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Abstract: Artificial intelligence (AI) advancements, especially deep learning, have significantly
improved medical image processing and analysis in various tasks such as disease detection, clas-
sification, and anatomical structure segmentation. This work overviews fundamental concepts,
state-of-the-art models, and publicly available datasets in the field of medical imaging. First, we
introduce the types of learning problems commonly employed in medical image processing and then
proceed to present an overview of commonly used deep learning methods, including convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks
(GANs), with a focus on the image analysis task they are solving, including image classification, object
detection/localization, segmentation, generation, and registration. Further, we highlight studies
conducted in various application areas, encompassing neurology, brain imaging, retinal analysis,
pulmonary imaging, digital pathology, breast imaging, cardiac imaging, bone analysis, abdominal
imaging, and musculoskeletal imaging. The strengths and limitations of each method are carefully
examined, and the paper identifies pertinent challenges that still require attention, such as the limited
availability of annotated data, variability in medical images, and the interpretability issues. Finally,
we discuss future research directions with a particular focus on developing explainable deep learning
methods and integrating multi-modal data.

Keywords: artificial intelligence; deep learning; machine learning; medical image classification;
medical image segmentation; medical image registration

1. Introduction

The integration of artificial intelligence (AI) methods into the healthcare domain
has brought transformative advancements that hold substantial potential for improving
medical practices and diagnostic capabilities [1,2]. Within this paradigm, the convergence
of AI with medical image analysis is a notable achievement, offering profound insights
into human anatomy and physiology through the intricate interpretation of visual data [3].
This confluence of computational intelligence and medical imaging has propelled the
development of sophisticated techniques with high significance for disease detection,
prognosis, and treatment planning.

Medical imaging has evolved to be a foundation of modern clinical practice, enabling
clinicians to gather valuable insights into the inner workings of the human body. How-
ever, the complexity of imaging modalities such as positron emission tomography (PET),
magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound imaging
(UI) [4–7] has presented a challenge in efficient and accurate analysis. Manual interpretation
of these images is highly influenced by subjectivity and time consumption, necessitating
innovative solutions to harness the full potential of these visual data.
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AI methods, particularly machine learning (ML) and deep learning (DL), have emerged
as transformative solutions to address the challenges posed by the complex nature of mod-
ern imaging modalities. These advanced computational techniques have revolutionized
how medical professionals extract meaningful information from complex visual data.
By leveraging vast amounts of annotated medical images, ML algorithms have been trained
to discern intricate patterns, anomalies, and correlations that might not be easily iden-
tifiable by the human eye. DL, a subset of ML, has refined this process by employing
neural networks with numerous layers, enabling the extraction of hierarchical features
from raw data.

Within the domain of medical imaging, AI-powered methods have demonstrated a
remarkable ability for automating tasks that were previously vulnerable to subjectivity
and variability. These encompass different tasks such as image classification [8,9], object
localization and detection, segmentation [10], synthetic image generation, and registra-
tion [11–13]. These AI-powered methods enhance the precision and accuracy of diagnostic
outcomes while simultaneously expediting the analysis process.

This work aims to provide a comprehensive overview of the rapidly evolving field of
AI techniques in medical image analysis. The motivation behind this paper stems from the
increasing significance of AI methodologies in revolutionizing healthcare and diagnostics.
As medical imaging modalities advance in complexity and volume, the need for efficient
and accurate analysis becomes more pronounced. This review paper addresses this need
by exploring and evaluating various ML and DL methods and commonly used datasets
in medical image analysis. By synthesizing existing research, methodologies, challenges,
and breakthroughs, the paper aspires to serve as a valuable resource for researchers and
practitioners in the medical and computer science fields. The contributions of this paper
can be summarized as follows:

• The paper synthesizes a diverse range of ML methods that have been developed and
applied to medical image analysis. Through a critical analysis of various AI techniques,
the paper offers insights into the strengths, limitations, and potential applications of
each method.

• The paper provides a comprehensive overview of existing publicly available datasets
of various anatomical structures that are suitable for use in AI-powered medical image
analysis.

• The review identifies emerging trends and challenges within the field of AI-driven
medical image analysis. By highlighting gaps in current research and pointing out
areas that require further exploration, the paper fosters the growth of knowledge and
innovation in this rapidly evolving field.

• The paper discusses the translation of AI techniques from research to clinical practice,
emphasizing their potential impact on healthcare delivery.

Through comprehensive exploration and evaluation of current state-of-the-art method-
ologies, we aim to contribute to the advancement of both academic research and practical
applications in the pursuit of improving healthcare outcomes by addressing following
research questions:

1. What are the prominent AI methods used in medical image analysis?
2. In what medical imaging tasks have AI methods shown the most promising results?
3. What are commonly observed anatomical structures and available datasets for the

development of AI algorithms?
4. How can AI-driven medical image analysis be effectively translated into clinical

practice?

The study is organized as follows. Section 2 briefly describes the most essential learn-
ing methods in the ML field. Section 3 provides a brief theoretical background on DL
architectures commonly applied for medical image processing and analysis. Section 4
overviews commonly solved medical imaging tasks, including medical image classification,
object localization, detection, segmentation, synthetic image generation, and registration.
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Section 5 overviews commonly observed anatomical structures in medical imaging, includ-
ing abdominal, brain, breast, cardiac, musculoskeletal, pulmonary, and retinal imaging.
This section also includes a list of datasets for each anatomical structure. Section 6 discusses
the possibility of translation of AI techniques into clinical practice. Finally, Section 7 gives a
concluding remarks.

2. Learning Methods in Medical Image Analysis

In medical image analysis, ML methods have emerged as essential tool for analyzing
intricate patterns and insights encoded within medical images. These methods primarily
address two distinctive problem categories, which are shown in Figure 1.

The first category encompasses supervised learning, wherein algorithms learn from
annotated data to predict output variables based on input features, facilitating accurate
diagnoses and classifications. Unsupervised learning, in contrast, involves the exploration
of unlabeled data to uncover latent structures and relationships within medical images,
enabling the discovery of inherent patterns and clusters. Reinforcement learning introduces
an agent–environment interaction dynamic based on cumulative reward maximization
through iterative decision making. The second group of learning problems in medical image
analysis encompasses hybrid methodologies. Semi-supervised learning leverages labeled and
unlabeled data to enhance model performance in cases where comprehensive annotations
are scarce. Self-supervised learning exploits intrinsic data relationships by predicting missing
portions of the data themselves, thereby effectively harnessing unlabeled data for learning.
Multi-instance learning suits scenarios where data instances are interconnected, allowing the
algorithm to grasp relationships between instances within the broader context.

