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Abstract: Distributed power supplies have gradually become a new trend in power supply develop-
ment, but access to a large number of distributed energy sources has a certain impact on the stable
operation of the power grid. A virtual power plant (VPP) can integrate a variety of distributed power
sources for coordination and optimization; thus, it can effectively solve the difficulties faced by a
distributed energy grid connection and promote the complementarity of energy sources. However,
renewable energy often has a degree of volatility and randomness when distributed, which can bring
certain risks to the operation of the VPP. In order to consider the risks brought by renewable energy,
an optimal scheduling model of the VPP, based on an improved generative adversarial network
(GAN) and the conditional value at risk (CVaR), was proposed to measure the relationship between
the benefits and risks. Firstly, the uncertainty of new energy is analyzed, and wind power and
photovoltaic scenarios are generated by the improved GAN; then, typical scenarios are generated
by the k-medoids method. Finally, based on the CVaR, the optimal scheduling model of the VPP is
established to study the effect of risk weight on VPP revenue. The results show that the model can
effectively measure the relationship between the benefits and risks and can provide some references
for the VPP to make reasonable operational decisions with different risk preferences.

Keywords: virtual power plant; uncertainty; risk appetite; optimized operation; GAN

1. Introduction

With the rapid development of renewable energy power generation technology, a large
amount of renewable energy continues to pour into the grid. However, at the same time,
there are still great challenges in the construction of the energy internet [1–4]. Firstly, there
is a large amount of uncertain wind power and photovoltaic power, due to the fact that
the distributed power supply access to the current power system is dominated by thermal
power generation; consequently, there is a considerable degree of difficulty involved in
the coordination of traditional thermal power units and wind power output. Secondly,
considering the integrated distributed energy system of wind power, photovoltaic power,
thermal power, and other energy sources, each energy internet system operates indepen-
dently of the others, due to geographical location and other factors, and lacks coordinated
scheduling, resulting in a low level of resource utilization. Thirdly, the current power grid
is increasingly large and faces a large amount of uncertain new energy integration, further
increasing the complexity of the power system.

The VPP can manage the distributed energy in a certain area through information,
control, communication, and other technologies; it can effectively connect to the power
grid, alleviate the uncertain impact of various distributed resources on the safe and stable
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operation of the power system, promote the rational utilization of resources, and effectively
meet the requirements of energy conservation, consumption reduction, and comprehensive
energy utilization rate improvement [5–8].

In view of the uncertainty of the new energy output, the Monte Carlo method was
used in [9] to solve the random characteristics of renewable energy power generation, and
a two-stage random bidding strategy was proposed to maximize the daily profit of a VPP
by considering the opportunity constraints. In [10], the Latin hypercube sampling method
was adopted to solve and improve the uncertainty problem, speeding up the sampling
speed and effectively improving the operating efficiency of the model. The authors of [11]
used a Latin hypercube to simulate wind power and photovoltaic scenarios; then, the
improved Clustering Large Applications (CLARA) algorithm was used to reduce the
scenarios. Finally, the carbon trading mechanism was introduced to establish the optimal
VPP scheduling model, with the goal of maximizing revenue.

As an important solution of distributed energy and grid-connected renewable energy
management, VPP technology is receiving attention from countries all over the world [12].
Overall, the current technical research mainly focuses on the two categories of optimal
scheduling and market bidding [13,14]. The former mainly studies the purchasing and
selling strategy declaration of the VPP under centralized power system dispatching, which
is aimed at the maximization of the economic benefit, and internal multi-distributed energy
coordination dispatching, which is aimed at the lowest operating cost [15]. For the latter,
the main research is focused on optimizing the bidding strategy of the VPP by participating
in the multi-trading varieties of the combined power market and the renewable energy
market’s trading mechanism [16,17]. In terms of optimal scheduling, [18] integrated an
energy storage system and a demand response into the VPP and established the day-ahead
optimal scheduling model of the VPP by considering multiparty uncertainties. The results
showed that the addition of a demand response could effectively reduce the cost of the VPP.
In [19], photovoltaic units, wind power units, energy storage equipment, and cogeneration
units were assembled into a VPP, and the optimal scheduling model of the VPP was
established with the goal of maximum revenue and minimum emissions, while considering
the peak and valley electricity prices. The authors of [20] introduced carbon capture and
waste incineration equipment to establish a VPP optimization scheduling model, and they
used carbon capture equipment to smooth the fluctuations of the renewable energy units.
The results showed that this model can effectively reduce the operating costs of the VPP
and reduce carbon emissions. In terms of market bidding, [21] aggregated non-schedulable
units, schedulable units, and an energy storage system as a VPP and studied the optimal
bidding strategy of the VPP in the day-ahead market, real-time market, and rotating reserve
market. The authors of [22] combined dispatchable units, non-dispatchable units, and
dispatchable loads to build a VPP, and they introduced the information gap decision theory
to deal with uncertainty and establish a VPP bidding decision model. In [23], a VPP was
composed of renewable energy, conventional generator sets, and demand response, and a
two-stage bidding strategy model for the VPP was established with the goal of maximizing
revenue. The fuzzy optimization theory was introduced in the day-ahead stage, and the
results showed that the model can effectively improve the profit of the VPP.

