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Abstract: Magnetic Resonance Imaging (MRI) reconstruction and segmentation are crucial for med-
ical diagnostics and treatment planning. Despite advances, achieving high performance in both
tasks remains challenging, especially in the context of accelerated MRI acquisition. Motivated by
this challenge, the objective of this study is to develop an integrated approach for MRI image recon-
struction and segmentation specifically tailored for accelerated acquisition scenarios. The proposed
method unifies these tasks by incorporating segmentation feedback into an iterative reconstruction
algorithm and using a transformer-based encoder–decoder architecture. This architecture consists
of a shared encoder and task-specific decoders, and employs a feature distillation process between
the decoders. The proposed model is evaluated on the Stanford Knee MRI with Multi-Task Eval-
uation (SKM-TEA) dataset against established methods such as SegNetMRI and IDSLR-Seg. The
results show improvements in the PSNR, SSIM, Dice, and Hausdorff distance metrics. An ablation
study confirms the contribution of feature distillation and segmentation feedback to the performance
gains. The advancements demonstrated in this study have the potential to impact clinical practice by
facilitating more accurate diagnosis and better-informed treatment plans.

Keywords: MRI; reconstruction; segmentation; vision transformer

1. Introduction

The superior soft tissue contrast of magnetic resonance imaging (MRI) makes it an
invaluable diagnostic instrument across a wide variety of diseases [1]. However, prolonged
acquisition times can lead to patient discomfort, reduced throughput, and introduction of
motion artifacts. Therefore, reducing the duration of MRI scans has become a pressing area
of research [2].

One promising approach to achieve rapid MRI acquisition is the use of compressed
sensing (CS) techniques [3]. These techniques violate the Nyquist–Shannon sampling
theorem by undersampling and collecting fewer measurements than is conventionally
required to reconstruct diagnostic-quality images. Despite their efficiency, they contradict
the standard sampling theory, leading to aliasing artifacts. To mitigate this, researchers have
incorporated additional a priori knowledge [4]. Recently, machine learning (ML) techniques
have been integrated into the image reconstruction process [2]. The application of ML has
led to the development of algorithms that can reconstruct high-quality images from sparsely
sampled MRI data, significantly accelerating MRI scans and reducing acquisition time [5–7].
Reconstructed images often serve as a means to derive clinically relevant parameters
through postprocessing steps such as segmentation and tissue characterization [8]. ML
tools excel in this task, even automating dense image labeling tasks to match expert
variability [6,9,10].

While many machine learning-based segmentation algorithms operate under the as-
sumption of receiving a “clean” image, they do not necessarily account for the challenges
posed by undersampled MRI scenarios [11]. Though traditional approaches to medical
imaging often treat acquisition, reconstruction, and segmentation as distinct phases, it is
widely understood within the research community that these stages are interrelated and

Electronics 2023, 12, 4434. https://doi.org/10.3390/electronics12214434 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214434
https://doi.org/10.3390/electronics12214434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2764-3730
https://doi.org/10.3390/electronics12214434
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214434?type=check_update&version=2


Electronics 2023, 12, 4434 2 of 15

can significantly impact one another. Nonetheless, the emphasis has often been on each
individual stage, sometimes overlooking the cumulative effects [8]. Specifically, when prior-
itizing faster imaging speeds without proper image restoration, there is a risk of introducing
residual aliasing and blurring, which can subsequently lead to errors in segmentation [12].
Figure 1 illustrates how a segmentation network trained on fully sampled (clean) data
can yield misleading segmentation masks for undersampled (noisy) data. Thus, there is a
need for efficient automated approaches that can simultaneously reconstruct MRI data and
accurately segment the region of interest (ROI) [13]. However, the lack of segmentation
datasets with k-space data required for MRI reconstruction poses a significant challenge in
the development of joint reconstruction–segmentation algorithms [12].