Figure 1. An overview of ML types and techniques in medical image analysis.

2.1. Supervised Learning

Supervised learning [14] is a computational approach where a model learns to map
input data to corresponding output labels through exposure to a labeled training dataset.
The term supervised stems from providing explicit guidance in the form of labeled examples
during the model’s training phase. This guidance enables the model to generalize from
the training data and subsequently predict labels for unseen instances. Supervised learn-
ing is a powerful approach in tasks with abundant labeled datasets when the goal is to
make predictions or classifications based on historical patterns [15]. Generally, supervised
learning is often used for tasks like classification and regression in different fields such as
categorizing emails as spam or non-spam [16,17] or estimating the price of a house based
on features such as square footage and location [18,19].

In medical image analysis, supervised learning is frequently utilized for image seg-
mentation [20], and disease classification [21]. For instance, supervised learning enables
the accurate delineation of anatomical structures and pathological regions within medical
images in segmentation tasks, facilitating precise treatment planning and monitoring [22].

Supervised learning excels in detecting intricate patterns in medical images to accu-
rately identify complex conditions often missed by human perception [23]. Its quantitative
nature enhances analysis reliability, minimizing variability between observers and enabling
disease progression prediction. The trained models process images rapidly, expediting
clinical workflows, and can generalize knowledge to diverse patient cases. However,
high-quality labeled data are essential but resource-intensive to acquire [24]. Moreover,
overfitting often significantly affects generalization, biases in training data may lead to
skewed predictions, and complex models can compromise interpretability, which is vital for
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informed medical decisions. To harness supervised learning’s potential in medical practice,
addressing data dependencies, overfitting, bias, and interpretability is essential [25,26].

2.2. Unsupervised Learning

Unsupervised learning [27] is a computational approach where algorithms seek to
uncover latent patterns and structures within unlabeled data without the guidance of
explicit output labels. Unlike supervised learning, the absence of labeled examples neces-
sitates the model’s capacity to discern inherent relationships and groupings within the
data, thereby facilitating its categorization and subsequent interpretation [28]. Choosing
unsupervised learning is beneficial when the goal is to explore and understand the inher-
ent structure of the data, making it ideal for tasks where explicit output labels are either
challenging to obtain or unnecessary, and in situations where labeled data are scarce or
unavailable [29]. Unsupervised learning is used for tasks like clustering [30–33], dimen-
sionality reduction [34,35], and anomaly detection [36].

In medical image analysis, unsupervised learning excels in different classification
tasks like benign and malignant tumor detection [37–39], domain adaptation in cardiac
arrhythmia classification [40,41], brain disorder classification [42–44], and mass detection
in beast cancer [45].

The crucial benefit of unsupervised learning in medical image processing and analysis
is in its ability to uncover hidden patterns and relationships, which reveals subtle variations
in images. This aids in understanding complex anatomical and pathological phenomena. It
facilitates novel insights and hypothesis generation by categorizing unlabeled data into
clusters. Techniques like dimensionality reduction enhance interpretability by simplifying
high-dimensional image analysis. Nevertheless, unsupervised models can capture noise,
generating clinically irrelevant categories. Thus, applying unsupervised learning demands
awareness of its challenges, reliance on clinical expertise, and rigorous validation.

2.3. Reinforcement Learning

Reinforcement learning [46] has the capacity to adaptively learn from interactions, and
aligns well with dynamic medical contexts, where optimal decisions depend on evolving
patient conditions and complex imaging processes. Reinforcement learning is suitable for
tasks where the optimal strategy unfolds over time through trial and error. Choosing this
approach is recommended when the problem involves decision making under uncertainty,
and the model needs to learn from its actions and experiences. Generally, reinforcement
learning is used for tasks like game playing [47,48], robotic control [49,50], and autonomous
driving systems [51].

In medical image processing and analysis, reinforcement learning is used for tasks such
as optimizing imaging parameters during acquisition [52], designing patient-specific treat-
ment regimens [53,54], and automating the exploration of diverse imaging sequences [55].
Moreover, reinforcement learning is leveraged for image enhancement by tailoring post-
processing algorithms to individual patients’ characteristics, which enhances diagnostic
accuracy [56]. It is also significant in anatomical and biological landmark and coordinate
detection [57,58] when the task is to find landmarks that can be precisely reallocated on
images produced by different imaging modalities, or reducing the needed time to reach the
landmark by using a continuous action space [59], or for localization of modality-invariant
landmarks [60]. In object detection and extraction tasks, reinforcement learning benefits
in tasks like breast lesion detection [61,62], where learning agents gradually learn the
policy to choose among actions to transit, scale the bounding box, and finally localize the
breast lesion. It is also used to address the lack of labeled data in brain tumor detection
tasks [63,64]. Therefore, reinforcement learning models could work as robust lesion de-
tectors with limited training data [65], reducing time consumption and providing some
interpretability [66]. Moreover, in segmentation and classification tasks, learning agents are
used for finding optimal local thresholds and post-processing parameters [67], finding the
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coarse location of region of interest, which is further used for final segmentation [68], or for
hyperparameter optimization of existing approaches [69–71].

Reinforcement learning offers key benefits. Its adaptability supports personalized
treatment strategies, aligning with precision medicine’s principles. Adaptive image acqui-
sition optimizes protocols in real time, enhancing safety and efficiency while balancing
exploration and exploitation as well as fostering innovation, and long-term planning opti-
mizes patient outcomes [72]. A common challenge occurs in sample complexity since it
requires numerous interactions, which can be limited in medical contexts. Crafting accurate
reward functions demands expertise. Ethical concerns arise due to real-world consequences
of learning-phase decisions [73]. Addressing these challenges ensures responsible reinforce-
ment learning integration in clinical decision making.

2.4. Semi-Supervised Learning

Semi-supervised learning [74] has elements of both supervised and unsupervised
learning. This methodology uses a limited set of labeled data alongside a more extensive
pool of unlabeled data to train models that harness labeled information for guidance while
extrapolating latent patterns from the unlabeled data. Choosing semi-supervised learning
is appropriate when there is a need to harness the benefits of labeled data while maximizing
the utility of available unlabeled examples. Generally, semi-supervised learning is specially
used in automated speech recognition [75] and natural language processing [76].

In medical image processing and analysis, semi-supervised learning is leveraged to
mitigate the challenges posed by limited annotated medical datasets, fostering enhanced
diagnostic accuracy and improved insights. It is commonly utilized in segmentation [77],
classification [78], and artificial image generation tasks [79].