The above research shows that for the study of the uncertainty of new energy, most of
the adopted simulation sampling methods were based on the Monte Carlo method and
the Latin hypercube method. However, the above sampling methods usually relied on
statistical assumptions, while only partial statistical information can be obtained from an
actual project; so, it is difficult to obtain an accurate probability distribution. With the above
methods, it has been difficult to meet the needs of the actual project; they have certain
limitations and may deviate from the actual scenario. In addition, this uncertainty brings a
great uncertainty risk to the VPP in the scheduling process, and a risk management method
is urgently needed to measure the uncertainty. As a generative model, the GAN does not
need to make any statistical assumptions about the distribution followed by the data, and it
can directly learn from the data and generate new data samples, avoiding the establishment
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of probabilistic models; this can greatly improve the accuracy of scenario generation. The
CVaR is a mathematical tool used to measure risk. In recent years, there have been many
studies on the application of the CVaR in the related fields of the power system. Therefore,
this paper combines the GAN and CVaR to analyze the optimal scheduling problem of the
VPP. Firstly, the uncertainty of new energy is analyzed, and wind power and photovoltaic
scenarios are generated by the improved GAN; then, typical scenarios are generated by the
k-medoids method, which breaks the limitations of the simulation sampling methods in the
above literature and effectively improves the accuracy of the generation scenarios. Finally,
based on the CVaR, the optimal scheduling model of the VPP is established with the goal of
maximum return; the relationship between return and risk is measured, the influence of
risk weight on VPP return is studied, and the return of the VPP can be maximized under
the condition of controllable risk.

2. Scenarios Generation Based on GAN
2.1. Improved GAN

The GAN is an unsupervised learning method, consisting of two modules, generator
G and discriminator D [24–27]. Its main purpose is to conduct game training between the
generator and discriminator to find the Nash balance. The basic structure of the GAN
is shown in Figure 1. The generator is mainly responsible for capturing the probability
distribution of real data and generating new samples through simulation. The discriminator
is mainly responsible for distinguishing between the data, judging the similarity between
the data generated by the generator and the real data, determining whether the input
data are the real data, and outputting the probability that the data to be identified are
the real data. Through continuous iterative training, the generator tries to accurately
generate data that are basically the same as the real data, so that the discriminator cannot
accurately judge the input data. In the training process, the generator and discriminator
improve the generation ability and judgment ability through continuous optimization and
finally achieve a Nash balance, so that the discriminator cannot accurately distinguish the
generated data from the real data.
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Figure 1. Basic structure of GAN.

Let the real sample be x and the noise be z. The real samples x are sampled in the data
distribution, and the noise is sampled in Gaussian distribution P(z). The noise z is taken as
the input data of the generator G, and the output generates data G(z). The generated data
distribution is P(x′). Real data x are input into discriminator D; output D(x) represents
the probability that x are the real data. The loss function of both is shown below.

LG = −Ez∼P(z)(D(G(z))) (1)

LD = −Ex∼P(x)(D(x)) + Ez∼p(z)(D(G(z))) (2)

where LG is the generator loss function; LD is the discriminator loss function; E(·) is the
expected distribution; D(G(z)) is the probability of determining the generated data as real
data after input into the discriminator.

The game training model of the generator and discriminator is shown below.

min
G

max
D

V(D, G) = Ex∼P(x)(D(x))− Ez∼p(z)(D(G(z))) (3)
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In order to better optimize the convergence effect and improve the accuracy of the
results, the original GAN is improved, and the mean square error is introduced into the
generator loss function.

LGS = − 1
R

R

∑
r=1

(xr − G(zr))
2 (4)

where R is the total number of samples.
In addition, since the original GAN uses Jensen–Shannon (JS) as a loss function in

discriminator D, the problem of training instability easily occurs. Therefore, the Wasserstein
distance [28,29] is introduced to measure the distance between the real data and the
generated data distribution, and its definition is shown as follows:

W(Px, Px′) =
1
K

sup
‖ f ‖L≤K

( E
x∼P(x)

(D(x))− E
z∼P(z)

(D(G(z))) (5)

where sup(·) is the definite bound on the function value; K is the Lipschitz constant;
‖ f ‖L ≤ K indicates that the discriminator D constitutive function must satisfy the K-
Lipschitz continuity.

