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Abstract: While solar energy holds great significance as a clean and sustainable energy source,
photovoltaic panels serve as the linchpin of this energy conversion process. However, defects in
these panels can adversely impact energy production, necessitating the rapid and effective detection
of such faults. This study explores the potential of using infrared solar module images for the
detection of photovoltaic panel defects through deep learning, which represents a crucial step
toward enhancing the efficiency and sustainability of solar energy systems. A dataset comprising
20,000 images, derived from infrared solar modules, was utilized in this study, consisting of 12 classes:
cell, cell-multi, cracking, diode, diode-multi, hot spot, hot spot-multi, no-anomaly, offline-module,
shadowing, soiling, and vegetation. The methodology employed the exemplar Efficientb0 model.
From the exemplar model, 17,000 features were selected using the NCA feature selector. Subsequently,
classification was performed using an SVM classifier. The proposed method applied to a dataset
consisting of 12 classes has yielded successful results in terms of accuracy, F1-score, precision, and
sensitivity metrics. These results indicate average values of 93.93% accuracy, 89.82% F1-score, 91.50%
precision, and 88.28% sensitivity, respectively. The proposed method in this study accurately classifies
photovoltaic panel defects based on images of infrared solar modules.

Keywords: photovoltaic panels; exemplar Efficientb0 model; infrared imaging; deep learning; fault
detection

1. Introduction

Energy consumption is increasing daily, due to factors such as industrialization and
population growth. Sustaining equilibrium between supply and demand necessitates an
augmentation in energy generation. Consequently, renewable energy is assuming a pro-
gressively more significant role on a global scale. The convenient accessibility of renewable
energy sources in a local context, coupled with their plentiful supply, diminishes reliance
on foreign resources for fulfilling energy requirements, consequently enhancing energy
security for nations. An additional rationale for selecting renewable energy sources lies
in their eco-friendliness. Due to their lower emissions of greenhouse gases compared to
fossil fuels, the heightened adoption of renewable energy leads to a reduction in environ-
mental pollution. Solar energy does not contribute to global warming or harm ecosystems,
thereby assisting in the maintenance of ecological balance. In summary, solar energy is a
valuable tool in mitigating climate change, which is essential for protecting the well-being
of all life forms. In order to address climate change, the use of environmentally friendly
renewable energy has become a mandatory requirement, as outlined in the Paris Climate
Agreement, which was signed at the end of the 2015 United Nations Climate Change Con-
ference (COP21) [1]. Hence, renewable energy plays a crucial role in attaining sustainable
development objectives and securing a stable and sustainable future. Within the realm of
renewable energy options, photovoltaic (PV) systems are gaining increasing traction. PV
panels, constructed from semiconductor materials, employ a technology that transforms
solar radiation into electricity. As sunlight strikes the panel, free electrons within the semi-
conductor material become mobile, generating an electrical current. As Figure 1 illustrates,
PV modules come into existence by integrating solar cells in series and parallel connections.
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PV panels are formed by merging these modules, and PV arrays are shaped by linking the
panels together in both series and parallel arrangements. In essence, solar power plants are
created through the combination of these arrays.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 15 
 

 

transforms solar radiation into electricity. As sunlight strikes the panel, free electrons 

within the semiconductor material become mobile, generating an electrical current. As 

Figure 1 illustrates, PV modules come into existence by integrating solar cells in series and 

parallel connections. PV panels are formed by merging these modules, and PV arrays are 

shaped by linking the panels together in both series and parallel arrangements. In essence, 

solar power plants are created through the combination of these arrays. 

 

Figure 1. The architecture of solar power plant. 

The appeal of PV systems lies in their simplicity of energy conversion, resilience, ease 

of upkeep, and the universal accessibility of sunlight. These factors enhance the utility of 

PV systems. As a result of the growing fascination with PV systems, this field has wit-

nessed a proliferation of research endeavors. Literature-based investigations have two 

goals: first, to improve the use of PV systems by finding their strengths, and second, to 

make sure that PV system designs take into account the evaluation of parameters that 

affect their performance. This helps to improve PV system efficiency through various re-

search and development initiatives. Numerous research efforts are dedicated to exploring 

the capacity for harnessing solar energy effectively across diverse geographical regions 

[2,3]. These investigations delve into the benefits of solar energy, its contributions to en-

ergy generation, and the global viability of solar power. Several studies explore the mech-

anisms of energy generation via PV systems and the conversion of solar energy into vari-

ous energy forms [4–8]. Solar energy is a favorable energy source due to its straightfor-

ward conversion into diverse forms. Solar energy can be harnessed for a range of applica-

tions, including heating water, space heating, food drying, soil solarization, and more. 