Semi-supervised learning effectively uses limited labeled data by incorporating abun-
dant unlabeled data, enhancing generalization and model robustness and overcomes
supervised learning limitations by capturing latent patterns in unlabeled data. Neverthe-
less, designing models to balance labeled and unlabeled data requires careful considera-
tion. Incorporating unlabeled data risks noise amplification, demanding quality control,
and maintaining control over learning. To effectively employ semi-supervised learning in
medical image analysis, balancing its benefits while addressing challenges is essential.

2.5. Self-Supervised Learning

Self-supervised learning [80] is an approach where the model’s training procedure
leverages intrinsic information within the data to generate surrogate labels for supervision.
This is advantageous when generating labeled data is impractical or costly. It has emerged
as a promising strategy to overcome the challenges of limited labeled datasets and is
commonly used for tasks like contrastive predictive coding [81], speech representation [82],
motion and depth estimation [83], and cross-modal retrieval [84,85].

In medical image analysis, self-supervised learning is used for tasks such as finding
similarities of adjacent frames in histopathological tissue images [86], or MRI scans [87],
object tracking [88], and correcting frame orders in 3D medical images [89,90].

Self-supervised learning enhances feature learning and model robustness, streamlining
development and alleviating annotation burdens. Designing effective pretext tasks requires
domain expertise and ensuring the seamless transfer of learned features to diverse medical
tasks demands validation and adaptations. Moreover, intensive computational demands
for tasks like contrastive learning may extend training times. Addressing these challenges
is crucial for responsible integration and harnessing self-supervised learning’s potential in
medical image analysis.

2.6. Multi-Instance Learning

Multi-instance learning [91] refers to scenarios where data instances are organized into
bags, with each bag containing multiple instances [92]. Unlike traditional single-instance
learning, where each instance is independently labeled, in multi-instance learning, bags are
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labeled based on the collective behavior of their instances [93]. This introduces a level of
ambiguity, as the specific instances responsible for the bag’s label are often unknown [94].
Choosing multi-instance learning is suitable when there is a common underlying structure
or shared information among tasks that leads to improved generalization and efficiency
across a range of related problems. Generally, it is often used for tasks like object detec-
tion [95], visual tracking in robotics [96], and human activity recognition [97], as well as in
remote sensing for detecting objects in satellite imagery [98].

When using multi-instance learning in medical image analysis, images are treated
as bags of sub-regions or lesions, which allows for more detailed insights and holistic
analysis. For example, it is commonly utilized for identifying regions of interest in different
pathologies like mass retrieval in mammograms [99]. Moreover, it is also used to incor-
porate patient-level data into the learning and prediction processes [100,101] and to fuse
all relevant information within the examination record by including multiple potentially
overlapping images or videos from different perspectives and with contextual details,
which ultimately enhances performance [102].

Multi-instance learning in medical image analysis offers several advantages [103].
It enables a holistic approach by considering relationships among sub-regions within an
image, enhancing understanding of intricate conditions. It reduces annotation effort by
labeling entire images, streamlining the process. Enhanced interpretability highlights
critical sub-regions, making diagnostic decisions more transparent. Its adaptability to
image variability makes it promising for complex conditions, enhancing accuracy and
depth of medical image analysis. However, integrating multi-instance learning into medical
image processing brings challenges as well [104]. For example, instance ambiguity and
determining contributing sub-regions complicate the identification of critical areas and
diagnostic precision. Moreover, treating images as bags may result in a loss of fine-grained
data, impacting accuracy if important features are missed. Modeling interactions between
instances within a bag is complex, requiring careful design and validation. Addressing these
issues—instance ambiguity, information loss, model complexity, and overgeneralization—is
vital for the effective use of multi-instance learning in medical image analysis [105].

3. Deep Learning Architectures in Medical Image Analysis

This section provides an overview of commonly employed deep learning approaches
in medical image analysis. These techniques include autoencoders (AEs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial net-
works (GANs), and vision transformers (ViTs), as shown in Figure 2. We explain each
method’s fundamental principles and outline their advantages and limitations.

Figure 2. An illustration of frequently employed deep learning techniques in the analysis of medical
images: (a) autoencoders [106], (b) CNNs [107], (c) GANs [108], (d) RNNs [109], and (e) ViTS [110].
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3.1. Autoencoders (AEs)

AEs are designed to capture the essential features and underlying patterns within
high-dimensional data while simultaneously reducing their dimensionality [111]. This
is achieved through a unique two-stage process: the model comprises an encoder and a
decoder, with a bottleneck section in between, embodying the compact internal representa-
tion of the input. During training, AEs receive the input both as input and target output,
compelling the model to reproduce the input by first encoding it into a compressed form
and then decoding it back to the original state. After training, the decoder is typically re-
moved, and the encoder is employed to produce compact input representations. In medical
image processing and analysis, commonly employed AEs are denoising autoencoders [112],
variational autoencoders [113], and stacked autoencoders [114].

3.2. Convolutional Neural Networks (CNNs)

CNNs consist of numerous layers of filters that acquire local features from the input
image and progressively merge them to construct more abstract representations. Typically,
the initial layers of a CNN learn basic features like edges and corners, while the later
layers focus on higher-level features such as object shapes and textures. In contrast, fully
convolutional neural networks (FCNNs), a subset of CNNs, lack fully connected layers.
They employ an encoder–decoder architecture, which enables processing input of different
sizes while producing outputs of the same dimensions. The encoder converts the input
image into a high-level feature representation, while the decoder interprets the feature maps
and restores spatial details through a series of upsampling and convolution operations,
enabling pixel-wise predictions. A prominent FCNN architecture is U-Net [115], known for
its capacity to locate objects within input images precisely.

3.3. Generative Adversarial Networks (GANs)

GANs represent an unsupervised learning technique for creating new data that closely
mimic the provided data [79]. They consist of two key components: a generator network
responsible for producing new samples and a discriminator network that distinguishes
between authentic and generated samples. In essence, the generator learns to create
samples resembling real data, while the discriminator learns to tell the genuine from the
generated. Deep convolutional generative adversarial networks (DCGANs) [116] follow a
similar GAN framework but employ deep convolutional networks for both the generator
and discriminator. For example, the significant variant is the conditional GAN (cGAN),
which can generate samples based on additional information like disease labels or image
modalities [117].

3.4. Recurrent Neural Networks (RNNs)

RNNs [118] are especially suitable for dealing with data that unfold over time, like
sequences or time-series data, where what happened before affects what happens next.
Among the most popular RNN architectures is the long short-term memory (LSTM) net-
work [119]. LSTMs are successful at capturing long-term dependencies in sequences. Unlike
traditional neural networks that quickly forget previous information, LSTMs introduce
memory cells capable of retaining essential information for extended periods. There are
several variations of LSTMs, such as bidirectional LSTM (BLSTM) and multidimensional
LSTM (MDLSTM) [120]. In medical image analysis, especially tasks involving sequential
data, RNNs offer advantages over CNNs.