In order to improve the training speed, a penalty item is introduced. To sum up, the
training model can be rewritten as the following formula:

min
G

max
D

V(G, D) = Ex∼P(x)(D(x))− Ez∼p(z)(D(G(z))) + γ E
x∼P(x)

((‖∇xD(x)‖2 − 1)2)

+ 1
R

R
∑

r=1
(xr − G(zr))

2
(6)

where γ is the coefficient of the penalty term; ∇ is the gradient operator; and
x = ςx + (1− ς)G(z), ς ∈ [0, 1].

At the beginning of the training, there is a big difference between the data generated
by the generator and the real data, and the discriminator can easily distinguish between
them. Then, through continuous optimization and training, the generative capacity and
the discriminability of the generator and discriminator are continuously improved. It is
difficult for the discriminator to distinguish the generated data from the real data. At this
point, the model training is completed, and a set of wind power and photovoltaic data can
be input for scenario generation.

2.2. Scenario Reduction Based on K-Medoids

The number of scenarios generated is too large, and there are a large number of similar
scenarios; so, it is necessary to reduce the scenarios to obtain typical scenarios, so that
one scenario can simulate the effect of multiple scenarios. At present, the rapid forward
selection method, the synchronous back generation reduction method, and the scenario
number construction method are mainly used for scenario reduction, but these methods
have large computational quantities and are complex; so, this paper adopts the K-medoids
method [30–32] to reduce the scenarios. The core idea of the K-medoids method is to divide
the generated scenarios into several groups according to the degree of similarity and to
choose one scenario in each group as a typical scenario. This ensures that after reduction,
each scenario has its own characteristics and is representative and that the sum of the
probability of the scenario after reduction is 1. The basic steps for the cutting scenarios
using the K-medoids method are shown below.

Step 1: Randomly select m scenarios from the generated scenarios as the initial cluster-
ing center.

Step 2: Assign the remaining objects to each class according to the principle of being
closest to the cluster center.
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Step 3: According to the minimum distance principle of Equation (7), a new cluster
center is found to replace the original cluster center:

min ∑
si ∈ I
sj /∈ J

ρimind
sj∈J

(si, sj) (7)

where I is the set of scenarios before cutting; J is a collection of classic scenarios formed
after scenario reduction; ρi is the probability of the scenario appearing; and d(si, sj) is the
distance between any two scenarios si, sj in the scenario set.

Step 4: Judge whether it converges. If it does not, repeat Step 2. If it does, the newly
obtained m clustering centers are the reduced typical scenarios.

3. Optimal Scheduling Strategy of VPP Based on CVaR
3.1. Modeling of Components in VPP

In this paper, the wind turbine, photovoltaic unit, gas unit, energy storage equipment,
and demand response resources are selected as the units in the VPP for analysis. The wind
turbine and the photovoltaic turbine can convert solar energy and wind energy into electric
energy, respectively. They are the main power generation members in the VPP. Photovoltaic
power is mainly concentrated in the daytime, with certain fluctuations. Wind power output
is produced in each period of a day, but the randomness is significant. The gas unit can
output electricity stably and, to a certain extent, can calm the randomness of the wind and
photovoltaic resources and realize the coordinated operation of the VPP. The main function
of the energy storage device is to balance the wind power and photovoltaic resources in the
VPP and provide a certain guarantee for the stable operation of the VPP. Demand response
resources are managed via the signing of agreements with users through the means of a
policy, allowing the VPP to control part of the load and to participate in the transaction.

3.1.1. Gas Unit 
CGt = COT

Gt + COF
Gt

COT
Gt = aGtPGt

COF
Gt = CG1Oon

Gt + CG2Oo f f
Gt

(8)

where COT
Gt is the operating cost; COF

Gt is the start–stop cost; aGt is the operating cost coeffi-
cient; PGt is the output power of a gas unit at time t; CG1 and CG2 are the unit start-up and
outage costs, respectively; Oon

Gt and Oo f f
Gt are binary variables; Oon

Gt, Oo f f
Gt ∈ {0, 1}, respec-

tively, represent the start and stop signals; Oon
Gt is 0 means that the unit has not started at

time t; Oon
Gt is 1 means that the unit has started at time t; Oo f f

Gt is 0 indicates that the unit has

not shut down at time t; Oo f f
Gt is 1 indicates that the unit has shut down at time t.

The operation constraints of the gas unit mainly include output constraints, climbing
constraints, and start–stop constraints, as shown below.