(a) Label (b) Fully sampled (c) Undersampled
Mean Dice: 0.85 Mean Dice: 0.70

Figure 1. A demonstration of unsuccessful generalization to undersampled data when a knee MRI
segmentation network (the pretrained network provided by the authors of [6]) is trained using fully
sampled data. In the absence of image restoration before segmentation, the prediction becomes unre-
liable, leading to a 15% reduction in the mean Dice score for this specific slice. (a) Segmentation label
and (b,c) segmentation prediction based on fully sampled data and undersampled data, respectively.

Despite limited public datasets, several studies have addressed the joint MRI recon-
struction and segmentation problem. SegMRI [8] uses CS and Gaussian mixture model
segmentation on patch-based dictionaries for sparse image representation, thereby enhanc-
ing image reconstruction and segmentation. SegNetMRI [11] uses an iterative framework
involving a data fidelity unit and UNet [14]-based denoising and segmentation networks.
Each iteration shares an encoder between segmentation and denoising with unique de-
coders. The segmentation decoder is reused across iterations, while denoisers use different
encoders–decoders across iterations. Multiple segmentation results are merged using a
1× 1 convolution at the end of iterations. FR-Net [13] presents a deep learning approach
that includes a reconstruction network derived by unrolling the Fast Iterative Shrinkage–
Thresholding Algorithm (FISTA) [15]. This is followed by a segmentation network that
operates independently without sharing parameters with the reconstruction component.
Lastly, IDSLR-SEG [12] introduces a framework for joint calibrationless Parallel MRI (PMRI)
reconstruction and segmentation based on unrolling an iterative re-weighted least squares
algorithm to minimize a CLEAR cost function [16] for calibrationless PMRI reconstruc-
tion [17]. The denoising network shared across all iterations and the segmentation network
both use a shared encoder and are trained end-to-end using a few-shot learning strategy.

In summary, while existing models offer a foundational approach through end-to-
end joint training and a shared encoder for dual tasks, they do not completely harness
the latest progress in multitask learning. The method introduced in this study aims
to enhance this by creating a more synergistic framework for simultaneous knee MRI
reconstruction and segmentation. In this paper, we introduce an innovative approach



Electronics 2023, 12, 4434 3 of 15

that takes undersampled k-space data as input and outputs both reconstructed knee MRI
images and ROI segmentation.

Leveraging recent multitask learning developments, a framework is proposed for joint
segmentation and reconstruction. The primary contributions of this paper are shown below:

1. Segmentation-Integrated Unrolled Reconstruction: we proposes a unique cost function
for unrolling the reconstruction algorithm that integrates segmentation results into
the reconstruction process.

2. Enhanced Encoder–Decoder Architecture: this paper employs a Swin
Transformer [18,19]-based encoder–decoder architecture for multitask denoising and
segmentation. A shared attention mechanism is implemented wherein Query and
Key vectors in the self-attention module of the task-specific decoder are computed
using the shared encoder’s output.

3. Feature Distillation in Multitask Decoders: the proposed model introduces integra-
tion of features between decoders through a distillation process by applying spatial
attention features from each task that are then incorporated into the other task’s
decoder.

2. Materials and Methods
2.1. Background
2.1.1. Compressed Sensing in MRI

Reconstructing MRI images can be formulated as an optimization problem [20,21], as
presented in (1):

x̂ = arg minx f (x) + βR(x), (1)

where x represents the reconstructed images, f (x) = 1
2‖Ax − y‖2

2 is the data fidelity
term, y is the data acquired in the k-space domain, and A stands for the imaging model,
which includes coil sensitivity profile maps, a Fourier transformation operation, and data
subsampling. The regularization function R(x) and its corresponding parameter β constrain
the problem when datasets are highly subsampled [21], preventing ill-posed conditions
where multiple solutions might fulfill (1).

One way to solve (1) is to use a two-step iterative process alternating between gradient
descent and a proximal operation, as provided in Equations (2) and (3) [22]:

x(n
′) = x(n) − t∇ f (x(n)) (2)

x(n+1) = proxβR(x(n
′)). (3)

In these equations, n represents the n-th iteration, t is a scalar that indicates the
gradient’s step size, and proxβR(·) denotes the proximal operator of R.