3.5. Vision Transformers (ViTs)

Vision Transformers (ViTs) [121] rely on a self-attention mechanism [122], enabling the
network to attend to different regions of an image selectively, making them particularly well-
suited for processing large, high-resolution medical images. They can efficiently capture
contextual information across image patches, even in the presence of substantial anatomical
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variations [123]. ViTs find applications in tasks like image classification, segmentation,
and feature extraction [123].

3.6. Advantages and Disadvantages of DL Architectures

As seen from previous sections, DL architectures have revolutionized various domains
by offering powerful tools for automatic feature learning and complex pattern recognition.
Here, we dive into the distinct advantages and challenges associated with them, since their
understanding is crucial for optimizing the application of DL models, especially in the
demanding field of medical image analysis.

For example, AEs have demonstrated high capability in generating synthetic medical
images, which can serve as valuable data augmentation techniques for training DL models
or mitigating privacy concerns by generating synthetic data while preserving original data
characteristics [124]. When used in tasks like image denoising [125] or image reconstruc-
tion, their primary challenge is striking the right balance between data compression and
reconstruction accuracy. Overly aggressive compression can lead to a loss of clinically
relevant information, thereby impacting diagnostic accuracy [126]. Additionally, evaluating
the quality of reconstructed or generated medical images can be intricate, as there may not
always exist generally applicable and interpretable metrics for assessing accuracy [127].
Despite these challenges, ongoing research efforts aim to explore variations and refinements
of AEs to optimize their use and mitigate their limitations in the demanding field of medical
image analysis. Moreover, CNNs excel in image-related tasks by learning hierarchical fea-
tures through convolutional layers. They automatically extract local features, enabling the
recognition of complex patterns in images [128]. Despite their effectiveness, CNNs require
large amounts of labeled data for training, which can be challenging to obtain in certain
domains. Challenges like overfitting, interpretability, and computational intensity, which
are shared among all DL architectures, are specifically expressed while training deep CNNs.
Furthermore, GANs offer a unique approach to generative modeling by simultaneously
training a generator and discriminator, leading to the creation of realistic synthetic data [79].
They find applications in data augmentation and addressing privacy concerns in medical
image analysis. Nevertheless, training GANs can be challenging, because they also require
careful tuning and monitoring to achieve stable convergence. RNNs excel in handling
sequential data with long-term dependencies. Their memory cells enable the retention
of essential information over extended periods, making them suitable for tasks such as
time-series analysis in medical data [8]. Training RNNs can be computationally intensive,
and may suffer from vanishing or exploding gradient problems, affecting the learning of
long-term dependencies. While LSTMs address some of these issues, finding the right archi-
tecture and hyperparameter settings can be challenging. Interpreting the decisions made by
RNNs, especially in complex medical tasks, remains a significant challenge. Furthermore,
self-attention mechanisms in ViTs allow them to selectively attend to different regions of an
image, making them well-suited for processing large, high-resolution medical images [122].
Their ability to capture contextual information across image patches, even in the presence of
substantial anatomical variations, is a distinctive strength. Nevertheless, they may require
substantial computational resources for training due to the self-attention mechanism’s
computational complexity. The lack of spatial hierarchies might pose challenges in tasks
where local features are crucial.

All mentioned DL architectures share the ability to automatically learn representa-
tions from data, adaptability to diverse data types, and proficiency in handling large-scale
datasets. Common challenges include the need for substantial computational resources,
interpretability concerns, and the potential for biases in training data to affect model pre-
dictions. Ethical considerations related to fairness and accountability are shared challenges,
especially as these models are increasingly integrated into critical decision-making pro-
cesses. Balancing performance and interpretability remains a central challenge across these
diverse DL architectures.
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4. Common Tasks Solved by DL in Medical Image Analysis

DL has been applied to various medical imaging tasks, such as image classification,
object localization, detection, segmentation, image generation, and registration. This section
will discuss some key DL applications in medical image analysis.

4.1. Image Classification

Image classification is based on assigning images to predefined classes or categories
to accurately determine the class to which a given image belongs, relying on its visual
characteristics. In medical image analysis, classification serves two primary purposes:
object classification and exam classification. Object classification aims to classify pre-
identified objects into one of several distinct classes. Conversely, exam classification focuses
on categorizing a diagnostic image as either representing a normal or abnormal condition
or indicating the presence or absence of a particular disease.

CNNs are widely used for image classification, with various CNN frameworks, in-
cluding AlexNet [129], VGG [130], inception [131], and ResNet [132] being among the most
commonly utilized DL architectures. Since they can automatically learn discriminative
features from medical images and classify them into different disease categories, they
have been commonly utilized for classifying lung nodules in chest CT scans [133,134],
breast tumors in mammograms [135], diagnosing diabetic retinopathy in retinal fundus
images [136], brain tumor classification [137,138], and cardiovascular disease classifica-
tion [139]. Besides CNNs, ViTs are recently been used for medical brain and breast image
classification tasks [140,141].

4.2. Object Localization and Detection

Object localization and detection are fundamental tasks within computer vision, in-
volving identifying objects in images or videos. Object localization focuses explicitly on
delineating the exact spatial boundaries of an object within an image. In contrast, object
detection encompasses both localization and recognizing the object itself.

Object localization and detection are vital components of computer-aided diagnosis in
medical image analysis. CNNs have demonstrated their effectiveness in identifying the
presence and location of specific objects within medical images, such as lung nodules, breast
tumors, and brain tumors. Different CNN architectures, including Faster R-CNN [142], You
Only Look Once (YOLO) [143], and Single Shot MultiBox Detector (SSD) [144], have been
employed to achieve remarkable performance in object detection and localization tasks for
medical images.

For example, the Faster R-CNN framework employs a region proposal network to
identify potential object locations and a subsequent network to classify these proposals
as either an object of interest or background. On the other hand, the YOLO framework
utilizes a single network to analyze the entire image and directly predict bounding boxes
and class probabilities for objects. Meanwhile, the SSD framework incorporates multiple
layers to predict bounding boxes of varying sizes and aspect ratios, enabling precise object
detection and localization within medical images.

These object detection and localization techniques have found successful applications
across various medical imaging tasks, encompassing tasks like lung nodule detection
in chest scans [145], breast lesion identification in mammograms [146], and brain tumor
segmentation [147]. Their capacity to accurately identify and locate objects of interest
within medical images holds the potential to enhance diagnostic precision and support
more effective clinical decision-making.