However, the most prevalent application of solar energy conversion is in the production 

of electrical energy. Furthermore, within the literature, there are investigations that iden-

tify environmental variables influencing the power production efficiency of PV systems at 

their outputs, and analyze the impacts of these variables [9–12]. According to these re-

search findings, factors such as temperature, solar irradiance, shading, cleanliness, and 

others play significant roles in influencing the performance of PV systems. The elevation 

in temperature leads to an increase in the temperature of the PV system, resulting in an 

augmentation of the short-circuit current within the solar cell and a concurrent reduction 

in the voltage level. Solar photovoltaic (PV) systems generate electricity when sunlight 

hits solar cells. The amount of sunlight that hits the PV system, called irradiance, has a 

positive impact on system performance. As irradiance increases, so does the power output 

of the PV system and, in contrast, PV system performance has a negative correlation with 

increasing temperature [13]. Other factors that can affect PV system performance include 

the cleanliness of the PV panels and the presence of shading. Dirty PV panels and shading 

can reduce the amount of sunlight that reaches the solar cells, which can lead to a decrease 

in system performance. The variation in energy production by PV systems due to envi-

ronmental conditions is a significant factor in efficiency analysis. The effects of different 

Figure 1. The architecture of solar power plant.

The appeal of PV systems lies in their simplicity of energy conversion, resilience, ease
of upkeep, and the universal accessibility of sunlight. These factors enhance the utility of PV
systems. As a result of the growing fascination with PV systems, this field has witnessed a
proliferation of research endeavors. Literature-based investigations have two goals: first, to
improve the use of PV systems by finding their strengths, and second, to make sure that PV
system designs take into account the evaluation of parameters that affect their performance.
This helps to improve PV system efficiency through various research and development
initiatives. Numerous research efforts are dedicated to exploring the capacity for harnessing
solar energy effectively across diverse geographical regions [2,3]. These investigations
delve into the benefits of solar energy, its contributions to energy generation, and the global
viability of solar power. Several studies explore the mechanisms of energy generation
via PV systems and the conversion of solar energy into various energy forms [4–8]. Solar
energy is a favorable energy source due to its straightforward conversion into diverse forms.
Solar energy can be harnessed for a range of applications, including heating water, space
heating, food drying, soil solarization, and more. However, the most prevalent application
of solar energy conversion is in the production of electrical energy. Furthermore, within
the literature, there are investigations that identify environmental variables influencing the
power production efficiency of PV systems at their outputs, and analyze the impacts of
these variables [9–12]. According to these research findings, factors such as temperature,
solar irradiance, shading, cleanliness, and others play significant roles in influencing the
performance of PV systems. The elevation in temperature leads to an increase in the
temperature of the PV system, resulting in an augmentation of the short-circuit current
within the solar cell and a concurrent reduction in the voltage level. Solar photovoltaic
(PV) systems generate electricity when sunlight hits solar cells. The amount of sunlight
that hits the PV system, called irradiance, has a positive impact on system performance.
As irradiance increases, so does the power output of the PV system and, in contrast, PV
system performance has a negative correlation with increasing temperature [13]. Other
factors that can affect PV system performance include the cleanliness of the PV panels
and the presence of shading. Dirty PV panels and shading can reduce the amount of
sunlight that reaches the solar cells, which can lead to a decrease in system performance.
The variation in energy production by PV systems due to environmental conditions is a
significant factor in efficiency analysis. The effects of different defects that occur in solar
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panels for various reasons, examples of which are shown in Figure 2, have an impact on
the system performance, as do environmental conditions. Solar panel defect classification
is carried out in order to detect and classify defects in the production, installation, and
operation processes of PV panels.
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Figure 2. Various defects that occur in solar panels.

There have been many studies conducted for this purpose [14–30]. In the studies, dust,
hot spots, cracking, shadowing, etc. are defined as solar panel defects. This study aims to
detect such situations.

