacts and reduce view inconsistency.

We propose a method called Deform2NeRF, which builds upon Animatable NeRF
by introducing two new modules: the non-rigid deformation field and the 2D–3D feature
fusion field. The non-rigid offset correction field corrects the offset problem in non-rigid
transformation by addressing large-scale motion. The 2D–3D feature fusion fusion field
extracts features from each image and more effectively utilizes the features of the image,
thereby alleviating problems with artifacts and view inconsistency. We tested and eval-
uated our designed network on ZJU-Mocap [2] and H36M [13] datasets, and the results
demonstrate that our design is reasonable and has achieved remarkable results. The results
are shown in Figure 1.

In summary, our contributions are as follows:

• We propose a new method called Deform2NeRF to correct the offset in non-rigid
deformation and extract more information.

• We propose a 2D–3D feature fusion field to reduce artifacts and inconsistent views.
• Our Deform2NeRF network can achieve good results without additional training for

the synthesis of new postures, indicating that our model is robust.

Figure 1. Given a multi-view dynamic human body image, we enable the synthesis of new perspec-
tives and new poses, thereby implicitly reconstructing a three-dimensional representation of the
human body.

2. Related Work
2.1. Neural Radiance Field

NeRF [6–8] proposes to render new perspectives by inputting the 5D coordinate
points of an object and outputting the density and RGB values of the point cloud, thereby
implicitly representing static objects or scenes. Thanks to the introduction of the volume
rendering formula [14], NeRF has achieved excellent results and has become a hot research
topic in computer vision. NeRF++ [15] extends NeRF to a wide range of boundaryless
scenarios. Plenoxels, Instant-NGP, and other works [6,8,16] have optimized the sampling
and training strategies of NeRF, greatly reducing the training time. Consistent-NeRF [17]
employs depth-derived geometry information and a depth-invariant loss to concentrate on
pixels that exhibit 3D correspondence and maintain consistent depth relationships. This
significantly improves the performance of the model under sparse view conditions. Head
NeRF [3] applies NeRF to the head and achieves real-time high-fidelity reconstruction of
the human head. D-NeRF [18] designed a deep learning model to implicitly encode a scene
and synthesize novel views at an arbitrary time. Other methods [1,9,10,19–21] extend NeRF
from static scenes to moving human bodies, providing new ideas for the generation of
digital human images and expanding the application range of NeRF.

2.2. Three-Dimensional Reconstruction of Human Bodies Based on NeRF

The 3D reconstruction of dynamic human bodies based on NeRF has recently gained
significant attention in the 3D computer vision community. Several approaches [21–23]
have been proposed to enhance the capability of NeRF in capturing the non-rigid defor-
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mation of human bodies. For instance, NHR [10] extracts 3D point cloud features through
PointNet++ [24] to achieve human body rendering. Neural Human Performer [19] utilizes
an attention mechanism to solve the non-rigid transformation of the human body. Neural
Body [2] describes the motion state of the human body by introducing potential coding.
Animatable NeRF [1] introduces the SMPL model as an a priori model to constrain the hu-
man bone structure to some extent. However, since human body movements are complex
non-rigid deformations, these methods may generate artifacts in the details. The SLRF [23]
method addresses this issue by introducing structured local radiance fields to better de-
scribe the details of the folds of clothing on human bodies. SelfNeRF [20] incorporates
KNN and hash coding to constrain the movement of human point clouds and improve
computational efficiency. Nevertheless, effectively computing the non-rigid deformation of
the human body, and eliminating artifacts while preserving details, remains a challenging
problem to be solved.

3. Methods
3.1. Neural Blend Weight Fields

Animatable NeRF [1] proposes the use of neural blend weight fields based on a three-
dimensional human skeleton and skeleton-driven deformation framework [25] to solve the
problem of under-constraint in human deformation.