4.3. Image Segmentation

Image segmentation involves the intricate task of partitioning an image into multiple
segments, each corresponding to a specific object or region of interest present within
the image. These regions typically represent anatomical structures or any abnormalities
that might be present. CNNs have exhibited exceptional performance in medical image
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segmentation, primarily due to their ability to autonomously learn features from extensive
sets of annotated data.

Several architectures based on FCNNs, including U-Net [115], DeepLab [148], and Mask
R-CNN [149], have been leveraged to attain state-of-the-art results in medical image seg-
mentation tasks. For example, the U-Net framework comprises an encoder network for
extracting features from input images and a decoder network for generating segmentation
maps. The DeepLab architecture utilizes techniques like atrous and dilated convolutions to
capture multiscale contextual information, significantly enhancing segmentation accuracy.
The Mask R-CNN architecture introduces an additional segmentation branch responsible
for producing pixel-level segmentation masks. Furthermore, ViTs are being applied to
segmentation tasks when small training datasets are available [150], while GANs are often
used as data augmentation techniques that precede segmentation tasks [151].

These advanced medical image segmentation techniques have demonstrated suc-
cessful applications across various imaging modalities and tasks. Examples include
the segmentation of brain tumors in MRI [152], lung nodules in chest CT scans [153],
polyps [154], and vessel delineation [155]. Additionally, they find widespread use in car-
diovascular image segmentation tasks, encompassing the isolation of specific structures
like the aorta [156,157], heart chambers [158–160], epicardial tissue [161], left atrial ap-
pendage [162,163], and coronary arteries [164]. Precise segmentation is invaluable as it
facilitates quantification, classification, and visualization of medical image data, ultimately
supporting more informed clinical decision-making processes.

4.4. Image Generation

Image generation refers to creating novel images that closely resemble real patient
data. This capability is valuable in diverse applications, including data augmentation or for
creating synthetic patient data often used for training DL models. In the realm of medical
imaging, GANs have emerged as a widely employed technique for image generation tasks.

For instance, GANs find common use in medical imaging tasks like generating MRI
images from CT scans or producing realistic skin lesion images for dermatological pur-
poses [165]. Moreover, GANs and AEs are essential in creating synthetic medical images
for training DL models [166]. They have proven beneficial in tasks such as image de-
noising [167] and image super-resolution [168]. Specifically, cGANs have been harnessed
in diverse medical image synthesis tasks. This includes tasks like synthesizing MRIs
based on CT images and generating realistic CT images defining cardiovascular structures,
particularly in cardiology applications [117].

4.5. Image Registration

Image registration is another critical task within the domain of medical image analysis.
This task refers to the alignment of two or more images. These images may originate from
the same patient but differ in acquisition times or stem from different patients or imaging
modalities. Image registration is immensely useful in various medical imaging applications,
encompassing multi-modal and deformable image registration [169]. The latter is indis-
pensable for monitoring disease progression, formulating treatment plans, and guiding
image-based medical interventions.

In deformable image registration, CNNs have found significant application [170].
The primary objective here is to estimate a dense deformation field that maps the voxels of
one image to their corresponding counterparts in another image. Typically, CNN-based
registration methods entail training a network to predict this deformation field based
on input images. This training process employs a similarity loss function, such as cross-
correlation or mutual information.

Beyond CNNs, other DL techniques, including GANs and Siamese networks [171],
have been deployed for image registration tasks within medical imaging. GANs, for ex-
ample, have been instrumental in multi-modal image registration tasks, aligning images
acquired through distinct imaging modalities like CT and MRI [172]. Siamese networks,
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on the other hand, have proven effective in registration tasks centered on matching image
patches. This is particularly useful in tasks such as landmark detection within brain MRI
scans [173]. Despite the successes achieved by DL methods in image registration tasks,
several challenges remain. These include the need for robust and efficient registration
techniques and the potential for overfitting of models.

5. Commonly Observed Anatomical Structures and Publicly Available Datasets

Commonly observed anatomical structures in medical imaging, such as the brain,
bones, heart, lungs, liver, and breast, have been the focus of extensive research and analy-
sis within the field of ML. Researchers and practitioners have curated publicly available
datasets encompassing various modalities and applications for these structures. These pub-
licly available datasets play a crucial role in advancing the development and evaluation of
ML algorithms for medical image analysis, fostering collaboration, and driving innovation
in the field.

This section overviews commonly used anatomical structures for developing ML
algorithms in medical image processing and analysis as shown in Figure 3. We provide
a list of datasets for each anatomical structure that can serve as a valuable resource for
researchers and practitioners developing ML algorithms in different medical areas.

Figure 3. An overview of commonly observed anatomical structures in the field of medical image
processing and analysis: (a) abdominal imaging, (b) brain imaging, (c) breast imaging, (d) cardiac
imaging, (e) musculoskeletal imaging, (f) pulmonary imaging, and (g) retinal imaging.

5.1. Abdominal Imaging

Abdominal imaging plays a vital role in the medical field, offering a comprehensive
and non-invasive visualization of the internal structures and abnormalities within the
abdominal region. Its primary application lies in the diagnosis and monitoring of various
medical conditions, including abdominal tumors [174], gastrointestinal disorders [175], liver
diseases [176], and kidney ailments. Through the detailed imaging of abdominal organs,
healthcare professionals can accurately identify abnormalities, assess disease progression,
and plan suitable treatment strategies [177].

Beyond its clinical applications, abdominal imaging is fundamental in medical re-
search. It empowers scientists to explore abdominal organs’ functions, interactions, and con-
nectivity. It contributes to a deeper understanding of physiological processes, metabolic
functions, and the mechanisms underlying various abdominal-related conditions. Func-
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tional imaging techniques, such as dynamic contrast-enhanced MRI and nuclear medicine
scans, can reveal how different abdominal organs respond to specific stimuli or dis-
eases [178]. Moreover, abdominal imaging is indispensable in developing and evaluating
novel medical interventions and therapies. Researchers utilize it to assess the effects of ex-
perimental treatments, study the response of abdominal organs to medications, and refine
therapeutic approaches.

Table 1 summarizes commonly used abdominal organ benchmark datasets for devel-
oping and testing ML algorithms.