Oc
t Pmin

Gt ≤ PGt ≤ Oc
t Pmax

Gt (9)

−ZG1∆t ≤ PGt − PG(t−1) ≤ ZG2∆t (10)

Oo f f
Gt = Oc

t−1 −Oc
t + Oon

Gt (11)

Oo f f
Gt + Oon

Gt ≤ 1 (12)

where Pmin
Gt and Pmax

Gt are the lower limit and upper limit of the gas unit output, respectively;
Oc

t is a binary variable; Oc
t is 0 indicates that the unit is in the running state; Oc

t is 1 indicates
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that the unit is in the stopped state; ZG1 and ZG2 are the downward and upward climbing
rates of the unit, respectively; and ∆t is the time from t− 1 to t.

3.1.2. Distributed Photovoltaic and Wind Turbines

As photovoltaic and wind power are both renewable energy sources, their power
generation costs are low and can be considered to be zero. The pre-predicted available and
actual output should meet the following constraints:{

0 ≤ Pwt1 ≤ Pmax
wt1

0 ≤ Pvt1 ≤ Pmax
vt1

(13)

{
0 ≤ Pwt ≤ Pmax

wt
0 ≤ Pvt ≤ Pmax

vt
(14)

where Pmax
wt1 and Pmax

vt1 are, respectively, the upper limits of the available output predicted by
the wind power and photovoltaic units; Pmax

wt and Pmax
wt are, respectively, the actual output

upper limits of the wind power and photovoltaic units.

3.1.3. Energy Storage Equipment

The cost of the energy storage equipment is mainly the charge and discharge cost.

CBt = CB1PBt,ec + CB2PBt,ed (15)

where CB1 and CB2 are the charging and discharging cost coefficients of the energy storage
equipment, respectively.

The electric energy generated by the energy storage device is determined by its own
running state. The mathematical expression is as follows:

EBt = EB(t−1) + (ηB,ecPBt,ec −
1

ηB,ed
PBt,ed)∆t (16)

where ηB,ec and ηB,ed are the charging and discharging efficiency factors, respectively; PBt,ec
and PBt,ed are the charging and discharging power of the energy storage device, respectively.

During operation, the charging and discharging power and capacity must meet the
following constraints: 

0 ≤ PBt,ec ≤ λec
s Pmax

Bt,ec
0 ≤ PBt,ed ≤ λed

s Pmax
Bt,ed

0 ≤ λec
s + λed

s ≤ 1
(17)

Emin
Bt ≤ EBt ≤ Emax

Bt (18)

where λec
s and λed

s are binary variables. When it is in a charge state, λec
s is 1; otherwise, it is

0; when it is in a discharge state, λed
s is 1; otherwise, it is 0; Pmax

Bt,ec and Pmax
Bt,ed are, respectively,

the maximum charging and discharging power of the energy storage device; Emax
Bt and Emin

Bt
are, respectively, the upper and lower limits of the energy storage equipment.

3.1.4. Demand Response

Demand response can adjust the behavior of the load side and guide the user side
to optimize the VPP scheduling according to the needs of the system. This paper only
considers the incentive demand response and control of the user load. Its mathematical
model is as follows:

0 ≤ Dt ≤ δt JLt (19)

−Dmax∆t ≤ Dt − Dt−1 ≤ Dmax∆t (20)
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where Dt is the demand response imposed on users at time t; JLt is the user load at time t;
δt is the proportion of the load in which users can participate in the demand response in
the total load at time t; Dmax is the maximum demand response that can be imposed by
the user.

3.2. Optimal Scheduling Model Based on CVaR

The first stage is the day-ahead declaration stage, where the VPP predicts the wind
and solar power output and submits the day-ahead bidding output for each time period
of the following day. After winning the bid, each unit will participate in dispatching
power generation. In the second stage, after real-time updates, there may be deviations
between the actual and predicted values of the wind and solar power output. The VPP
uses equipment such as gas turbines and energy storage equipment to suppress deviations
and compensates for the deviations that cannot be suppressed.

3.2.1. Objective Function

As the wind power and photovoltaic units in the VPP are characterized by volatility
and randomness, to reduce the impact brought by volatility the CVaR was introduced in
this paper to measure risk losses [33–35], balance risks and returns, and to maximize the
returns. The CVaR is a commonly used risk measurement model. It can reduce the risks
faced by decision makers in market competition by assessing risks and returns. The loss
function of a is set to be f (a, b). For the determined a, the probability value f (a, b) caused
by b not exceeding the critical value υ is shown below.

∂(a, υ) =
∫

f (a,b)≤υ

κ(b)db (21)

where a is the decision variable; b is a random variable; κ(b) is the loss accumulation
distribution function under a.