Related Studies

Defective solar panels can cause frequent failures. This will reduce the reliability of the
PV system and also increase the operating cost. In addition, it will cause errors in energy
estimation. Also, from a safety perspective, defective solar panels can lead to electrically
hazardous situations or fire. In summary, defects in PV panels negatively affect system
efficiency and performance. To prevent these negativities, solar panel defects must be
detected early [14]. In a study conducted to detect sensor-based solar panel defects, solar
cell crack mechanisms were examined using electroluminescence, thermography, and laser
Doppler vibrometry [15]. A study has also been conducted by examining the parameters of
the panels with the dynamic current–voltage characteristic using the real-coded Jumping
Gene Genetic Algorithm [16].

Sensors are used in studies to detect solar panel defects; however, image-based sys-
tems are mostly preferred. Pierdicca et al. conducted a general literature review on the
subject of applied image pattern recognition in PV systems [17]. In the study performed
by Shihavuddin et al., 3336 thermal images were studied and deep convolutional neural
networks and VGG-16 net were used to predict the distortions in PV cells [18]. EfficentDet
(D0 to D5), YOLOv3, YOLOv4, and YOLOv5 networks have been used with CNN archi-
tecture in damage detection with object detection methods in PV and wind turbines, and
an average sensitivity of 0.79 was obtained in the research performed by Yahya et al. [19].
An article by El-Banby et al., presents a review of different classifications of PV faults and
fault detection techniques [20]. It covers both qualitative and quantitative approaches,
including condition if-then rules, decision trees, statistical methods, and machine learning.
In addition, a new method is presented by Amaral et al. [21], for fault diagnosis in the
trackers of PV systems based on a machine learning approach. The method utilizes image
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processing techniques and principal component analysis for fault detection in PV tracking
systems. Abubakar et al. also proposes a novel method of fault detection in PV arrays
and inverter faults by utilizing an Elman neural network (ENN), boosted tree algorithms
(BTA), and statistical learning techniques [22]. In the study performed by Kellil et al. [23],
a fault detection system for classifying faults in PV modules is proposed. The method
utilizes deep neural net-works and infrared images for fault diagnosis. The research paper
written by Eltuhamy et al. presents a fault detection and classification method for CIGS
thin-film PV modules using an adaptive neuro-fuzzy inference scheme [24]. A study by
Memon et al. [25] presents an intelligent model to detect faults in the PV panels. The
proposed model for robust classification of PV panel faults utilizes the convolutional neural
network (CNN), which is trained on historic data. Chen et al. introduce a sequential
fault detection algorithm for PV systems based on autoregressive models and generalized
local likelihood ratio (GLLR) tests. The proposed method aims to achieve high adaptivity
and fast detection of various types of faults in PV systems [26]. Additionally, a paper by
Ramirez et al. introduces a new efficient and low-cost condition monitoring system based
on radiometric sensors [27]. The method utilizes image processing techniques for fault
detection and diagnosis in PV panels. Tang et al. [28] proposed a two-layer solution to
detect problematic areas from the images obtained using an orthotile-based georeferenced
spatial heat map. An average mIoU of 93.44% was achieved with the proposed model.

Novelties: The Efficientb0 exemplar model introduces significant advancements com-
pared to traditional deep learning models through an innovative approach. This model
employs innovations such as depth wise separable convolution, particularly aimed at sup-
porting deep feature extraction distinct from conventional CNN architectures. As a result, it
offers a more efficient feature extraction process and facilitates faster execution with lower
computational resources. Furthermore, the customized Efficientb0 model, trained with the
dataset, has been enhanced to be more effective in detecting photovoltaic system faults.

Contributions: The results obtained in this study demonstrate the significant contribu-
tions of a novel approach toward the analysis of data captured by UAV (unmanned aerial
vehicle) systems with medium or long-wave infrared imaging capabilities, which have a
resolution of 24 × 40 pixels. Initially, infrared solar module images with dimensions of
224 × 224 pixels have been converted into smaller patches of 56 × 56 pixels in order to
be processed more efficiently and to shorten processing times. This approach paved the
way for more effective handling of image data. Subsequently, a unique feature extraction
strategy was developed utilizing the Efficientb0 architecture to process the data obtained
from these 56 × 56 pixel patches. This approach focused on extracting distinctive features,
resulting in the extraction of a total of 17,000 features. The fundamental advantage of
this method lies in its ability to reduce data size while preserving important features. In
conclusion, this study offers an effective method for feature extraction from infrared solar
module images, potentially enhancing their usability in photovoltaic panel image analysis
and fault detection applications. Furthermore, it may serve as a guiding framework for
future research endeavors. This research contributes to the field of feature extraction from
infrared solar module images, advancing developments in this domain.