Table 1. Publicly available datasets for abdominal imaging that are commonly used to develop ML
learning algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

AbdomenCT-1K [179] CT Liver, kidney, spleen, pancreas 1112

MSD Pancreas [180] CT Pancreas and tumor 281/139

MSD Spleen [180] CT Spleen 41/20

LiTS [181] CT Liver and tumor 131/70

CHAOS [182] CT, MRI Liver 90

KiTS [183] CT Kidney and tumor 210/90

CT-ORG [184] CT Liver, lungs, bladder, kidney, bones, and brain 119/21

NIH Pancreas [185] CT Pancreas 80

BTCV [186] CT Spleen, right kidney, left kidney, gallbladder,
esophagus, liver, stomach, aorta, inferior vena
cava, portal vein, splenic vein, pancreas, right
adrenal gland, left adrenal gland

30/20

5.2. Brain Imaging

Brain imaging offers a comprehensive and non-invasive method of visualizing the
brain’s internal structure, function, and abnormalities [187]. Its primary application is diag-
nosing and monitoring neurological disorders, including brain tumors, stroke, Alzheimer’s
disease, and multiple sclerosis [188]. Healthcare professionals can identify abnormalities,
assess disease progression, and plan appropriate treatment strategies by capturing detailed
brain images. Brain imaging also provides precise anatomical information, aiding neuro-
surgeons in navigating delicate procedures during surgical planning [189]. Moreover, brain
imaging helps develop and evaluate novel therapies and interventions. Researchers use it
to assess the effects of experimental treatments, study the brain’s response to medications,
and refine therapeutic approaches. Brain imaging has also become increasingly important
in the emerging field of neuroinformatics [190], where machine learning and data-driven
techniques are employed to analyze large-scale datasets and advance our understanding of
brain disorders.

Beyond clinical diagnosis and treatment, brain imaging serves as a foundation of
neuroscience research. It allows scientists to investigate brain functions, connectivity,
and neural pathways, leading to a deeper understanding of cognitive processes, behavior,
and the underlying mechanisms of various brain-related conditions. Functional brain
imaging techniques such as fMRI and PET scans can reveal how different brain regions
become active during specific tasks or emotional states [191].

Table 2 summarizes commonly used brain benchmark datasets for developing and
testing ML algorithms.
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Table 2. Publicly available datasets for brain imaging that are commonly used to develop ML learning
algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

BraTS 2021 [192] MRI (T1, T1c, T2, FLAIR) Whole tumor, tumor core,
enhancing tumor core

2000

ADNI [193] MRI Alzheimer disease, healthy
brain, mild cognitive im-
pairment

1800

IXI Dataset [194] MRI (T1, T2, PD) Brain regions, cerebrospinal
fluid

600

MRBrainS [195] MRI (T1, T1c, T2, FLAIR) Gray matter, white matter,
cerebrospinal fluid

20/15

iSEG 2017 [196] MRI (T1, T2) Gray matter, white matter,
cerebrospinal fluid

10/13

iSEG 2019 [197] MRI (T1, T2) Data 23/16
ISLES-2022 [198,199] MRI (Diffusion-weighted,

perfusion)
Stroke lesions 250/150

MSSEG Challenge [200,201] MRI (T1, T2, FLAIR) Multiple sclerosis lesions 40/60

5.3. Breast Imaging

Breast imaging is a critical medical technique that provides a non-invasive means of
visualizing the internal structures of the breast. Its primary application is in detecting,
diagnosing, and monitoring breast-related health concerns. Through precise imaging,
healthcare professionals can identify abnormalities, assess disease stages, and formulate
appropriate treatment plans [202]. Breast imaging, which includes mammography, ultra-
sound, and MRI, is instrumental in early breast cancer detection, significantly improving
survival rates [203]. Breast imaging also contributes to the development and evaluation
of novel therapies and interventions. Researchers use it to assess the effectiveness of
experimental treatments, study the response of breast tissue to medications, and refine
therapeutic strategies. Additionally, breast imaging is at the forefront of emerging fields
like radiogenomics, where ML and data-driven approaches are applied to analyze complex
imaging data and genetic information. This interdisciplinary approach holds the potential
to uncover personalized treatment options and tailor healthcare strategies for individuals
at risk of breast-related conditions.

Besides its clinical significance, breast imaging plays a essential role in advancing
medical research. It empowers scientists to investigate breast tissue composition, hormonal
influences, and genetic factors, leading to a deeper understanding of breast physiology,
disease mechanisms, and risk factors. Functional imaging techniques, such as contrast-
enhanced breast MRI [204], offer insights into vascularization patterns and breast tissue
behavior during different phases of the menstrual cycle.

Table 3 summarizes commonly used breast benchmark datasets for developing and
testing ML algorithms.

Table 3. Publicly available datasets for breast imaging that are commonly used to develop machine
learning algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

CBIS-DDSM [205] Mammography Masses, calcifications, normal tissue 2620
INbreast [206] Mammography Masses, calcifications, normal tissue 410

MIAS [207] Mammography Microcalcifications, masses,
architectural distortion 322/322

TCIA Breast
Datasets [185,208]

MRI, CT, Ultrasound,
PET Varies 105,050
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5.4. Cardiac Imaging

Cardiac imaging is a crucial medical field that provides a non-invasive means of visu-
alizing the heart’s structure, function, and any potential abnormalities [209]. Its primary
application lies in diagnosing and monitoring various cardiovascular disorders, including
coronary artery disease, heart valve problems, congenital heart defects, and heart failure.
By obtaining detailed images of the heart, healthcare professionals can identify issues,
assess disease progression, and formulate precise treatment plans. Cardiac imaging tech-
niques, such as echocardiography, cardiac magnetic resonance imaging (CMRI), and cardiac
computed tomography (CCT), are essential tools in cardiology [139,210]. Cardiac imaging
also contributes to the development and evaluation of novel cardiovascular therapies. Re-
searchers utilize these imaging techniques to examine the effects of experimental treatments,
study the heart’s response to medications, and refine therapeutic strategies. Additionally,
in the era of precision medicine, cardiac imaging plays a crucial role in tailoring treatments
for individuals based on their unique cardiac anatomy and function.

Beyond clinical diagnosis and treatment, cardiac imaging plays a pivotal role in
advancing cardiovascular research. It enables scientists to explore cardiac functions, blood
flow dynamics [211], and the interaction between different heart chambers [158–160]. This
deeper understanding of cardiac physiology and pathology helps researchers uncover the
mechanisms behind heart-related conditions and develop innovative treatment approaches.
Functional imaging methods like cardiac stress tests can assess how the heart responds to
physical or pharmacological stress, providing valuable insights into its performance under
different conditions [212].

Table 4 summarizes commonly used cardiovascular benchmark datasets for develop-
ing and testing ML algorithms.