For a given confidence coefficient α, the value at risk, (VaR) is calculated as follows:

VaRα = min{b ∈ R : ∂(a, υ) ≥ α} (22)

When the loss function f (a, b) is greater than or equal to VaRα, the CVaR value can be
expressed as the following formula:

CVaR = VaRα +
1

1− α

∫
[ f (a, b)−VaRα]

+κ(b)db (23)

where [ f (a, b)−VaRα]
+ = max{ f (a, b)−VaRα, 0}.

Since κ(b) is difficult to obtain, it needs to be discretized. The CVaR value obtained
after the discretization result is substituted into Equation (23) is as follows:

CVaR = VaRα −
1

1− α

H

∑
Ω=1

ρΩ[ f (a, b)−VaRα]
+ (24)

where ρΩ is the probability of scenario Ω, and H is the number of scenarios.
Accordingly, the optimal scheduling model of the VPP based on the CVaR is shown as

follows. It is divided into two parts to maximize the profit. Part one is the expected profit
under each scenario, which is represented by the profit from the electricity purchase and
the sale minus the total cost of the VPP. The other part is the product of the risk weight and
the CVaR, which is used to measure the risk.

maxF = (1− β)
T

∑
t=1

H

∑
Ω=1

(FDa
Ωt + FRt

Ωt − CΩt)ρΩ + β(τ − 1
1− α

H

∑
Ω=1

ρΩεΩ) (25)
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where β is the risk weight of the CVaR, β ∈ (0, 1); the higher the value, the more serious
the risk aversion; T is the optimized running time; FDa

Ωt is the market revenue ahead of the
time in scenario Ω; FRt

Ωt is the real-time market profit of the time in the scenario; CΩt is the
total cost of the VPP; τ is the VaR value at the confidence coefficient α; εΩ is the auxiliary
variable for calculating the CVaR.

CΩt =
G

∑
g=1

CGt +
B

∑
b=1

CBt + CD (26)

where G is the number of gas units; B is the number of energy storage devices; and CD is
the cost of imposing a demand response.{

FDa
Ωt = ξDa

Ωt PDa
Ωt

FRt
Ωt = (1− θ)ξRt

ΩtP
Rt1
Ωt − (1 + θ)ξRt

ΩtP
Rt2
Ωt

(27)

where ξDa
Ωt and ξRt

Ωt are the day-ahead market price and real-time market price in the time
period, respectively; PDa

Ωt is the pre-date bidding effort in the time period; θ is the penalty
coefficient; PRt1

Ωt is the part that exceeds the bid; and PRt2
Ωt is the part that is less than the bid.

3.2.2. Constraint Condition

(1) Constraints of internal units

The constraints of the gas unit are shown in Equations (9)–(12). The distributed
photovoltaic and wind turbine constraints are shown in Equations (13) and (14). The
constraints of the energy storage equipment are shown in Equations (17) and (18). The
constraint of the incentive demand response is shown in Equations (19) and (20).

(2) Day-ahead bidding constraints

Before the power market closes, it is necessary to predict the available capacity in
advance and to determine the bidding capacity before the date.

PDa
Ωt =

W

∑
w=1

PWt1 +
V

∑
v=1

Pvt1 − JLt (28)

where W is the number of wind turbines, and V is the number of photovoltaic units.

(3) Real-time market constraint

In a real-time market, gas units, energy storage equipment, and demand response are
used to balance output deviations.

PRt
Ωt =

W

∑
w=1

PWt +
V

∑
v=1

Pvt +
B

∑
b=1

PBt,ed − PDa
Ωt −

B

∑
b=1

PBt,ec +
G

∑
g=1

PGt + Dt (29)


PRt

Ωt = PRt1
Ωt − PRt2

Ωt

PRt1
Ωt = max

{
PRt

Ωt, 0
}

PRt2
Ωt = max

{
−PRt

Ωt, 0
} (30)

(4) CVaR constraint  τ −
T
∑

t=1
(FDa

Ωt + FRt
Ωt − CΩt) ≤ εΩ

εΩ ≥ 0
(31)
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4. Integrated Scheduling Strategy

The overall scheduling strategy of this paper is shown in Figure 2. The first part uses a
scenario generation method to solve the uncertainty of the new energy. The historical data
were input into the improved GAN model to simulate a large number of output scenarios.
Then, K-medoids were used to reduce the simulated scenarios to obtain representative
typical scenarios. The second part is the optimal scheduling problem of the VPP. In the
day-ahead stage, the next-day output of the VPP is predicted in advance to determine the
declared purchased and sold electricity. In the real-time stage, gas units, energy storage
equipment, and demand response resources are used to suppress the deviation caused
by the wind and photovoltaic output; the part that cannot be suppressed is punished for
the deviation. If the actual output is higher than the declared price, the electricity is sold
at a price lower than the real-time electricity price; if the actual output is lower than the
declared price, the electricity is bought at a price higher than the real-time electricity price.
In order to measure the uncertainty risks, the CVaR was introduced to establish the optimal
scheduling model of the VPP. With the goal of maximizing the benefits, the solution was
carried out under the condition that the constraints had to be satisfied. Finally, the results
were output.
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5. Example Analysis
5.1. Basic Data

