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Abstract: This paper presents a novel dynamic camera parameter control method for the position
and posture estimation of highly miniaturized AR markers (micro AR markers) using a low-cost
general camera. The proposed method captures images from the camera at each cycle and detects
markers from these images. Subsequently, it performs iterative calculations of the marker’s position
and posture to converge them to a specified accuracy while dynamically updating the camera’s
zoom, focus, and other parameter values based on the detected marker’s depth distances. For a
10 mm square micro AR marker, the proposed system demonstrated recognition accuracy better
than ±1.0% for depth distance and 2.5◦ for posture angle, with a maximum recognition range of
1.0 m. In addition, the iterative calculation time was 0.7 s for the initial detection of the marker. These
experimental results indicate that the proposed method and system can be applied to the precise
robotic handling of small objects at a low cost.

Keywords: image recognition; micro AR marker; camera parameter control; iterative recognition

1. Introduction

In recent years, robots have been used to automate many tasks to improve produc-
tivity in manufacturing and other production sites. Real-time object position and posture
estimation using image processing is an essential function for autonomous robots that
perform object handling in automation. There are various methods for estimating object
position and posture using image processing.

Methods using stereo cameras or RGB-D cameras (RGB-D cameras are sensors capable
of capturing both color images and the depth distance to objects) can estimate the position,
posture, and shape of an object from multiple RGB images or depth images, enabling
the handling of general objects without the need to process the handling target. There
have been many attempts to estimate the position and posture of objects using machine
learning [1–5]. However, in general, the above methods have disadvantages, such as high
implementation costs due to the large number of datasets required and the time required
for data learning. Therefore, they are not suitable for applications that require low-cost and
low-computational resources.

Visual markers are support tools that facilitate object identification and position and
posture estimation. Because visual markers use known shape information and image
features, they can be used to identify marker IDs and estimate relative positions and
postures from a single 2D camera. Although there is the restriction that the marker must
be fixed to the target object, this is inexpensive to implement. In addition, various marker
projection patterns have been presented for various applications [6–10].

Among visual markers, AR markers have the advantage of easily enabling augmented
reality and providing information to users in a more intuitive manner. Most AR markers
use the principle of projective transformation to estimate the position and posture of the
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marker by finding a homogeneous transformation matrix that represents the position and
posture of the marker’s coordinate system as seen from the camera coordinate system.
The open source library ARToolKit markers [11] is a typical example, and this marker
technology is used in self-position estimation [12–17] and mapping [18–20] for mobile
robots, and is an essential technology in navigation systems.

AR markers can also be used to handle specific objects [21–23]. However, the size
and recognition accuracy of AR markers are problematic when handling small objects or
objects with complex shapes. Conventional AR markers require a large amount of space
to be attached to the target object, and it is undesirable from an aesthetic point of view
for the markers to be too conspicuous in a real environment. Several previous studies
have attempted to reduce the size of markers or improve their aesthetics. Zhang et al. [24]
developed a curved surface marker that can be attached to cylindrical objects as small
as 6 mm in diameter, enabling real-time tracking of ultrasound probes. However, these
markers can only be recognized at a depth of 30–125 mm from the camera, making them
unsuitable for object handling that requires a large workspace. Costanza et al. [25] created
a marker that is unobtrusive to users in their living environment with “d-touch”, an open
source system that allows users to create their own markers based on their aesthetic sense.
However, there is no concrete verification of miniaturization or recognition accuracy.

It is also difficult to consistently achieve the recognition accuracy required for accurate
object handling. To solve this problem, Douxchamps et al. [26] improved accuracy and
robustness by physically increasing the marker size and using high-density patterns to
reduce noise and discretization in marker recognition. This method can recognize markers
at a maximum of 0.06–4 ppm; however, the miniaturization of the marker becomes a trade-off
issue. Yoon et al. [27] presented a coordinate transformation algorithm to obtain the globally
optimal camera posture from local transformations of multiple markers, thus improving
the accuracy of pose estimation. Yu et al. [28] presented a robust pose estimation algorithm
using multiple AR markers and demonstrated its effectiveness in real-time AR tracking.
Hayakawa et al. [29] presented a 3D toothbrush positioning method that recognizes AR
markers on each face of a dodecahedron attached to a toothbrush and achieved a motion
tracking rate of over 99.5%. However, these methods require multiple markers to achieve
high recognition accuracy, which requires a large space to attach them to objects.