Table 4. Publicly available datasets for cardiac imaging that are commonly used to develop machine
learning algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

ACDC [213] cine-MRI Left atrium, left ventricle, myocardium 100/50
CAMUS [214] Ultrasound Left atrium, left ventricle, myocardium 450/50

Echonet-Dynamic [215] Echocardiography Left ventricle (healthy, low ejection
fraction, arrhythmia) 10,030

Sunnybrook cine-MRI Different pathologies 45

DETERMINE [216] MRI Coronary artery diseases, ventricular
dysfunction 450

MM-WHS [217,218] CT, MRI
Whole heart, left atrium, left ventricle,
myocardium, right atrium, right
ventricle, pulmonary arteries

20/20

5.5. Musculaoskeletal Imaging

Musculoskeletal imaging is a pivotal field in medical diagnostics that offers a non-
invasive way to visualize the bones, joints, muscles, and related structures of the body [219].
Its primary application is to diagnose and manage various musculoskeletal disorders
and conditions, including fractures, arthritis, ligament injuries, and tumors [220,221].
By generating detailed images of the musculoskeletal system, healthcare professionals can
accurately identify issues, assess the extent of injuries, and plan appropriate treatment
strategies. This imaging domain encompasses various techniques, including X-rays, MRI,
CT, and ultrasound.

In addition to clinical diagnosis and treatment planning, musculoskeletal imaging
plays a vital role in advancing musculoskeletal research and orthopedic medicine [222]. It
allows researchers to delve into the intricacies of bone and joint anatomy, biomechanics,
and pathology. By studying musculoskeletal images, scientists can gain insights into how
injuries occur, how bones and joints heal, and how the body’s mechanical systems func-
tion. This knowledge is essential in developing innovative surgical techniques, orthopedic
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implants, and rehabilitation strategies. Musculoskeletal imaging is also indispensable in
guiding surgical interventions. Orthopedic surgeons and other specialists use pre-operative
imaging to plan procedures such as joint replacements [223], fracture fixation [224], and lig-
ament repairs. During surgery, real-time imaging, such as fluoroscopy, helps ensure the
accuracy of procedures and minimizes damage to surrounding tissues. Furthermore,
musculoskeletal imaging contributes to sports medicine, enabling sports physicians and
trainers to assess and manage athletic injuries [225]. It aids in evaluating the severity of
injuries, tracking healing progress, and determining an athlete’s readiness to return to
sports activities.

Table 5 summarizes commonly used musculoskeletal benchmark datasets for develop-
ing and testing ML algorithms.

Table 5. Publicly available datasets for musculoskeletal imaging that are commonly used to develop
ML algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Number of Instances

MURA [226] Radiographs Elbow, finger, hand, humerus,
forearm, shoulder, wrist 36,808/3197

FracAtlas [227] Radiographs Bone fractures 4083
FALLMUD [228] Ultrasound Musculoskeletal disorders 812
ChestX-ray8 [229] X-ray Thoracic diseases 112,120

5.6. Pulmonary Imaging

The pulmonary imaging field employs non-invasive techniques to visualize the res-
piratory system, including the lungs and associated structures [230]. This imaging is
instrumental in diagnosing and managing a wide range of pulmonary conditions and
diseases, such as pneumonia, chronic obstructive pulmonary disease (COPD), lung cancer,
and pulmonary embolism. By producing detailed images of the respiratory system, health-
care professionals can accurately detect abnormalities, assess disease severity, and develop
tailored treatment plans.

The primary modalities used in pulmonary imaging include chest X-rays, CT scans,
MRI, and PET scans. Each of these techniques provides specific insights into lung anatomy,
functionality, and pathology [231].

Beyond clinical diagnosis and treatment, pulmonary imaging plays a significant
role in advancing respiratory medicine and pulmonary research. It allows scientists and
clinicians to explore lung function, mechanics, and responses to various stimuli. Research
involving pulmonary imaging has led to breakthroughs in understanding lung diseases’
underlying mechanisms and developing innovative therapies. For example, functional
imaging techniques like pulmonary function testing (PFT) can assess lung capacity and
airflow, aiding in the diagnosis and management of conditions like asthma and COPD [232].

Table 6 summarizes commonly used pulmonary benchmark datasets for developing
and testing ML algorithms.

Table 6. Publicly available datasets for pulmonary imaging that are commonly used to develop
machine learning algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

VinDr-CXR [233] X-ray Lungs, 28 abnormalities 15,000/3000
MIMIC-CXR [234] X-ray Lungs, 14 abnormalities 58/80
PadChest [235] X-ray Lungs, 193 abnormalities 160/868
CheXpert [236] X-ray Lungs, 14 abnormalities 224/316
ChestX-ray14 [229] X-ray Lungs, 14 abnormalities 112/120
JSRT [237,238] X-ray Lungs, nodules 247/247
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5.7. Retinal Imaging

Retinal imaging is a specialized field of medical diagnostics that employs non-invasive
imaging techniques to visualize the retina, the light-sensitive tissue at the back of the
eye [239]. It plays a critical role in diagnosing and monitoring various ocular condi-
tions, including diabetic retinopathy [240,241], macular degeneration [242], glaucoma [243],
and retinal vascular diseases [244]. By providing detailed retina images, retinal imaging
enables eye care professionals to detect abnormalities, assess disease progression, and tailor
treatment plans for optimal outcomes.

Various modalities are used in retinal imaging, with fundus photography [245,246]
and optical coherence tomography (OCT) [247] being among the most common. Fundus
photography captures high-resolution color images of the retina, allowing for the iden-
tification of structural changes, such as bleeding or swelling. On the other hand, OCT
provides cross-sectional images of retinal layers and helps visualize subtle changes in
retinal thickness and integrity [248].

Table 7 summarizes commonly used retina benchmark datasets for developing and
testing ML algorithms.

Table 7. Publicly available datasets for retinal imaging that are commonly used to develop machine
learning algorithms. “Tr/Ts” denotes training/testing set, respectively.

Dataset Modality Structures Tr/Ts

RFMID [249] Fundus Retina 2560/640
DIARETDB1 [250] Fundus Retina 89/86
DRIVE [251] Fundus Retina 20/20
STARE [252] Fundus Retina 20/20
CHASE DB14 [253] Fundus Retina 28/14
HRF [254] Fundus Retina 22/23
FIVES [255] Fundus Retina vessels 800

6. The Translation of AI Techniques from Research to Clinical Practice

The successful translation of AI-driven medical image analysis from research to clinical
practice entails a multifaceted approach that encompasses technical, ethical, regulatory,
and clinical considerations [256]. This section gives details about steps involved in over-
coming the gap between AI innovation and its meaningful integration into the clinical
domain. Addressing the question of how AI-driven medical image analysis can be ef-
fectively translated into clinical practice necessitates a thorough examination of essential
factors and strategies. Here are some guiding points which must be addressed:

1. Integration frameworks and workflow adaptation. A fundamental aspect of facilitating the
transition of AI techniques to clinical application is in the development of integration
frameworks tailored to the specific needs of healthcare environments. Collaborative
efforts between computer scientists, medical professionals, and regulatory bodies are
imperative to design workflows that seamlessly incorporate AI outputs into existing
diagnostic and decision-making processes.