2. Materials and Methods
2.1. Proposed Method

In this study, the use of an artificial intelligence model is proposed to detect faults in
photovoltaic panels. The study was conducted on a dataset consisting of images obtained
from infrared solar modules, and the proposed model relies on deep learning techniques,
with the Efficientb0 model as its primary foundation. The proposed model is structured
into six distinct steps: Firstly, in the initial stage, the images in the dataset were resized
from 24 × 40 dimensions to 224 × 224. Subsequently, end-to-end training on the dataset
using the Efficientb0 model was carried out. For further refinement, the images in the
dataset were divided into smaller 56 × 56-sized patches and employed fully connected
layers to extract features from each of these patches. The features extracted from these
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56 × 56 patches, along with those from 16 example images of the same size and the original
image, were combined, resulting in a total of 17,000 features. To enhance feature selection,
the NCA feature selector was employed. Finally, the selected features were classified using
support vector machines (SVM) in conjunction with a 10-fold cross-validation algorithm.

A graphical representation of the proposed Efficientb0 model can be found in Figure 3.
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Figure 3. The proposed model.

2.2. EfficientNet B0

Tan et al. [29] introduced the EfficientNet family of networks in 2019. These networks
employ a specialized scaling strategy to achieve better performance with fewer parame-
ters. Amongst this family, EfficientNet B0 stands as the foundational and lightest model.
EfficientNet B0 amalgamates various components intended to increase learning capacity
while minimizing computational cost. These components optimize factors such as the
depth, width, and resolution of the network. Consequently, even in scenarios with smaller
datasets and lower computational resources, EfficientNet B0 can deliver good performance.
EfficientNet utilizes a depth scale coefficient to scale the depth of the network’s layers while
appropriately scaling other parameters. This facilitates the network in acquiring increased
learning capacity. The width scale is employed to scale the width of the network at each
layer, augmenting its feature richness without necessitating a proliferation of learning
parameters. The resolution of images is also scaled in EfficientNet, enabling the network to
perform more effectively with inputs of varying resolutions.

2.3. Classification

Support vector machines (SVMs) [30–35] are one of the most frequently used powerful
supervised learning methods in classification and regression analyses. Compared to other
classification methods, SVMs offer several advantages, making them a preferred choice.
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The most significant advantage of SVMs in classification problems is their ability to treat the
classification task as an optimized problem. Additionally, their ability to handle irregular
data sets is noteworthy. This allows SVMs to effectively classify complex data with the
use of an appropriate kernel function and handle high-dimensional data. SVMs utilize
non-linear mapping to transform data into another dimension. This mapping is performed
by using hyperplanes to separate the data effectively. In other words, these hyperplanes,
drawn to separate data points, define decision boundaries. SVMs work by maximizing
these hyperplanes to best separate classes, ensuring that the margin (distance) between
two classes is maximized. SVMs have diverse application areas, including handwriting
recognition, object recognition, and speaker identification, among many others. SVMs
are effective not only when data can be linearly separated but also when dealing with
complex datasets where linear separation is not feasible. However, in cases where data
cannot be linearly separated, SVMs employ a kernel function to transform data into a
higher-dimensional space. Selecting an appropriate kernel function can be a challenging
task, and there is no one-size-fits-all kernel function for every dataset. Additionally, when
working with large datasets, SVMs may have extended training times. In conclusion,
SVMs are a powerful tool for addressing classification and regression problems, but careful
selection of parameters and kernel functions may be required. The SVM hyperparameters
are provided below:

• Kernel function: Quadratic. The quadratic kernel function is a type of kernel function
used in SVMs. It allows the transformation of the feature space to a higher dimension,
which can help capture complex relationships between data points.

• Kernel scale: Automatic. The kernel scale determines the spread of the kernel function.
When set to “Automatic”, the algorithm automatically determines an appropriate scale
based on the input data.

• Box constraint level: 1. The box constraint, also known as the regularization param-
eter (C), controls the balance, maximizing the margin between support vectors and
minimizing classification errors.