There are two methods to improve recognition performance with a single marker
while maintaining the marker size: using filters and using circular dots as feature points.
The method using a filter [30,31] reduces jitter between frames and stabilizes posture recog-
nition, but does not guarantee accurate recognition. In contrast, Bergamasco et al. [32,33]
achieved robustness against occlusion using markers that use the projection character-
istics of a circular set of dots and an ellipticity algorithm. In addition to circular dots,
Tanaka et al. [34–37] presented an AR marker that uses lenticular lenses or microlens ar-
rays to change the pattern depending on the viewing angle, thereby reducing the posture
estimation error and improving robustness against distance and illumination changes.
These techniques have dramatically improved the recognition performance of a single
marker, thereby enhancing its practicality. Therefore, these techniques are also promising
for marker miniaturization but have not yet been demonstrated.

However, even if marker miniaturization and high recognition accuracy can be achieved,
a commonly used camera system limits the range of marker recognition, making practical
operation difficult. Because the markers are small, they cannot be recognized with high
accuracy from an overhead view of the workspace. Conversely, a magnified view narrows
the field of view, making it difficult to recognize the surrounding environment necessary
for handling. To solve this problem, Toyoura et al. [38] presented a monospectrum marker
that enables real-time detection of blurred images, thereby extending the recognition range.
However, the recognition of translational positions has an average error of 5 to 10 mm,
which does not meet the level of recognition accuracy required for object handling. Another
disadvantage is that the system requires a high-performance GPU for real-time detection.
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Based on the background described above, this study will develop a prototype micro
AR marker of 10 mm per side [39] that is compatible with the high-accuracy recognition
method of Tanaka et al. [37], and construct a low-cost and high-accuracy marker recognition
system using a general-purpose web camera. The micro AR marker is printed on a glass
substrate by photolithography with a high resolution so that the marker image is not easily
degraded even when the marker is magnified by a camera. First, we demonstrate that this
AR marker inherently has very high accuracy in position and posture recognition despite
its ultra-compact size. But, we also reveal the problem of insufficient recognition range for
practical use with a conventional camera system. Next, to solve this problem, we present a
dynamic camera parameter control method that can maintain high recognition accuracy
over a wide field of view and demonstrate its effectiveness through a series of experiments.

This paper is organized as follows. Section 1 describes the background and objectives
of this study. Section 2 describes the overall system configuration. Section 3 describes the
process of the proposed camera control system, i.e., the algorithm for camera parameter
optimization. Section 4 describes the results of the evaluation experiments of the proposed
camera control system. Section 5 discusses the results of the evaluation experiments. Finally,
Section 6 describes the summary of this paper and future issues.

2. System Configuration
2.1. Hardware Configuration

The hardware of the camera control system proposed in this paper consists of three
pieces of hardware: an AR marker, a single RGB camera, and a PC as a processing unit.
The AR marker used is a micro AR marker of 10 mm per side, which is compatible with
the Tanaka et al. [37] high-precision recognition method shown in Figure 1. As shown
in Figure 1, this marker is equivalent in size to a USB Type-A. The marker was printed
on a glass substrate by photolithography with high resolution so that the marker image
was not easily degraded even when viewed under a camera’s magnification. The camera
captures reference points at the four corners of this marker, and by processing the images
arithmetically, as shown in Figure 2, it is possible to estimate the relative position and
posture of the marker as seen from the camera with high accuracy. A USB 3.0 webcam
was used as the single RGB camera. Table 1 shows the camera performance. The proposed
dynamic camera control system requires zoom and focus adjustment functions and a
wide diagonal viewing angle. Therefore, a BRIO C1000eR® (Logitech International S.A.,
Lausanne, Switzerland, Figure 3) with digital zoom and focus adjustment functions and a
maximum diagonal viewing angle of 90 degrees was used. However, when the camera’s
diagonal viewing angle was set to 90 degrees, the output image from this camera was
highly distorted, which required removal. To prepare the camera calibration data that
would serve as a reference for removing the distortion, calibration was performed using
OpenCV’s camera calibration function [40], with the camera’s autofocus function turned
on. In addition, for the camera control system described in Section 3.1, calibration was
performed with the camera’s autofocus function turned off to prepare a set of calibration
data for each focus value. A Think-Pad X1 Carbon (i7-6600U 2.6GHz, 16 GB memory,
Lenovo, Hong Kong, China) was used as the processing PC.