2. Validation and regulatory compliance. The validation of AI algorithms to ensure their
safety, accuracy, and reliability is a major step in the translation process. Rigorous
validation studies that adhere to established standards, such as those outlined by
the U.S. Food and Drug Administration (FDA) and the European Medicines Agency
(EMA), contribute to establishing the credibility of AI methods. Comprehensively
documenting algorithm behavior, training data, and validation protocols not only
ensures confidence in clinical users but also facilitates regulatory compliance.

3. Ethical considerations and human–AI collaboration. Ethical deliberations underpinning
the integration of AI into clinical practice are of paramount significance. Transparency
in AI decision-making processes, interpretability of results, and mitigation of bias
are pivotal to engendering trust between clinicians and AI systems. Human–AI
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collaboration models, where AI outputs are presented as supportive tools rather
than autonomous decision makers, foster a cooperative environment where clinical
expertise harmoniously interacts with AI-generated insights.

4. Education and training. The integration of AI techniques necessitates the provision of
comprehensive education and training for medical professionals. Knowledge dissem-
ination on AI’s capabilities, limitations, and clinical relevance enables clinicians to
harness AI insights optimally. Robust training programs tailored to diverse healthcare
settings aid in fostering the requisite proficiency to interpret, validate, and incorporate
AI outputs effectively.

5. Longitudinal evaluation and continuous improvement. Sustaining the translation of AI
techniques into clinical practice mandates a commitment to longitudinal evaluation
and continuous improvement. Regular assessment of AI-generated outcomes in real-
world scenarios facilitates the identification of shortcomings, iterative refinement,
and the incorporation of feedback from clinical practitioners. This iterative approach
fosters the evolution of AI algorithms that align with dynamic clinical demands.

Therefore, effectively translating AI-driven medical image analysis into clinical prac-
tice involves a concerted effort encompassing integration frameworks, rigorous validation,
ethical considerations, education, and continuous refinement. The confluence of technical
robustness, regulatory compliance, and ethical mindfulness is essential in realizing the
full potential of AI to augment and elevate clinical decision making within the medical
imaging domain.

7. Discussion and Conclusions

In this work, we gave a comprehensive overview of fundamental concepts and state-
of-the-art medical image processing and analysis approaches. We gave a brief overview of
learning problems commonly employed in medical image processing and commonly used
deep learning methods. We highlighted commonly observed anatomical areas and publicly
available datasets for ML algorithm development.

ML and DL techniques have emerged as effective tools for various medical imaging
tasks, but their widespread integration faces notable challenges, as shown in Figure 4.
One notable obstacle is the inherent variability of medical image data, stemming from
differences in resolution, contrast, and signal-to-noise ratios due to diverse clinical pro-
tocols. The standardization of medical image acquisition to ensure uniformity remains
a significant challenge. Further, precise medical image annotations are required for DL
models. However, the limited availability of annotated data and the intricacies involved
in annotating medical images impose constraints on their applicability. Moreover, dataset
bias arises when the data used to train a model differ from the data on which the model is
applied, leading to potential shortcomings in the study. For example, datasets collected
as part of population studies may differ from those of patients referred to hospitals, in-
troducing biases in the data. Biases can also stem from imaging devices or procedures,
introducing specific measurement biases. For example, in chest X-rays, images may include
interventions like chest drains, impacting the accuracy of automated diagnosis [257]. La-
beling errors arising from systematic biases in human annotators or automatic methods
extracting labels from patient reports further contribute to dataset bias. This discrepancy
can result in algorithms that perform well in benchmarks but poorly in real-world scenarios.
The importance of unbiased evaluation in assessing model performance emphasizes the
need for independent sets of data for training and testing. It cautions against incorrect im-
plementations that can lead to overoptimistic results. For instance, some studies on ADHD
classification based on brain imaging have employed circular analysis, performing feature
selection on the entire dataset before cross-validation [258]. Another issue arises when
repeated measures of an individual are split between the training and test sets, causing
the algorithm to recognize individual patients instead of condition markers. Additionally,
data privacy concerns reduce medical data sharing for deep learning training. The inherent
diversity of medical images further complicates the task of model generalization across
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varied datasets. The black-box nature of DL models, lacking interpretability, presents an
additional limitation.

Figure 4. The relationship between current challenges and future directions.

Addressing the challenge of standardizing medical image acquisition involves the
establishment of clear protocols that define standardized procedures for acquiring images
across diverse devices and settings. This includes specifying crucial imaging parameters
such as resolution, contrast, and orientation. Moreover, embracing widely accepted indus-
try standards like DICOM is essential to ensure compatibility and interoperability among
different imaging systems. Simultaneously, the implementation of quality assurance pro-
grams is crucial to monitor and maintain the performance of imaging equipment, ensuring
ongoing consistency in image quality. Furthermore, the future direction of research in med-
ical image analysis should encompass the development of interpretable DL methodologies,
facilitating the comprehension of DL models and augmenting transparency. Moreover,
significant progression could be obtained by integrating images with additional clinical
context, incorporating information from patient records, and including various clinical
descriptors such as blood tests, genomics, medications, vital signs, and non-imaging data
like ECG. This integration facilitates a shift from the realm of images to comprehensive
patient-level information. It would allow for population-level statistical analysis, offering
insights into disease manifestations, treatment responses, adverse reactions, and medica-
tion interactions. Therefore, integrating multi-modal data, joining clinical and imaging
data, holds immense potential to enhance the precision of medical image analysis while
fostering a holistic understanding of underlying pathologies. However, implementing
this step necessitates establishing intricate infrastructure and formulating new privacy
and security regulations, spanning interactions between hospitals and academic research
institutes, among hospitals, and across international consortia.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoders
AI Artificial Intelligence
BLSTM Bidirectional LSTM
CT Computed Tomography
cGAN conditional GAN
CNNs Convolutional Neural Networks
DCGANs Deep Convolutional Generative Adversarial Networks
DL Deep Learning
EMA European Medicines Agency
FCNNs Fully Convolutional Neural Networks
FDA Food and Drug Administration
GANs Generative Adversarial Networks
LSTM Long Short-Term Memory
ML Machine Learning
MDLSTM Multidimensional LSTM
MRI Magnetic Resonance Imaging
OCT Optical Coherence Tomography
PET Positron Emission Tomography
RNNs Recurrent Neural Networks
SSD Single Shot MultiBox Detector
UI Ultrasound Imaging
ViTs Vision Transformers
YOLO You Only Look Once
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