A promising approach to developing efficient reconstruction algorithms is to use a
data-driven method to learn optimal trainable parameters in regularization functions. Here,
the proximal step is often replaced with a deep neural network, which directly learns a
parameterized form of the regularization function [23,24]. Consequently, the proximal
update in (3) is redefined [21,25] as follows:

x(n+1) = Nθ(x(n
′)), (4)

where Nθ is the neural network and θ denotes learnable parameters, which can either
be shared or distinct across iterations. The iterative process provided by (2) and (4)
is “unrolled” into a model Uθ , which is then trained by minimizing the loss function
minθ ∑i L(Uθ(yi, Ai), xi) [21,25], where L(·) measures the distance between its inputs and
xi represents the ith ground-truth example.
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2.1.2. Transformers in Medical Imaging

Integration of attention mechanisms [26] into architectures influenced by Convolu-
tional Neural Networks (CNNs) [27] has been a significant focus within the computer
vision community. Consequently, it has led to the development of “Vision Transformer”
(ViT) models [28]. Their popularity has grown due to their capacity to encode long-range
dependencies and generate effective feature representations [29].

ViT models have demonstrated considerable potential in MRI restoration and analysis
tasks. In the domain of MRI restoration, notable work includes that by Feng et al. [30], who
have developed a cross-attention module capable of extracting and merging complementary
features from auxiliary imaging modalities [29]. In the field of MRI analysis, a standout
example is Swin UNETR [31], which has achieved leading performance in the Brain Tumor
Segmentation (BraTS) 2021 challenge [32]. This model combines a Swin Transformer
encoder with a CNN-based decoder. The Swin Transformer using a patch partition layer
can create non-overlapping patches from the input data and construct windows for self-
attention computations. These processed feature representations are then forwarded to a
CNN decoder via skip connections at multiple resolutions [29].

2.1.3. Multi-Task Learning for Dense Predictions

Multi-Task Learning (MTL) [33] seeks to build generalized ML models able to generate
all pertinent task outputs from a given input [34]. MTL can improve generalization capa-
bility with shared representation learning from multiple task-specific training signals [35].
MTL offers advantages over single-task learning such as increased inference speeds by
avoiding repetitive feature calculations in shared layers [36], with potential performance
improvements when tasks share information or are able to regularize each other [37].

Significant MTL work in pixel-level prediction tasks has led to innovations in net-
work architecture and optimization techniques [34]. Optimization methods can maintain
balance among tasks during training to prevent any single task’s dominance. For in-
stance, Kendall et al. [38] have quantified homoskedastic uncertainty to balance single-task
losses, and GradNorm [39] is able to equalize task-specific gradients. On the architectural
front, methods are able to leverage shared information among tasks. Approaches include
hard parameter sharing [40,41] (a shared encoder branching into task-specific heads), soft
parameter sharing [42,43] (individual task parameters with cross-task feature sharing),
and designs that first predict tasks and then leverage these predictions to enhance task
outputs [44]. For example, Xu et al. [45] have developed a multimodal distillation module
that can distill information from initial predictions of other tasks using spatial attention
and then incorporate it into the task of interest in order to effectively utilize intermediate
predictions’ complementary information.

2.2. Proposed Method
2.2.1. Incorporating Segmentation Feedback into the Reconstruction Cost Function

Improvement of reconstruction can inherently lead to enhanced segmentation; thus,
in most joint MRI reconstruction and segmentation research, segmentation is typically exe-
cuted subsequent to the reconstruction process. This approach has been employed in previous
studies such as the study of Huang et al. [13], where the segmentation network was only
employed after the reconstruction process. However, segmentation outcomes can reciprocally
refine the reconstruction process. As such, a novel cost function is proposed in this study to
facilitate an optimization algorithm that enables integration of segmentation results into the
reconstruction process. This is achieved by appending a term S(x; {wk}) to (1):

x̂ = arg minx f (x) + βR(x) + µS(x; {wk}). (5)