The structural diagram of the VPP is shown in Figure 3. The VPP selected in this paper
contains three 2 MW wind turbines, four 2 MW photovoltaic turbines, a 4 MW gas turbine,
and the energy storage equipment. The optimization duration is divided into 24 periods,
i.e., 24 h. The cost of the demand response is 300 CNY/MW, and the maximum demand
response applied is not more than 20% of the user load. The parameters of the gas units
and energy storage equipment are shown in Table 1. The initial output power of the gas
unit is 1.5 MW, and the initial capacity of the energy storage device is 6 MW · h. The user
load curve and the electricity price curve are shown in Figures 4 and 5, respectively. The
penalty coefficient is 0.3, the confidence coefficient is 0.9, and the risk weights β are 0.1, 0.5,
and 0.9, respectively.
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Table 1. Gas and energy storage equipment parameters.

Parameter Value Parameter Value Parameter Value

aGt 360 CNY/MW ZG1 1 MW/h ηB,ed 0.9
CG1 CNY 70 ZG2 1 MW/h Pmax

Bt,ec 1.5 MW/h
CG2 CNY 70 CB1 0.5 CNY/kWh Pmax

Bt,ed 2 MW/h
Pmin

Gt 1 MW CB2 0.5 CNY/kWh Emin
Bt 2 MW·h

Pmax
Gt 1 MW ηB,ec 0.9 Emax

Bt 10 MW·h
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Firstly, the actual daily power generation of the wind and photovoltaic power is input
into the model, generating 200 wind and photovoltaic scenarios through simulation. Then,
the scenarios are reduced to five sets. Finally, the gas turbine, energy storage equipment,
load, and electricity price data, as well as the five sets of scenario data just obtained, are
input into the model; then, the final revenue result is output.

5.2. Result Analysis
5.2.1. Typical Scenarios Generation Based on Improved GAN and K-Medoids

The basic data of the output in this paper are from a set of wind power and photovoltaic
output data of an industrial park in northeast China from 1 January 2020 to 30 December
2020. The data sampling interval is 1 h. A PyTorch framework was used to build the GAN,
and 200 wind power and photovoltaic scenarios were generated. Then, MATLAB was
used for the scenario reduction operations. Figure 6 shows the typical wind power and
photovoltaic scenarios obtained after reduction. Table 2 shows the probability of the wind
and photovoltaic scenarios; the probability of their combination scenarios is their product.
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Table 2. The probability of wind and photovoltaic scenarios.

Wind Power Scenario Probability Photovoltaic Scenario Probability

1 0.205 1 0.135
2 0.37 2 0.12
3 0.105 3 0.25
4 0.205 4 0.38
5 0.115 5 0.115

Figure 7 shows the training effect of the wind power and photovoltaic output under
different iterations. It can be seen that in the early stage of the iterations, the generated
scenario has not fully learned the characteristics of the wind power and photovoltaic output,
and the effect is not so good. With the increase in the iterations, the generator gradually
generates accurate wind power and photovoltaic scenarios through continuous learning.
When the number of iterations reaches 500, the curve has learned the output characteristics;
the generated curve is gradually smoothed, and the generator and discriminator basically
reach the equilibrium state, generating the output scenario which conforms to the real rules.
Figure 8 shows the cumulative distribution diagram of the real and generated scenarios of
the wind power and photovoltaic output [36]. It can be seen that the probability distribution
of the generated scenario and the real scenario is almost exactly the same, which proves the
accuracy of the generated scenario.
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5.2.2. The Influence of Risk Weight on Each Unit Inside a VPP

Figure 9a,b describe the output of the wind power units and photovoltaic units under
the different risk weights, respectively. It can be seen that the photovoltaic units only
generate electricity during the day, while the wind power not only generates electricity
during the day, but also generates electricity at night. Their output is complementary, which
can effectively smooth the system fluctuations. In addition, the output of the wind power
and photovoltaic units generally decreases with the increase in risk weight, indicating
that VPPs are more inclined to use wind and photovoltaic units to participate in market
competition when they have a risk preference, which can provide greater benefits, but at
the same time has greater risks.