Figure 1. The 10 mm square micro AR marker prototyped in this study.
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Figure 2. Definition of marker position and posture with respect to camera.

Table 1. The camera specifications.

Product name BRIO C1000eR®

Output resolution 1920 × 1080 (FHD)
Frame rate 30 fps

Diagonal FOV 90°
Digital zoom 1×–5×

Size (mm) 102 × 27 × 27

Figure 3. BRIO C1000eR®.

2.2. Software Configuration

Figure 4 shows the software configuration of the camera control system proposed in
this paper. ROS Melodic was used as the middleware for the development of this study. The
software used for AR marker recognition was LEAG-Library from LEAG Solutions Corp.
This library is compatible with the high-accuracy recognition method of Tanaka et al. [37].
It also uses OpenCV as an image processing library and uvc-camera as a library for acquir-
ing images from USB cameras. The Relay node relays the AR marker values received from
the LEAG Library. It identifies marker IDs and performs type conversion. The Iteration
node determines camera parameters such as zoom, focus, and calibration data based on the
AR marker values received from the Relay node and provides input to the camera and feed-
back to the LEAG-Library. It also determines the convergence of the AR marker position
and posture and the final AR marker value. Topic communication was used to send and
receive AR marker information between nodes. Figure 5 shows the correlation diagram of
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topic communication between nodes obtained from the ROS function rqt_graph. The mid
node acts as the Relay node shown in Figure 4, passing AR marker values to the iteration
node using a topic named tf_mid. Each node is written in C/C++ language for high-speed
processing. The cycle of topics delivered from the LEAG Library is approximately 30 Hz,
which is the same as the frame rate of the camera.

Figure 4. System architecture.

Figure 5. Correlation diagram of the ROS nodes.

3. Camera Control System

This section describes the dynamic camera control processes that properly adjust the
parameters of zoom, focus, and calibration data to determine the position and posture
of the AR markers. The three parameters of the zoom, focus, and calibration data are
collectively referred to as “camera parameters”.

3.1. Marker Recognition Process

As shown in Figure 6, the proposed camera control system consists of two processes:
the Scanning process scans the camera’s shooting range to detect AR markers; the Iteration
process optimizes camera parameters based on the detected AR marker positions to deter-
mine the final AR marker position and posture. Here, it is assumed that the AR marker is
still present within the camera’s shooting range when the camera parameters are changed.

Table 2 shows the camera parameters used in this system and the parameters used to
calculate the camera parameters. As will be discussed later in Section 4.4, when recognizing
micro AR markers, if the camera zoom function is not used, the size of the AR marker in
the image will be very small and the recognition range of the AR marker will be narrow. In
addition, when the zoom magnification is large, the recognition accuracy of the position
of AR markers in close proximity to the camera is poor. Therefore, it is necessary to
dynamically control the zoom value to achieve a wide recognition range. The zoom value
W is proportional to the depth distance z from the camera of the AR marker shown in
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Figure 2 and is calculated by Equation (1). The camera magnification n is also proportional
to W, as shown in Equation (2).

Figure 6. Flowchart of the proposed method.

W = C(z− zmin) + Wmin (1)

n =
W
100

(2)

As in the data presented in Section 4.3, a fixed-focus camera has a narrow range for recog-
nizing AR markers of only 0.2 m in the depth distance. Thus, we attempted to recognize
AR markers using autofocus cameras. However, with this approach, the autofocus tended



Electronics 2023, 12, 4398 7 of 18

to focus on the background, which often had higher contrast than the markers themselves.
As a result, we could not consistently achieve an accurate focus on the small 10 mm
markers. Therefore, it was necessary to explicitly control the focus to achieve a wide
recognition range. The focus value F is also determined by the marker’s depth distance z
using Equation (3). The smaller the focus value, the farther away the camera. The constants
α and β used in Equation (3) are constants obtained by measuring the optimum focus
value according to the depth distance from the camera in advance and by exponential
approximation of the experimental results.

F = −α ln z + β (3)

Table 2. Parameters used in the proposed camera control system.