Here, µ adjusts the impact of the added term, the set {wk} constitutes a transformed
segmentation mask, and S(x; {wk}) is a term indicating the relationship between the
reconstructed image and the transformed segmentation mask.
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To comprehend the role of S(x), consider S(x; {w̌k}) = 1
2 ∑K

k=1 ‖Ckx‖2
W̌k

= 1
2 ∑K

k=1(Ckx)T

W̌k(Ckx), where W̌k = diag{w̌k}, w̌k represents an indicator image for the ROI boundary
extracted from the segmentation mask, and Ck denotes a finite differencing matrix in the
x, y, or z directions; thus, in this case, K = 3. Each image update involves the gradient
of S(x), defined as ∇S(x) = ∑K

k=1 CT
k W̌kCkx, and is zeroed where w̌k is zero, indicating

the boundary region. Consequently, the update considering ∇S(x) encourages spatial
smoothness outside the boundary region while limiting smoothing across boundaries.

Building on this understanding, a modification to (2) with S(x(n); {w(n)
k }) =

1
2 ∑K

k=1 ‖ck ∗
x(n)‖2

W(n)
k

can be proposed, as shown below:

x(n
′) = x(n) − t∇ f (x(n))− t′∇S(x(n); {w(n)

k }), (6)

where t′ sets the step size for the added term and

∇S(x(n); {w(n)
k }) =

K

∑
k=1

c̃k ∗
(

W(n)
k

(
ck ∗ x(n)

))
. (7)

Here, W(n)
k = diag{w(n)

k }, w(n)
k = ∑K′

k′=1 g(c′k ∗ m(n)), g(·) is an activation function
for nonlinearity, c̃k is a flipped convolution kernel of ck, and m(n) designates the ROI
mask obtained from the segmentation network at the nth iteration. Both {ck} and {c′k}
denote K and K′ sets of convolutional filters trained end-to-end alongside the denoising
and segmentation network, thereby allowing the data to guide how the model utilizes the
segmentation result for both tasks. Although S(x(n); {w(n)

k }) is not considered as a part of
the data consistency term, it is differentiable its gradient can be easily found. Therefore,
the update for the S(x(n); {w(n)

k }) term is included in (2) rather than in the proximal step.
This update is denoted as the modified data consistency step in Figure 2a.

(a)

Modified
DC

Eq. (6)
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Figure 2. (a) High-level overview of the proposed method and (b) detailed block diagram of the
joint denoising and segmentation network Nθ in (a). The proposed approach, rooted in an unrolled
compressed sensing algorithm, iteratively updates both the image x and segmentation mask m.
It incorporates a Swin Transformer-based encoder–decoder framework for MRI denoising and
segmentation, which employs a shared attention mechanism and an innovative feature exchange
process between decoders to leverage inter-task synergies and enhance performance.
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2.2.2. Swin Transformer-Based Encoder–Decoder Approach

The proposed method leverages a Swin Transformer-based encoder–decoder architec-
ture [46] for multitask [47] denoising and segmentation, as depicted in Figure 2b. The en-
coder, inspired by ResNet [48], includes a patch embedding process that adjusts the spatial
resolution and channel dimension, followed by several Transformer blocks. This con-
figuration produces a feature pyramid compatible with many vision task architectures.
The Swin Transformer’s design [18,19] of alternating window partitioning and shifted
window partitioning is then applied.

The decoder module [46,47], influenced by CNN-based decoders, replaces convolu-
tional layers with Swin Transformer blocks. The four-stage decoder comprises two Swin
Transformer blocks per stage, with an upsampling layer in between to double the spatial
resolution and halve the channel dimension. Here, a “stage” refers to a set of multiple
Transformer blocks that process data at the same spatial resolution. In contrast to [47], the
encoder features are fed to the decoder via a skip connection at the same resolution.