• Multi-class method: One-Versus-One. In multi-class classification, this method decom-
poses the problem into a series of binary classification tasks.

• Standardize data: Standardizing the data ensures that the input features have a mean
of zero and a variance of one.

2.4. Feature Selection

Neighborhood component analysis (NCA) [36,37], a supervised learning approach, is
employed for feature selection. Its fundamental objective is to identify and select features
within the dataset that best differentiate between classes. NCA operates on the principle of
maximizing class separability. In other words, it is used to pinpoint the most valuable fea-
tures for enhancing the precision and accuracy of the classification process. This procedure
ensures that the features accurately reflect the distinctions between classes. NCA primarily
focuses on maximizing the separability of classes. It aims to make the classification process
more precise and accurate by selecting the most beneficial features. This process enables
the features to best represent the differences between classes. NCA operates by evaluating
the relationships between each data point in the dataset and all other data points. Each
data point is assigned a weighting based on its relationships with neighboring points.
These weights measure the contributions of features and reflect their ability to differentiate
between classes. NCA utilizes these weights to determine which features are of greater
significance. In summary, neighborhood component analysis is a supervised learning
method used for feature selection. Its core objective is to enhance class separability by
identifying and selecting the most informative features. NCA achieves this by assessing
the relationships between data points and assigning weights to each data point based on
its neighbors. These weights quantify the contributions of features and their discriminative
power in separating classes.
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2.5. Dataset

In this study, images from the Infrared Solar Modules dataset, which is publicly shared
and free of charge, were used [14]. The dataset contains a total of 20,000 infrared images
with a resolution of 24 × 40, obtained by UAV systems with medium wave or long wave
infrared imaging capabilities. A total of 10,000 of these images, corresponding to 50%,
consist of no-anomaly images. The remaining 10,000 images contain various solar panel
defects (see Figure 4). Images with solar panel defects are divided into 11 categories.
There are 12 classes in total, including no-anomaly images. These classes are defined as
follows [14].

• Cell: A single cell with a square geometry that has experienced a hot-spot event.
• Cell-multi: Hot spots have occurred in multiple cells, each with a square geometry.
• Cracking: There are surface cracks visible on the module.
• Diode: The bypass diode is active, typically accounting for 1/3 of the module.
• Diode-multi: Multiple bypass diodes are active, typically accounting for 2/3 of

the module.
• Hot-spot: A thermal hotspot has developed on a thin-film module.
• Hot-spot-multi: Multiple thermal hotspots have formed on a thin-film module.
• Offline-module: The entire module is subject to heating.
• Shadowing: Sunlight is obstructed due to vegetation, man-made structures, or adjacent

rows.
• Soiling: There is dirt, dust, or other debris on the surface of the module.
• Vegetation: Panels are blocked by surrounding vegetation.
• No-anomaly: The solar module is operating normally.

As mentioned before, there are 10,000 non-anomaly images. The number of images
with classified solar panel defects is shown graphically in Figure 5.
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Figure 5. Radar cart of the number of images for 11 anomaly categories.

3. Experimental Results

In this study, the effectiveness of the Efficientb0-based exemplar deep feature extraction
approach was investigated using a dataset of Infrared Solar Modules images. The exemplar
deep feature extraction model was implemented using MATLAB (R2023a) software. The
analysis was conducted on a desktop computer equipped with an Intel (R) Core i7 CPU
running at 5.8 GHz, 32 GB of RAM, and the Windows 11 operating system. Deep Network
Designer Toolbox was used for end to end training. The recommended exemplar deep
feature extraction method was employed for data processing. The obtained features were
subsequently processed for classification using the Classification Learner App Toolbox. No
model-specific hyperparameter optimization was employed, and default parameters of
machine learning methods were used.

A total of 19 pre-trained models were employed to extract features from a dataset.
Subsequently, these extracted features were assessed and classified using a support vector
machine (SVM) classifier. The classification results are summarized in Table 1. Upon
examination of these results, it was observed that the Efficientnetb0 model yielded the
highest accuracy scores. Therefore, the Efficientnetb0 model was preferred for this study.

Table 1. Pre-trained results.