Parameter Symbol Value

Zoom value W Variable (100∼500)
Maximum zoom value Wmax 500
Minimum zoom value Wmin 100
Depth distance of the AR marker z Variable (m)
Minimum depth distance zmin 0.05 (m)
Conversion coefficient of the zoom value C 1000 (1/m)
Camera magnification n Variable
Focus value F Variable (0∼150)
Constants of the focus value α 42.11
Constants of the focus value β 4.0
Distortion coefficient matrix D1×5 Determined by calibration
Radial distortion coefficient k1, k2, k3
Tangential distortion coefficient l1, l2
Internal parameter matrix I3×3 Determined by calibration
Focus distance fx, fy
Optical center cx, cy

AR marker position p =
[
x y z

]T Iterative output variable
AR marker posture q =

[
θ φ ψ

]T Iterative output variable
Threshold of position error tp Arbitrally setting
Threshold of posture error tq Arbitrally setting

The calibration data also include the distortion coefficient matrix D and the internal
parameter matrix I of the camera. The distortion coefficient matrix D refers to the lens
distortion and is represented by a 1 × 5 matrix containing the radial distortion coefficients
(k1, k2, k3) and tangential distortion coefficients (l1, l2) as in Equation (4). The internal
parameter matrix I refers to camera-specific parameters and is represented as shown in
Equation (5) in a 3 × 3 matrix containing the focus distance ( fx, fy) and optical center (cx, cy).
In this study, 31 calibration data sets for every increment of 5 in the focus value were
prepared. The system selects the most appropriate calibration data based on the calculated
focus value and applies them to the next recognition process.

D =
[
k1 k2 l1 l2 k3

]
(4)

I =

 fx 0 cx
0 fy cy
0 0 1

 (5)

The two processes shown in Figure 6 are described in detail below.
In the Scanning process, AR markers are initially detected by scanning within the

camera’s shooting range; the Scanning process follows the steps below.
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(1a) The camera parameters are set to the initial values W = 500 and F = 150, with the
zoom at its maximum and the focus at its farthest forward. The reason for these
settings is that the zoom value is farther away for a wider recognition range, and
the focus value can be processed faster if it is shifted from near to far.

(1b) Detect AR markers within a single frame of the image output from the camera.
(1c) If no AR marker is found in the image, the focus value F is reduced by 15 to focus

on a more distant point.
(1d) Repeat steps (1b)–(1c) until AR markers are detected.
(1e) If an AR marker is detected for the first time, obtain the initial position p0 and pos-

ture q0 of the AR marker to be given as initial values for the next Iteration process.

According to the above algorithm, the scanning takes a maximum of 11 frames of
images before the AR marker is detected. Since the frame rate of the camera used is 30 fps,
the maximum scanning time is theoretically about 0.33 s. In reality, however, even if the AR
marker was at the farthest point within the recognition range, the scanning time was only
about 0.3 s. This is because the AR marker could be detected even when the focus position
was in front of the AR marker, and detection was possible from the tenth frame of the image.

In the Iteration process, the camera parameters are optimized to determine the final marker
position pd and posture qd with enhanced accuracy; the Iteration process follows the steps below.

(2a) Receive the initial recognition values p0 and q0 of the AR marker from the Scanning
process.

(2b) Update the camera parameters based on the recognized depth distance z of the
AR marker.

(2c) Get the next recognition values pk and qk with the updated camera parameters.
(2d) Calculate the absolute error value between pk−1 and pk, and between qk−1 and qk.

If the error values are larger than the thresholds tp and tq, repeat steps (2b)–(2c).
(2e) If the absolute error values calculated in step (2d) are smaller than the thresholds

tp and tq, the latest pk and qk are output as the final recognition values pd and qd.

Software algorithms of the aforementioned two processes are described in Algorithms 1
and 2.