A shared attention mechanism [47] is employed as well. In standard Vision Trans-
former self-attention, each multi-head self-attention layer independently creates its Query,
Key, and Value vectors using only its own input. These vectors are used to calculate an
attention score, with the Query and Key vectors determining the score and the Value
vector generating a weighted sum to form the self-attention output. In contrast, the shared
attention mechanism modifies this process within the last Transformer block of the decoder
at each stage. Specifically, it computes Query and Key vectors from the shared encoder’s
output that corresponds to the same spatial resolution, while the Value vector is derived
from the preceding decoder stage for the specific task, ensuring task-specific outputs. This
configuration mirrors the decoder in the original Transformer design [26]. By incorpo-
rating shared encoded features into the computation of the Query and Key vectors, this
shared attention mechanism enhances each task’s ability to utilize cross-task relationships
and dependencies.

2.2.3. Feature Sharing and Distillation across Multitask Decoders

The proposed model, as outlined in Section 2.2.2, utilizes an encoder–decoder frame-
work with a shared encoder and two distinct decoders for MRI reconstruction and seg-
mentation tasks. This design with separate paths for each task can facilitate task-specific
feature processing.

A key aspect of the proposed architecture involves sharing and integration of features
between decoders. This design draws inspiration from a previous study [45]. However,
unlike the previous study, the proposed approach applies a distillation process to interme-
diate features of decoders rather than applying it to initial predictions. Before expanding
the spatial dimension, features from each task are subjected to a spatial attention process
and then incorporated into the other task’s decoder:

Ii+1
r = Oi

r + σ(Ws,rOi
s)�Oi

s (8)

Ii+1
s = Oi

s + σ(Wr,sOi
r)�Oi

r. (9)

Here, Ii+1
r and Ii+1

s denote inputs to the (i + 1)-th stage of the reconstruction and seg-
mentation decoders. Each stage contains multiple transformation blocks processing vectors
of identical dimensions, Oi

r and Oi
s symbolize outputs from the i-th stage of respective de-

coders, σ(·) denotes the sigmoid function, and Ws,r and Wr,s represent tunable parameters.
The term σ(Ws,rOi

s) presents a spatial mask applied to the segmentation decoder
feature for the reconstruction decoder. This spatial attention mechanism enables the
model to highlight critical spatial locations within feature maps through gating, thereby
controlling the information flow between decoders. Following this refinement, these
features are blended into the other task’s decoder before expanding the spatial dimensions.
This approach takes advantage of mutual benefits between reconstruction and segmentation
tasks, potentially augmenting the overall effectiveness of the network.
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3. Results
3.1. Dataset Details
3.1.1. SKM-TEA Dataset

The Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset [6] offers
a substantial pool of quantitative knee MRI (qMRI) scans, enabling evaluation of MRI
reconstruction and analysis methods. The dataset comprises around 25,000 slices from
155 patients, including raw-data measurements, scanner-generated DICOM images, man-
ual segmentation of four tissues (Patellar Cartilage, Femoral Cartilage, Tibial Cartilage,
and Meniscus), and annotations for sixteen pathologies. We employed this dataset to
benchmark the comparing methods and the proposed method.

In the provided dataset, an inverse Fourier transform is applied to the fully-sampled
k-space in the readout direction to generate a hybridized k-space (x× ky × kz). Sensitivity
maps for each 2D axial slice were estimated using JSENSE [49] and the fully-sampled
k-space was reconstructed using SENSE [50], which then served as the target image for
the reconstruction task. Dataset acquisition used double-echo steady-state (qDESS) MRI
method, which provides two sets of 3D images (termed echoes—E1 and E2). In this study,
we utilized only E1 data from the two available echoes. The majority of the data consisted
of 8-channel coil. Data with 16-channel coil (8 out of 155 samples) were omitted due to
GPU memory constraints. This study adhered to the training, validation, and test splits
provided within the dataset.