Specifically, it defines the human skeleton as K parts [11] and generates the K transform
matrix {Gk} ∈ SE(3). Using the linear hybrid peeling algorithm, the point xcan in the
canonical space [22] can be transformed into the observation space xobs. The specific
formula is defined as:

xobs =

(
K

∑
k=1

w(xcan)kGk

)
xcan, (1)

Similarly, we can also convert points in the observation space to points in the standard
space. Our method is outlined in Figure 2. wo(x) is a hybrid weight function defined in the
observation space.

xcan =

(
K

∑
k=1

wo(xobs)kGk

)−1

xobs (2)

However, training the mixed weight field with the NeRF network does not achieve
good results. Therefore, Animatable NeRF [1] samples for any three-dimensional point
by first assigning the initial mixed weights according to the body model, and then uses
the residual vector learned by the network to correct the model. The residual network is
represented by an MLP (Multi-Layer Perception Machine) network:

F∆w(x,ψi)
→ ∆wi (3)

where ψ is the potential code obtained by the inter-frame embedding layer, and the residual
vector ∆wi ∈ RK. Thus, we can define the neural mixed weight field wi of the i-th
image, where ws represents the initial neural blender weights and Si denotes the human
body model:

wi(x) = norm(F∆w(x, ψi) + ws(x, Si)), (4)

In this way, we obtain the blended weight corresponding to this picture, allowing
us to realize the mutual mapping of sampling points in canonical space and observation
space [26]. That is, we map the sampling point x in the observation space to the canonical
space to obtain the point x′, and input it into the NeRF networks Fc and Fσ to obtain the
color ci(x) and opacity σi(x) of the point x for view direction d as follows:

σi(x), zi(x)← Fσ(γx(x′))
ci(x)← Fc(zi(x), γd(d), `i)

(5)
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where zi(x) denotes the shape feature of the human body, `i denotes the latent code, and γ
denotes the position encoding.

Then, we use the volume rendering formula to render [14]. In this manner, we derive
the color information Ĉ(r) for each pixel in the generated image from this view direction:

Ĉ(r) = ∑N
i=1 Ti(1− exp(−σiδi))ci,

where Ti = exp
(
−∑i−1

j=1 σjδj

) (6)

where δi denotes the distance between successive points and N denotes the number of
sampled point clouds in the ray sampling. c and σ are the RGB value and density of the
point cloud, respectively.

Multi-view Images 

Feature Fusion

Non-rigid 
Correction

Observation Space

Neural BLend 
Weight Field

Time Stamp

Latent Code  

Canonical Space

2D Feature

3D Global 
Feature

Cross 
Attention

Volume 
Rendering

Figure 2. Our network employs dynamic multi-view images of the human body as input to generate
an a priori model using the SMPL framework. The mixed weight field predicts the positions of
points in the canonical space. To address non-rigid deformations, we utilize a non-rigid deformation
field to correct the offset resulting from such deformations. Additionally, our 2D–3D feature fusion
network combines and integrates abundant feature information to enhance the effectiveness of human
body reconstruction.

3.2. The 2D–3D Feature Fusion Network with Cross-Attention

We observe that previous approaches in human NeRF only utilize image features in
light sampling as ground truth, neglecting the potential of using image feature information
to guide network training. We consider this as a missed opportunity to leverage valuable
features. To address this limitation, we propose to extract feature information from the
multi-view image I using a well-established ResNet [27] network:

f2D = ResNet(I) (7)

By extracting these features, we can effectively discriminate the actions depicted
in each picture. It is important to note that each frame of the picture corresponds to a
three-dimensional point cloud model, denoted as S. However, these models may exhibit
roughness or contain certain interference points, thereby affecting the learning process
of the NeRF network to a certain extent. To overcome this challenge, we propose the
extraction of global features from the point cloud model through a dedicated point cloud
feature network [24,28,29]. By capturing the global characteristics of the point cloud, we
aim to represent the human body using these aggregated features. This approach enables



Electronics 2023, 12, 4382 5 of 12

the NeRF network to better handle the impact of local irregularities or interference points,
thereby enhancing the overall reconstruction performance:

f3D = PointNet++(S) (8)

The fusion of 2D and 3D features is achieved by merging their respective feature
representations. Notably, N represents the number of 3D point clouds, gθ denotes the
feature extraction network, and ⊗ represents the cross-attention and feature fusion method:

f = gθ([ f3D ⊗ repeat( f2D, N)]) (9)

Subsequently, the fused feature f is incorporated into the NeRF network, allowing for
enhanced constraints on human motion. This fusion feature plays a crucial role in capturing
both the spatial information from the 3D point clouds and the visual characteristics from
the 2D images. By leveraging this combined feature representation, our approach can
effectively constrain the modeling of human motion within the NeRF framework, leading
to more accurate and realistic reconstructions.