Algorithm 1 Scannig Process

Input: RGB image
Output: p0 , q0

Initialization:
1: W ← 500, F ← 150, D, I ← Autofocus values
2: Get RGB image

Loop Process:
3: while AR marker is not detected in RGB image do
4: F ← F− 15
5: Get RGB image
6: if AR marker is initially detected then
7: p0 , q0 ← Position, Posture of detected marker
8: W ← C(z− zmin) + Wmin
9: F ← −α ln z + β

10: D, I ← select ones from dataset of pre-defined data according to the focus value F
11: Break
12: end if
13: Get RGB image
14: end while
15: Go to Iteration Process
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Algorithm 2 Iteration Process

Input: RGB image
Output: pd , qd

Loop Process:
1: while |pk − pk−1| >= tp & |qk − qk−1| >= tq do
2: pk−1, qk−1 ← pk, qk
3: W ← C(z− zmin) + Wmin
4: F ← −α ln z + β
5: D, I ← select ones from dataset of pre-defined data according to the focus value F
6: Get RGB image
7: if AR marker is detected then
8: pk , qk ← Position, Posture of detected marker
9: if |pk − pk−1| < tp & |qk − qk−1| < tq then

10: pd, qd ← pk, qk
11: Break
12: end if
13: end if
14: end while

3.2. Dynamic Camera Parameter Controller

Figure 7 shows a block diagram of the system for updating the camera parameter opti-
mization shown in the Iteration process in Figure 6. The values pd and qd are the final output
of the marker’s position and posture. The Iterator judges whether the recognized position
and posture converge to an accuracy within set thresholds, as in Equations (6) and (7).

|pk − pk−1| < tp (6)

|qk − qk−1| < tp (7)

The Iterator also calculates the marker’s depth distance z for updating the camera
parameters, which considers the magnification of the image due to zooming. When the
image is magnified by a factor of n by zooming, the “apparent” depth distance z′ becomes
1/n of the real value z. Therefore, the zoom value W is input to the LEAG Library to
recognize the real marker position with compensation of the apparent depth distance z′, as
shown in Equation (8).

z = z
′ × n = z

′ × W
100

(8)

After the depth distance z is calculated, the zoom value W and focus value F are updated
by Equations (1) and (3), respectively. In addition, the lens distortion coefficients D and the
internal parameter matrix I are appropriately selected from the calibration data list based
on the focus value F.

Figure 7. Block diagram of the camera parameter optimization.
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4. Experimental Evaluation
4.1. Experimental Setup

Figure 8 shows the experimental setup. Figure 8a shows the definition of the coordinates
of the AR marker: the depth distance z and the rotation angle φ, which are treated in the
experiments in Sections 4.3–4.5. Figure 8b shows a scene of the actual experimental setup. The
actual distances and angles were measured using a measuring tape and a protractor with the
AR marker fixed to a rotating stand. To maintain consistent experimental conditions for each
trial, we established an environment with a solid-colored wall as the marker background and
placed the lighting in the same position. Furthermore, for camera parameters not dynamically
controlled using our method, such as focus and zoom, we employed fixed parameters.

Figure 8. Experimental setup: (a) definition of the AR marker position and angles. (b) scene of the
experiment.

4.2. Experimental Conditions

In all experiments, measurements were taken five times for each condition, and the
average value was recorded for each condition. Note that the values were recorded only
when the marker’s ID was correctly recognized five times in a row.

The accuracy of the marker’s translational position recognition is evaluated at the
error rate relative to the true value. When the measured value is M and the true value is
T, the error rate is defined by Equation (9). On the other hand, the accuracy of posture
recognition is evaluated by the error between M and T.

Error rate =
M− T

T
× 100 (%) (9)

4.3. Recognition Performance Using Fixed Camera Parameters

Prior to the evaluation of the proposed method, the recognition range and recognition
accuracy were examined with camera parameters fixed at specific values. The zoom value
W and focus value F were set to three patterns: (1) W = 100, F = 100; (2) W = 500, F = 50;
(3) W = 500, F = 0. The distortion coefficient matrix D and internal parameter matrix I
were calibrated with the camera’s autofocus function turned on. The micro AR marker was
placed at a rotation angle φ = 40◦ to the camera for the most stable recognition.

Figure 9 shows the recognition range and error rate for the marker’s depth distance z
for each of the fixed parameter conditions. Under the conditions of this experiment, the
recognition range was very narrow, with a maximum of only 0.2 m in the depth direction.
Recognition accuracy also tends to significantly deteriorate, especially at short distances,
which cannot be acceptable for precise navigation and object handling. This is largely
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because a fixed focus value is used, which results in various out-of-focus areas. Therefore,
it is necessary to expand the recognition range to properly control the camera focus and
calibration data according to the marker’s depth distance.

Figure 9. Recognition error rate of marker depth distance (z) with fixed camera parameters.