Figure 9c,d show the charging power and discharging power of the energy storage
device. It can be seen that different risk weights have little influence on the charge and dis-
charge of the energy storage equipment. The energy storage equipment mainly discharges
in 6–10 h and 12–16 h and charges in the two periods of 2–5 h and 17–23 h. It can be seen
from the electricity price curve that the price of 6–10 h and 12–16 h is relatively high, while
the price of 2–5 h and 17–23 h is relatively low. This shows that the charge and discharge
behavior of the energy storage equipment is mainly affected by the level of the electricity
price. It has the characteristics of discharging at the peak stage of the electricity price and
charging at the period of the low electricity price. It is flexible and operable.



Electronics 2023, 12, 4387 13 of 17

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

5.2.2. The Influence of Risk Weight on Each Unit Inside a VPP 
Figure 9a,b describe the output of the wind power units and photovoltaic units under 

the different risk weights, respectively. It can be seen that the photovoltaic units only gen-
erate electricity during the day, while the wind power not only generates electricity dur-
ing the day, but also generates electricity at night. Their output is complementary, which 
can effectively smooth the system fluctuations. In addition, the output of the wind power 
and photovoltaic units generally decreases with the increase in risk weight, indicating that 
VPPs are more inclined to use wind and photovoltaic units to participate in market com-
petition when they have a risk preference, which can provide greater benefits, but at the 
same time has greater risks. 

Figure 9c,d show the charging power and discharging power of the energy storage 
device. It can be seen that different risk weights have little influence on the charge and 
discharge of the energy storage equipment. The energy storage equipment mainly dis-
charges in 6–10 h and 12–16 h and charges in the two periods of 2–5 h and 17–23 h. It can 
be seen from the electricity price curve that the price of 6–10 h and 12–16 h is relatively 
high, while the price of 2–5 h and 17–23 h is relatively low. This shows that the charge and 
discharge behavior of the energy storage equipment is mainly affected by the level of the 
electricity price. It has the characteristics of discharging at the peak stage of the electricity 
price and charging at the period of the low electricity price. It is flexible and operable. 

Figure 9e,f show the output of the gas units and the demand response, respectively. It 
can be seen that the output of the gas units is mainly in the period of 6–9 h and 11–16 h, 
which is similar to that of the energy storage equipment to some extent. It can not only bal-
ance the output deviation caused by the uncertainty of the wind power output but can also 
produce electricity at the peak of the electricity price, sell electricity to the market, and shut 
down at a low price, which can improve the economic benefits of the VPP to a certain extent. 
In addition, with the increase in the risk weight, the output of the gas units is generally on 
the rise. This shows that in the case of risk aversion, the gas units are more inclined to par-
ticipate in market transactions. The output of the demand response is related to the con-
sumption behavior of the users, which is generally manifested as the demand response be-
havior imposed on the users during the peak hours of 6–9 h and 11–16 h. 

  
(a) (b) 

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 9. The output of each unit of VPP under different risk weights: (a) wind power, (b) photo-
voltaic, (c) charging power of energy storage equipment, (d) discharging power of energy storage 
equipment, (e) gas unit, (f) demand response. 

5.2.3. The Relationship between CVaR and Profit 
Table 3 shows the VPP revenue and CVaR values under different risk weights. As 

can be seen from the table, when the risk weight increases the total profit and CVaR value 
of the VPP decrease continuously. This shows that when the risk-bearing capacity of the 
VPP is weak, the utilization of the wind power and photovoltaic units is low; although 
the profit is small, the risk is also small. When the VPP has a strong risk tolerance, it can 
make more use of the wind power and photovoltaic units. Although the risk is higher, it 
will have a great profit at the same time. 

Table 3. VPP income and CVaR value under different risk weights 

Risk Weight Total Profit (CNY) CVaR (CNY) 
0.1 40,257 38,924 
0.5 37,328 36,481 
0.9 35,211 34,235 

5.2.4. Comparison between the Proposed Scheduling Model and the Traditional  
Scheduling Model 

In order to analyze the rationality and robustness of the proposed scheduling model, 
set the risk weight to 0.1 and select the following models for comparison. (1) Use the model 
proposed in this article for scheduling based on Figure 5. (2) Select five other sets of sce-
narios again to schedule using the model in this article. (3) Use the predicted scenario as 

Figure 9. The output of each unit of VPP under different risk weights: (a) wind power, (b) photo-
voltaic, (c) charging power of energy storage equipment, (d) discharging power of energy storage
equipment, (e) gas unit, (f) demand response.