3.3. Non-Rigid Deformation Field with NeRF

It is well-known that tracking non-rigid deformations in human motion presents a
significant challenge. While methods such as the neural mixed weight field proposed in
Animatable NeRF [1] have been developed, serious artifacts may still occur for non-rigid
deformations with large amplitudes. Building upon the insights gained from SLRF [23],
we propose the use of a non-rigid deformation field to correct for any offset induced by
non-rigid deformation. Specifically, we introduce an MLP network, denoted as ∆x, defined
as follows:

∆xi = F∆x(Pi, `i, ti) (10)

where P represents the SMPL [11] model parameters, t corresponds to the timestamp of the
image, and ` is the corresponding potential coding.

To further improve the performance of NeRF, we aim to incorporate 2D–3D feature
fusions into the rendering process. Specifically, we propose to extract 2D–3D feature fusions
using a 2D–3D feature fusion extraction network; the 2D–3D feature fusions are then
integrated into the NeRF network to address the issues of artifacts and inconsistent views.
Currently, NeRF only utilizes multi-view images for light sampling, without exploiting
their inherent features. Therefore, we propose to incorporate these 2D–3D feature fusions
to further enhance the rendering process.

After extracting the 2D–3D feature fusions, we integrate them into the NeRF network
to use the two-dimensional features of the image and fuse them with the three-dimensional
point cloud features, as follows:

σi(x), zi(x) = Fσ(γx(x′ + ∆x))
ci(x) = Fc(zi(x), γd(d), `i, f )

(11)

The above networks are optimized jointly through the NeRF network, and the blend
weight field is continuously updated:

wnew (x, ψnew ) = norm(F∆w(x, ψnew ) + ws(x, Snew )) (12)

By jointly optimizing the above networks through the NeRF network, we are able
to continuously track the deformation of human motion and update the parameters of
the network. This enables us to effectively address the artifacts caused by non-rigid
deformation and the blurring of details.

Following the acquisition of more precise color and opacity data for each point, we
employ the well-established NeRF strategy to synthesize a composite view from this
perspective using the volume rendering equation (Equation (6)). Subsequently, the syn-
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thesized image undergoes a comparative analysis with the ground truth to compute the
loss function:

Lrgb = ∑
r∈R
‖C̃i(r)− Ci(r)‖2, (13)

4. Results
4.1. Datasets

To evaluate the effectiveness of our proposed network, we conducted experiments on
the widely used H36M [13] and ZJU-Mocap datasets [2]. Following the standard evaluation
strategy for human NeRF, to facilitate an equitable comparison, we have embraced a
congruent evaluation strategy and utilized identical indicators as the predecessor baseline
method. Additionally, the dataset employed holds status as a widely accepted benchmark
for assessing the reconstruction of human dynamics. We used the ZJU-Mocap dataset (313,
315, 377, 386), which uses 21 cameras to capture multi-view videos. We selected four views
as training data and the remaining views for evaluation. Similarly, for the H36M dataset,
which includes complex human actions, we used S1, S5, S6, S7, S8, S9, and S11 as our data
sets, where we used three camera views for training and the remaining views for testing.
Two common metrics, PSNR and SSIM, were used to assess the performance of our model
in new view synthesis and to compare it with previous works.

4.2. Evaluation

To evaluate the effectiveness of our approach in the field of 3D vision, we conducted
evaluation and ablation experiments using two widely used datasets, H36M and ZJU-
Mocap. Following the evaluation strategies used in previous studies [1] on human NeRF, we
used ZJU-Mocap, which includes 21 cameras and records multi-view videos. We selected
four viewpoints for training and used the remaining viewpoints for testing. Similarly, for
the H36M dataset, we used multi-view videos recorded using four cameras, including a
series of complex human actions. We used S1, S5, S6, S7, S8, S9, and S11 as datasets, where
we selected images from three viewpoints for training [17] and used the remaining images
for testing.