Pre-Trained CNN Accuracy (%)

Resnet18 [38] 74.83
Resnet50 [38] 79.15

Resnet101 [38] 79.12
Darknet19 [39] 76.99

Mobilenetv2 [40,41] 77.47
Darknet53 [39] 76.20
Xception [42] 77.52

Efficientnetb0 [29] 81.18
Shufflenet [43] 78.10

Nasnetmobile [44] 75.70
Nasnetlarge [44] 77.09
Densenet201 [45] 77.86
Inceptionv3 [46] 76.63

Inceptionresnetv2 [47] 79.42
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Table 1. Cont.

Pre-Trained CNN Accuracy (%)

Googlenet [48] 71.31
Alexnet [49] 77.30
Vgg16 [50] 73.94
Vgg19 [50] 73.91

Squeezenet [51] 74.68

During the training process, the data were divided into training and validation sets
in an 80:20 ratio. The training and validation performance curves for these data sets are
shown in Figure 6.
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SVM was chosen as it yielded the highest accuracy in the proposed method. The
resulting confusion matrix for the classification is displayed in Figure 8.
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5—Diode-multi, 6—Hot spot, 7—Hot spot-multi, 8—No-anomaly, 9—Offline-module, 10—Shadowing,
11—Soiling, 12—Vegetation).

The accuracy value is obtained by dividing the total correctly predicted true positives
and true negatives by the total predicted examples. The accuracy value is a performance
metric that explains how well the model performs overall across all classes (see Table 2).
Precision is obtained by dividing the true positive count, where the model correctly clas-
sifies as positive, by the sum of true positives and false positives. Therefore, precision
is a performance metric that shows how accurately the model classifies examples as be-
longing to a specific class. Recall is obtained by dividing the true positive count, where
the model correctly classifies as positive, by the sum of true positives and false negatives.
Therefore, recall is a performance metric that shows how accurately the model classifies
examples that should belong to a specific class. The F1-score value is obtained by taking
the harmonic mean of the precision and recall values obtained by the model. The reason
for using harmonic mean is to reduce the impact of extreme cases on the performance
metric. Thus, it aims to prevent incorrect evaluations in data sets that are not evenly dis-
tributed. Performance measurement metrics were calculated with the following equations
(Equations (1)–(5)).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)
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Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1 − score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

• Sensitivity: Average sensitivity was 88.28%. The average sensitivity demonstrates
that the model performs quite evenly across all classes. This indicates the model’s
capability to effectively identify various classes within the dataset.

• Specificity: Average specificity was 99.33%. The average specificity is notably high,
indicating the model’s proficiency in accurately recognizing non-class instances.

• Precision: Average precision was 91.50%. The average precision suggests that the
model is adept at accurately predicting classes. In other words, when the model
predicts a class, it is often correct.

• F1-Score: Average F1-score was 89.82%. The average F1-Score harmoniously combines
precision and recall. This signifies that the model’s classification performance is
generally well-balanced and notably high.

• In addition to providing energy efficiency by solar panel defect classification, benefits
will also be provided in terms of energy management, because solar panel defect
classification is important for the system to ensure maximum energy production.

Table 2. Performance metric results.

Class Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

Cell

93.93

88.71 98.68 87.40 88.05
Cell-multi 83.00 99.04 85.59 84.27
Cracking 91.06 99.60 91.75 91.40

Diode 96.80 99.86 98.24 97.51
Diode-multi 93.14 99.97 97.02 95.04

Hot spot 80.72 99.87 88.55 84.45
Hot spot-multi 82.93 99.87 89.08 85.89

No-anomaly 98.84 96.81 96.87 97.85
Offline-module 87.30 99.80 94.88 90.93

Shadowing 89.58 99.59 92.47 91.01
Soiling 77.94 99.88 86.89 82.17

Vegetation 89.38 99.04 89.22 89.30

4. Discussion

This study aims to develop methods for detecting faults in photovoltaic panels using
infrared solar module images. To achieve this goal, the “Efficientb0” model, a pre-trained
deep learning network, has been preferred. The use of a pre-trained model has facilitated
faster and more effective learning of the data. Another significant aspect of this study
is that the Efficientb0 model has been trained from scratch using infrared solar module
images. The purpose of this approach is to optimize the model’s ability to detect faults in
photovoltaic panels. The results obtained indicate that the proposed method has significant
potential for detecting faults in photovoltaic panels. Training the model from scratch has
allowed for better processing of infrared images and more precise detection of faults in the
panels. This study can provide a significant contribution to the maintenance and efficiency
of solar energy systems. Due to solar panel defects occurring on the panel, the absorption
of solar radiation on the solar cell side will be low or absent. Therefore, defects must be
detected easily and accurately. In this context, the determination of solar panel defect
classification contributes. To show the success of the model used in the study, a comparison
is made in Table 3 with other studies using the dataset used in this study.
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Table 3. Comparison of results with literature studies using the same dataset.