4.4. Recognition Performance Using Dynamic Focus Control

Next, we investigated the performance improvement in position recognition using the
dynamic focus control given by Equation (3). In this experiment, the zoom values W were set to
five constant values: 100, 200, 300, 400, and 500. The focus value F was sequentially computed
according to the recognized values of depth distance z. The camera calibration data D and I are
determined on the basis of the calculated focus values. During the experiment, the micro AR
marker was placed at a rotation angle φ = 40◦ to the camera for the most stable recognition.

Figure 10 shows the recognition range and error rate of the marker’s depth distance z
obtained in this experiment. The recognizable range of markers varies depending on the
zoom value W. Naturally, the larger the zoom value, the farther away the marker can be
recognized. At the maximum zoom value (W = 500), the AR markers can be recognized
from the minimum distance zmin = 0.05 m to the maximum distance z = 1.05 m in the depth
direction. Compared to Figure 9, the recognition range is expanded by adjusting the camera
focus. However, when the zoom value W is large, the recognition error rate worsens at
close distances. This is thought to be because the marker area in the image is considerably
larger because of zooming at close distances, making it more susceptible to lens distortion.
On the other hand, the recognition accuracy at close distances is good with small values
of W. According to the experimental results, proper control of the zoom value W and the
focus value F is necessary to ensure high recognition accuracy over the entire range.

Figure 10. Recognition error rate of marker depth distance (z) using dynamic focus control with
constant zoom values (W).
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4.5. Recognition Performance Using Dynamic Control of Both Focus and Zoom (Proposed Method)

After understanding the results of the two experiments described above, we investi-
gated and evaluated the recognition performance of the micro AR marker using dynamic
control of both focus and zoom values, i.e., applying the proposed camera control method.

Table 3 shows the initial values of the camera parameters and the threshold values
tp and tq used to determine the convergence of the iterative calculations. The initial zoom
value was set to the maximum value (W = 500), which has the widest recognition range, as
shown in Figure 10. The initial focus value was set at the closest distance from the camera
(F = 150) so that the scanning process was performed from near to far points from the
camera. The threshold values tp and tq for convergence judgment were set as absolute
errors. In addition, the initial values of the camera calibration data D and I were measured
with the autofocus function turned on, as described in Section 2.1.

Table 3. Initial camera parameter values and error thresholds.

Parameter Symbol Value

Zoom value W 500
Focus value F 150

Threshold of the position error tp 1.0 (mm)
Threshold of the posture error tq 0.01 (deg)

4.5.1. Performance of Translational Position Recognition

First, the precision and accuracy of the marker’s translational position recognition are
examined. The evaluation experiment was conducted by measuring the marker’s depth
distance z under three conditions of the marker’s rotation angle: φ = 0◦, 30◦, 60◦. To
focus on the performance of the position measurement in this experiment, the convergence
judgment of the marker’s posture q was not performed; only the convergence judgment of
the marker’s position p was performed.

Figure 11 shows the recognition error rate of the marker’s depth distance z. The error
rate is within ±1% for the entire range in which AR markers can be recognized. Compared
with the recognition accuracy with focus value control (see Figure 10), the proposed method
achieved significant performance improvement. Furthermore, the variation in recognition
error rates is not biased toward either positive or negative values, indicating that the
accuracy of position estimation is high when using this method. The range of recognition
distance becomes smaller at φ = 60◦, but the recognition accuracy has not deteriorated as
long as the marker position can be recognized.

Figure 11. Recognition error rate of depth distance (z) with proposed camera control for different
marker angles (φ).
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The behavior of iterative calculations during marker position recognition was also
investigated. Figure 12 shows the iteration time required for the convergence of position
recognition in this experiment. According to the results, the iteration time is within 0.7 s,
indicating that the AR marker at an unknown location can be recognized quickly with high
accuracy. In addition, as the depth distance z increases, the iteration time tends to increase.
Because the threshold value for the position convergence tp is set to a constant value of
1.0 mm, independent of the depth distance, the convergence accuracy becomes relatively
high at large distances.