We compared our approach with previous methods such as Neural Body and Ani-
matable NeRF, and conducted quantitative analysis using two common metrics, PSNR
and SSIM. The results of our experiments are presented in Table 1 and demonstrate the
effectiveness of our approach. As shown in Figure 3, the images rendered by our model
have a more complete human body.

In the ZJU-Mocap dataset, we selected four characters (313, 315, 377, 386) to evaluate
our approach for new viewpoint and new pose synthesis. Table 1 presents the quantitative
analysis of the new viewpoint assessment, while Table 2 displays the results of the new
pose assessment. Additionally, Table 3 shows the outcomes of the new view assessment.
Similarly, we evaluated our approach on the H36M dataset and presented the results of
image comparison, which show that our approach effectively eliminates artifacts.

Table 1. Quantitative comparison of novel view synthesis on the ZJU-Mocap dataset.

PSNR↑ SSIM↑

AN Ours AN Ours

313 26.77 27.30 0.943 0.944
315 20.00 20.62 0.867 0.851
377 23.69 25.71 0.919 0.921
386 26.62 27.19 0.886 0.898

Average 24.27 25.21 0.904 0.904

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.
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Table 2. Quantitative comparison of novel pose synthesis on the H36M dataset.

PSNR↑ SSIM↑

NT NHR AN Ours NT NHR AN Ours

20.42 20.93 22.41 23.01 0.842 0.858 0.876 0.881

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.

Table 3. Results of novel view synthesis on the H36M dataset in terms of PSNR and SSIM (higher
is better).

PSNR↑ SSIM↑

NT NHR AN Ours NT NHR AN Ours

S1 20.98 21.08 22.76 23.90 0.860 0.872 0.894 0.902
S5 19.87 20.64 23.32 24.16 0.855 0.872 0.891 0.902
S6 20.18 20.40 22.77 23.89 0.816 0.830 0.867 0.891
S7 20.47 20.29 21.95 23.07 0.856 0.868 0.889 0.905
S8 16.77 19.13 22.88 23.27 0.837 0.871 0.899 0.902
S9 22.96 23.04 24.62 25.49 0.873 0.879 0.904 0.918

S11 22.96 23.04 24.66 25.64 0.859 0.871 0.903 0.911
Average 20.42 20.93 23.28 24.20 0.851 0.866 0.892 0.904

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.

Figure 3. Qualitative results of novel view synthesis on the H36M dataset.
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4.3. Ablation Studies

To validate the effectiveness of our network, we conducted ablation experiments on
the H36M dataset, specifically on the S11 tester. In these experiments, we analyzed the
impact of the offset correction network and the feature extraction network. Additionally,
we examined the influence of the time step parameter t on the results of synthesizing new
perspectives and new postures of the human body. Furthermore, we explored the effects
of different time steps and training rounds on the outcomes. The results of these ablation
experiments are summarized in Tables 4–6.

Impact of the non-rigid deformation field network. In Table 4, we present a com-
parison of the performance of the non-rigid deformation correction network. The results
clearly demonstrate that our proposed offset network is capable of accurately capturing
and describing the complex non-rigid deformations of the human body. Furthermore, it
effectively alleviates artifacts that may arise during the rendering process. This analysis
confirms the effectiveness of our offset correction network in improving the quality of
synthesized human body representations.

Table 4. Comparison with and without non-rigid offset correction network on subject “S11”.

PSNR↑ SSIM↑

with non-rigid deformation field 25.64 0.911

without non-rigid deformation field 24.65 0.903

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.

Impact of the 2D–3D feature fusion fusion network. To effectively utilize the fea-
tures present in the images, we devised a 2D–3D feature fusion extraction network. The
experimental results substantiate the benefits of incorporating 2D–3D feature fusion infor-
mation, as it significantly improves the rendering quality. Table 5 provides a quantitative
comparison, further supporting the superior performance achieved through the integration
of 2D–3D feature fusions into our approach.

Table 5. Comparison with and without feature fusion network on subject “S11”.

PSNR↑ SSIM↑

with feature fusion 25.64 0.911
without feature fusion 24.68 0.903

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.

Impact of the time stamp. To enhance the temporal coherence and stability of the
variables, particularly the residual position mapping of the sampled points, we incorpo-
rated the time step of the input images into our network. This addition enables a more
accurate depiction of the image sequence. Table 6 visually illustrates the impact of different
time steps on the rendering results, further highlighting the significance of considering
temporal information in our approach.