3.1.2. Data Preprocessing

The reconstruction baseline method provided by authors of the SKM-TEA dataset
used 2D k-space data in the axial direction (ky × kz). However, through empirical findings,
it was observed that training a segmentation network with axial slices posed a more
significant challenge compared to the sagittal direction due to the comparatively sparse
distribution of various tissue classes (such as tibial cartilage and meniscus). In light of these
findings, 2D k-space data in the sagittal direction were used, which is consistent with the
baseline segmentation methods of the SKM-TEA dataset. For this, (kx × ky × kz) k-space
data were produced by applying the Fourier transform in the readout direction, then an
inverse Fourier transform along the z axis, resulting in a hybridized k-space (kx × ky × z).
For undersampling, a 2D Poisson disc at an acceleration factors of 8 was utilized with the
code provided by the authors of the SKM-TEA dataset. The undersampling mask was
generated for the true acquisition region (512× 416), then zero-padded to match with the
kspace data size (512× 512). During training, 10,000 precomputed undersampling masks
were cached to ensure consistency across different training sessions. A fixed undersampling
mask was generated for each scan in the test dataset for evaluation.

3.2. Baseline and Comparative Methods

As baseline, a 2D UNet trained for joint reconstruction and segmentation was em-
ployed utilizing an image-to-image approach. UNet features a shared encoder and two
distinct decoders, with each decoder being dedicated to either reconstruction or segmenta-
tion. Moreover,the proposed method was compared with previously suggested methods for
joint MRI reconstruction and segmentation, including SegNetMRI [11] and IDSLR-SEG [12].
These methods alternate between data consistency and denoising via neural networks,
bearing close resemblance to the unrolled compressed sensing in (2)–(4). Considering the
dataset’s distinct challenge of multicoil Knee MRI reconstruction and segmentation, these
methods were adapted and reimplemented, in the course of which reimplementations were
based on unrolled compressed sensing, utilizing U-Net as the denoiser and the segmen-
tation network as detailed in previous studies [11,12]. For IDSLR-SEG, the method was
adapted into a calibrated approach considering the provision of sensitivity maps with the
dataset. The main divergences between implementations of SegNetMRI and IDSLR-SEG,
lie in whether to use a shared or distinct denoising encoder across iterations and whether
segmentation occurs multiple times during the iterative process. The distinctions between
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the models are summarized in Table 1. A visual comparison between SegNetMRI and
IDSLR-SEG has been provided previously in [12].

Table 1. Comparative analysis of different models (DSNA: Denoising and Segmentation Network
Architecture; SEDSN: Shared Encoder between Denoising and Segmentation Networks; SDI: Shared
Denoiser across Iterations; MSPI: Multiple Segmentation Predictions across Iterations).

Model DSNA SEDSN SDI MSPI

SegNetMRI U-Net Yes No Yes
IDSLR-Seg U-Net Yes Yes No
Proposed Transformer Yes Yes Yes

3.3. Details on Implementation and Training

The following training specifications were applied to all methods mentioned in this
section. The Pytorch [51] deep learning library was leveraged for training. The training
objective combined a complex `1 loss for the reconstruction task and a soft Dice loss for the
segmentation task. Input k-space data were normalized using the same standard deviation
value of the target 3D volume as in the reconstruction baseline method of SKM-TEA dataset.
Training was conducted over 200 epochs using the AdamW optimizer with a weight decay
of 0.05. The learning rate was adjusted using a custom CyclicLR scheduler, with the
parameters set as follows: maximum learning rate of 0.0005, gamma value of 0.5, and step
size up of 15. Gradient accumulation steps were used to achieve an effective batch size of
16 across all methods. For a fair comparison, the number of trainable parameters for all
methods was set at approximately 40 million. All unrolling-based methods employed a
total of four unrolling iterations. The best epoch was determined using the sum of PSNR
and the mean Dice score multiplied by 40, and was evaluated using the validation split of
the SKM-TEA dataset for all methods presented in this section.