In relation to the iteration time, Figure 13 shows the convergence of the recognized
values of depth distance z by iterative calculations for five experimental trials. In this
experiment, the true values of the marker’s depth distance were set to (a) z = 1.0 m,
(b) z = 0.5 m, and (c) z = 0.1 m with a rotation angle of φ = 40◦. According to the results,
although the number of convergence calculations tends to increase at large depth distances,
recognition with the specified absolute accuracy (1.0 mm) is achieved over the entire range
of recognizable depth distances. Note that the first detected values of z were larger than
the true value in all cases. This is because the focus position is not perfectly adjusted to the
marker immediately after scanning, and the AR marker is recognized as smaller than its
actual size in the blurred image.

Figure 12. Iteration time of the depth distance (z) to converge with the proposed camera control for
different marker angles (φ).

(a)

Figure 13. Cont.
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(b)

Figure 13. Convergence of the depth distance (z) measurement values to true values by iteration:
(a) z = 1.0 m; (b) z = 0.5 m; (c) z = 0.1 m.

4.5.2. Performance of Posture Recognition

Next, the precision and accuracy of the marker’s posture recognition are examined.
The evaluation experiment was conducted by measuring the marker’s rotation angle φ
under three depth distance conditions: z = 0.05, 0.55, 1.05 m. To focus on the performance
of the posture measurement in this experiment, the convergence judgment of the marker’s
position p was not performed; only the convergence judgment of the marker’s posture q
was performed.

As an experimental result, Figure 14 shows the recognition error of the marker’s
rotation angle φ at each condition. When the marker angle is in the range of 20◦ to 65◦,
accurate recognition within an error of ±1◦ is achieved. On the other hand, in the range
where the marker angle is smaller than 20◦, the recognition error is as large as 2.5◦ at
maximum. This is due to the characteristic of AR markers that deteriorates recognition
accuracy at angles near the frontal direction of the camera.

In addition, Figure 15 shows the iteration time required for the convergence of posture
recognition in this experiment. According to the result, the iteration time is within 0.6 s,
resulting in fast convergence of the recognized value of φ within the specified iteration
accuracy (tq = 0.05◦) over the entire recognizable angular range. It can also be seen that
the larger the depth distance z, the longer it takes to converge the recognized value of the
marker angle φ.
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Figure 14. Recognition error of marker angle (φ) with the proposed camera control for different depth
distances (z).

Figure 15. Iteration time of marker angle (φ) with the proposed camera control for different depth
distances (z).

5. Discussion

Using the proposed dynamic camera control system, a 10 mm square micro AR marker
can be recognized with an accuracy better than ±1.0% for depth distance and 2.5◦ for
rotation angle. The depth recognition range is 1.0 m, which is five times greater than the
range with fixed camera parameters. In the most recent relevant study, Inoue et al. [41]
proposed an AR marker pose estimation system using a 64 mm × 64 mm AR marker, in
which the recognition accuracy was 4% in the depth direction and 3.9◦ in the rotation
angle. The depth recognition range was 0.1∼0.7 m. Compared with the state-of-the-art
research described above, the proposed method in this study achieves significantly better
performance in terms of marker size, recognition accuracy, and recognition range.

Regarding the iteration time, the proposed system requires a maximum of 0.6–0.7 s for
convergence of recognition values for both position and posture. For application to object
tracking in a robotic manipulation system, the iteration time can be significantly reduced,
except for the initial detection. This is because the previous marker recognition value and
the kinematic information of the robot arm can be used to efficiently determine the initial
values of the camera parameters at the next recognition.

However, the recognition performance of the proposed system depends on the hard-
ware specifications. A camera with higher zoom magnification capabilities, including
an optical zoom, can further expand the recognition range. Iteration time also depends
on the computational resources. Considering the low-cost implementation, this study
uses a normal laptop PC without a GPU. However, the real-time performance of the sys-



Electronics 2023, 12, 4398 16 of 18

tem can be further improved using an industrial camera with a high frame rate and a
GPU-accelerated processor.

6. Conclusions

In this paper, a dynamic camera parameter control method was proposed for the accu-
rate and precise recognition of micro AR markers. In this system, the detected position and
posture of the marker are converged to a specified accuracy through iterative calculations
by updating the camera parameters. Evaluation experiments have shown the significant
superiority of the proposed system in recognition performance over existing methods.

In future work, we aim to utilize the proposed recognition method for position esti-
mation of small or transparent objects using micro AR markers. Subsequently, we plan to
apply this technology in various domains, such as constructing a laboratory automation
framework and automating tasks related to object organization and tidying. Ultimately, we
intend to implement a robotic arm-based object handling system.
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