Table 6. Comparison with and without time stamp on subject “S11”.

PSNR↑ SSIM↑

with time stamp 25.64 0.911
without time stamp 25.34 0.908

Note: Bold formatting is used to emphasize the data in the table. The up arrow (↑) indicates that a
larger indicator is better.



Electronics 2023, 12, 4382 9 of 12

5. Discussion

Previous methods in the field of human NeRF have demonstrated certain limitations
in effectively tracking and estimating non-rigid deformations caused by human motion. To
address this challenge, we introduced the non-rigid correction module into our framework.
However, it is important to note that this problem requires further exploration and im-
provement, potentially through the incorporation of additional feature point information
or a more accurate human reference SMPL model. While our proposed method alleviates
the artifact problem to a certain extent, future research may benefit from the integration
of techniques such as KNN [20] to further constrain human deformation and enhance the
overall performance of human NeRF.

Furthermore, we observed that previous human NeRF approaches did not fully exploit
the potential of 2D–3D feature fusion information and point cloud feature information in
the 3D model. In our work, we designed a feature fusion network to extract and integrate
two-dimensional and three-dimensional features, aiming to achieve better results. The
under-constrained nature of human NeRF and the sparsity of input images highlight the
importance of extracting as much information as possible from 2D images. Maximizing the
utilization of feature information from both image and 3D point cloud sources may prove
to be a crucial factor in improving the quality of reconstruction results.

In conclusion, while our proposed method represents a step forward in addressing
the challenges of human NeRF, further advancements are needed to fully capture and
model non-rigid deformations. Additionally, exploring more effective methods to leverage
feature information and extracting comprehensive information from limited input images
are areas that can contribute to improving the overall effectiveness of human NeRF in
future research.

6. Conclusions

In conclusion, our proposed method, Deform2NeRF, represents a significant advance-
ment in the field of computer vision, particularly in the context of dynamic human body
modeling using multi-view images. We have addressed several key challenges associated
with this technology and made notable contributions:

(1) Offset correction for non-rigid deformation: We introduced a novel module, the
non-rigid deformation field, which effectively corrects the offset problem inherent in
non-rigid transformations. This module addresses large-scale motion and significantly
improves the accuracy of dynamic human body modeling.

(2) The use of 2D–3D feature fusion with a cross-attention network: Our 2D–3D feature
fusion field method is a pioneering approach that extracts and utilizes features from
each image more effectively. Instead of merely using multi-view images for light
sampling, this module fuses 2D and 3D features to mitigate problems related to
artifacts and view inconsistency.

(3) Improved model generalization: Our experiments clearly demonstrate the effective-
ness of our approach in eliminating artifacts and enhancing the generalization ability
of the model. Notably, our method obviates the need for separate training to synthesize
new poses, showcasing its robustness and versatility.

(4) Outstanding results on benchmark datasets: We conducted rigorous evaluations on the
ZJU-Mocap and H36M datasets, and our method consistently outperformed previous
state-of-the-art approaches. This indicates the practicality and real-world applicability
of our Deform2NeRF model.

However, it is important to acknowledge the following limitations of our method:

(1) Challenges with non-rigid clothing: Our method may encounter difficulties in accu-
rately reconstructing non-rigid clothing or fabrics, as it primarily focuses on modeling
the human body itself.



Electronics 2023, 12, 4382 10 of 12

(2) Sensitivity to lighting conditions: Like many computer vision techniques, our model
may be sensitive to variations in lighting conditions, potentially affecting the quality
of the reconstructed models.

(3) Statistical body model: Our study employs the SMPL model as the foundational frame-
work for representing the human body—a prevalent approach in the realm of human
body reconstruction. It is essential to acknowledge that alternative methodologies,
including, but not limited to, STAR [30] and SMPL-X [31], have simpler and more
efficient means of human body model representation, potentially yielding superior
results.

Despite these limitations, Deform2NeRF represents a promising step forward in
dynamic human body modeling. We believe that ongoing research and development can
address these challenges and further enhance the capabilities of our approach, making it
even more valuable for applications in the meta-universe, virtual reality, animation, and
related fields.
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