Study Method Class Accuracy %

Korkmaz and Acikgoz [52] A multi-scale convolutional neural network with three branches
based on the transfer learning strategy 12 93.51

Alves et al. [53] Data augmentation techniques to increase the success of the
convolutional neural network 8 92.5

Nguyen et al. [54] A deep neural network based on a residual network structure
and ensemble technique 2 94

Le et al. [55] The remote sensing method 12 85.35
Tang et al. [56] MobileNet-V3 network 11 70.82

Pamungkas et al. [57] Geometric transformation and generative adversarial networks
image augmentation techniques 11 96.65

Sriraman and Ramaprabha [58] Random forest model 6 90
Chen et al. [59] ShuffleNet V2 network 11 84.06
Lee et al. [60] Lightweight inception residual convolutional network 8 89

Açikgöz et al. [61] AlexNet 2 98.65
Proposed method Exemplar Efficientb0,NCA,SVM 12 93.93

Korkmaz and Acikgoz [52] conducted, using the same dataset, a multi-scale convolu-
tional neural network (CNN) with three branches based on the transfer learning strategy
that was proposed; average accuracy obtained was 97.32% for fault detection and 93.51% for
the 11 anomaly types. Alves et al. [53] examined the effect of data augmentation techniques
to increase the success of the convolutional neural network, and 92.5% test accuracy was
obtained with the cross-validation method. Nguyen et al. [54] proposed a deep neural net-
work based on residual network structure and ensemble technique to accurately predict and
classify anomaly solar modules. It has been observed that an anomaly module is predicted
correctly at an average rate of 94%. Le et al. [55] proposed the remote sensing method.
Jetson Nano was used to evaluate the CNN algorithm and real-time control. An accuracy
of 85.35% was achieved in their studies. Tang et al. [56] proposed the basic MobileNet-V3
network to realize fault classification of photovoltaic modules, Obtaining an accuracy
value of the proposed method of 70.82%. Sriraman and Ramaprabha [57] used geometric
transformation and generative adversarial networks image augmentation techniques for
PV fault classification, Obtaining an accuracy value of 95.72% with the presented paired
UdenseNet model. Sriraman and Ramaprabha [58], used decision tree and random forest
models and a convolutional neural network model for the case of a partial shading model
in PV fault detection, examining 20,000 thermographic images and achieving 90% success
with the random forest model. Chen et al. [59] developed a ShuffleNet V2 network for the
infrared images of 11 types of PV module faults, and an accuracy of 84.06% was achieved.
Lee et al. [60] attempted to detect defects in PV panels; they achieved 89% accuracy with
the residual convolutional network they proposed. Açıkgöz et al. [61] studied only hot
spot classification among solar panel failures and achieved an accuracy value of 98.65%
with AlexNet.

5. Conclusions

This study aimed to evaluate the applicability of deep learning approaches for the
analysis of infrared solar module images to detect faults in photovoltaic panels. In pursuit
of this objective, the Efficientb0 model, a pre-trained deep learning model, was chosen.
Furthermore, this model was fine-tuned from scratch to adapt to the specific characteristics
of the dataset. The obtained results demonstrate that the proposed method holds significant
potential for the detection of faults in photovoltaic panels. Particularly, the utilization of the
Efficientb0 model enabled more effective processing of infrared solar module images and
enhanced the precision of fault detection within the panels. The findings of this study are
crucial for industry professionals and researchers aiming to improve the maintenance and
efficiency of solar energy systems. High accuracy rates in fault detection are critical for the
long-term durability and high efficiency of photovoltaic panels. Future research endeavors
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may encompass model-specific hyperparameter optimization and the exploration of various
data augmentation techniques to further optimize the model and improve its generalization
capabilities. Additionally, the evaluation of this method in real-world applications and real-
time fault detection could be a prospective direction for research. In conclusion, this study
demonstrates the successful application of deep learning and computer vision techniques
for fault detection in photovoltaic panels, contributing to future research in this field.
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