Figure 9e,f show the output of the gas units and the demand response, respectively. It
can be seen that the output of the gas units is mainly in the period of 6–9 h and 11–16 h,
which is similar to that of the energy storage equipment to some extent. It can not only
balance the output deviation caused by the uncertainty of the wind power output but can
also produce electricity at the peak of the electricity price, sell electricity to the market,
and shut down at a low price, which can improve the economic benefits of the VPP to a
certain extent. In addition, with the increase in the risk weight, the output of the gas units
is generally on the rise. This shows that in the case of risk aversion, the gas units are more
inclined to participate in market transactions. The output of the demand response is related
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to the consumption behavior of the users, which is generally manifested as the demand
response behavior imposed on the users during the peak hours of 6–9 h and 11–16 h.

5.2.3. The Relationship between CVaR and Profit

Table 3 shows the VPP revenue and CVaR values under different risk weights. As can
be seen from the table, when the risk weight increases the total profit and CVaR value of the
VPP decrease continuously. This shows that when the risk-bearing capacity of the VPP is
weak, the utilization of the wind power and photovoltaic units is low; although the profit
is small, the risk is also small. When the VPP has a strong risk tolerance, it can make more
use of the wind power and photovoltaic units. Although the risk is higher, it will have a
great profit at the same time.

Table 3. VPP income and CVaR value under different risk weights.

Risk Weight Total Profit (CNY) CVaR (CNY)

0.1 40,257 38,924
0.5 37,328 36,481
0.9 35,211 34,235

5.2.4. Comparison between the Proposed Scheduling Model and the Traditional
Scheduling Model

In order to analyze the rationality and robustness of the proposed scheduling model,
set the risk weight to 0.1 and select the following models for comparison. (1) Use the
model proposed in this article for scheduling based on Figure 5. (2) Select five other sets of
scenarios again to schedule using the model in this article. (3) Use the predicted scenario
as the traditional scheduling model for the wind and photovoltaic scenarios. The analysis
results are shown in Table 4.

Table 4. Model comparison result.

Model 1 Model 2 Model 3

Total profit (CNY) 40,257 39,556 38,942
CVaR (CNY) 38,924 38,213 0

It can be seen from Table 4 that, compared with Model 1, the total profit of Model
3 is lower than that of Model 1. The reason is that Model 3 ignores the influence of the
uncertainty of the wind power output. However, Model 1 fully considers the influence
of the uncertainty; the addition of the CVaR in the model makes the total profit of Model
1 higher than that of Model 3. Therefore, it is proven that the VPP optimal scheduling
model proposed in this paper can deal with the uncertainty risks more effectively and can
maximize the benefits. At the same time, we can see that the total profits of Model 1 and
Model 2 are both higher than that of Model 3. This indicates that the model proposed in
this paper can effectively face uncertainty problems under different scenarios of renewable
energy, proving the robustness of the model.

6. Conclusions

The optimal scheduling problem of the VPP was studied. Firstly, the uncertainty of
the new energy was analyzed, and the improved GAN was used to generate wind power
and photovoltaic scenarios; then, the K-medoids were used to reduce the scenarios and
generate typical scenarios. Finally, based on the CVaR, the optimal scheduling model of the
VPP was established with the goal of maximum profit. The influence of the different risk
weights on the return of the VPP was analyzed, and the conclusions are as follows.

(1) The improved GAN model can avoid the difficult problem of traditional probabilistic
model establishment, and the probability distribution characteristics of the generated
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scenario are basically consistent with those of the real scenario, which can effectively
solve the uncertainty problem of renewable energy.

(2) Risk weight has a certain influence on each unit in the VPP. Among them, photo-
voltaic and wind turbines are more obvious. With the increase in the risk weight,
the risk decreases, and the output of the photovoltaic and wind turbines decreases
continuously. Energy storage equipment and gas units are utilized to balance the
uncertainty deviation between the day-ahead bidding and the actual output to the
maximum extent, and the method of “low charge and high discharge” and “high start
and low stop” is adopted to obtain greater economic benefits in the real-time market.

(3) The risk weight also has a certain effect on the income of the VPP. The higher the risk
tolerance of the VPP, the greater the profit. Accordingly, schedulers can balance the
risks and profits according to their risk aversion; they can determine the impact of the
risks on scheduling decisions, formulate reasonable operation strategies, and obtain
more benefits.

The paper achieved preliminary results in the study of the optimal scheduling of the
VPP, but for the scenario generation part, this paper did not take the season and other
factors into account, and the actual environment will have a certain impact on the scenario.
In the future, quantitative analysis of the season and other factors should be carried out to
improve the accuracy of the scenario generation. As for the optimal scheduling part, the
energy storage devices considered in this paper are only limited to the power network. At
the moment, cool and heat supplies and water networks can also be used as energy storage
devices; electric vehicles are also connected to the power grid in large numbers. In the next
step, cold storage, heat storage, pumped storage, and electric vehicles can be added to the
optimization model of the VPP for further research.
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