In the proposed method, both the encoder and each decoder featured two Transformer
blocks at each stage. The window size was set as 8 and the number of heads in each stage
was set as 3, 6, 12, and 24, respectively. K and K′ in (7) were set as 16. To enhance the
training stability, two approaches were employed in the implementation of the method
described in Section 2.2.1: First, the terms ck ∗ x(n) and c′k ∗ m(n) in (7) were calculated
using a sequence of layers composed of a convolutional layer, followed by an instance
normalization layer, and a PReLU activation function. Second, the multiplication involving
W(n)

k in (7) was parameterized by concatenating w(n)
k and ck ∗ x(n), which was then followed

by a similar sequence of layers as in the previous approach. For increased model flexibility,
separate convolutional filters were used instead of employing the flipped version of ck,
denoted as c̃k in (7).

3.4. Results: Quantitative and Qualitative Evaluation

The test split of the SKM-TEA dataset (34 samples, excluding two 16-channel coil
samples) was used for performance assessments. The reconstruction quality was quantita-
tively evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM [52]) metrics. The segmentation performance was measured using the Dice similarity
coefficients and 95% Hausdorff distance for each tissue class. The PyTorch-based MEDDLR
framework [53] was employed for evaluations. These metrics were computed based on 3D
volumes, with the mean and standard deviation values reported from 34 volumes.

In the reconstruction task, the proposed model generally outperformed other methods
in both PSNR and SSIM metrics, as highlighted in Table 2. This numerical advantage was
corroborated by the empirical observations. The images generated by the proposed model,
as illustrated in Figure 3, displayed fewer or similar levels of errors when compared to
those produced by alternative methods.
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Input UNet SegNetMRI IDSLR-SEG Proposed

Label

Label

Figure 3. Comparative results for reconstruction and segmentation from 8× accelerated MRI data
using various methods, including the proposed approach. The top row displays magnitude images
that represent the reconstruction outcomes of each method. The second row shows the corresponding
error images. The third and fourth rows overlay segmentation results on the reconstructed magnitude
images obtained from the respective methods.

In the segmentation task, the proposed method yielded competitive Dice scores and
demonstrated improvements in Hausdorff distances compared to other methods, as indi-
cated by the data in Table 2. This performance is visually corroborated in Figure 3.

To sum up, the proposed model offers more accurate results in the reconstruction
task and is on par with other models in terms of Dice scores in the segmentation task
while improving the Hausdorff distances. The proposed architecture, which combines
transformer-based encoders and decoders for an integrated approach to reconstruction and
segmentation, contributed to these results.

Table 2. Comparison of different joint MRI reconstruction and segmentation methods using the
peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), Dice score, and 95%
Hausdorff distance (mean (standard deviation)).

Method
Reconstruction Segmentation

PSNR (dB) SSIM DICE Hausdorff (mm)

UNet 33.153 (0.977) 0.765 (0.027) 0.824 (0.053) 5.25 (3.27)

SegNetMRI 35.322 (1.025) 0.834 (0.022) 0.821 (0.051) 13.62 (17.37)

IDSLR-Seg 35.139 (1.002) 0.828 (0.022) 0.826 (0.056) 6.68 (8.42)

Proposed 35.550 (1.012) 0.834 (0.021) 0.825 (0.055) 4.63 (3.14)
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4. Discussion

In this study, a novel approach has been introduced for integrated MRI image recon-
struction and segmentation, challenging the traditional view of these tasks as separate
entities. The proposed method synergistically combines these tasks, utilizing a combination
of distillation applied to features between decoders and a reconstruction cost function
guided by segmentation feedback. The proposed approach demonstrates advantages over
existing techniques in terms of achieving improved image reconstruction and segmenta-
tion quality.

4.1. Discussion of Reconstruction Results

SegNetMRI and IDSLR-SEG produced reconstructed images of comparable quality,
whereas U-Net removed many image details and introduced a higher level of blur, con-
sistent with the numerical results shown in Table 2. These results suggest that design
differences between SegNetMRI and IDSLR-SEG, as summarized in Table 1, do not signifi-
cantly affect the final reconstruction outcome. However, the utilization of iterative methods
was found to be a crucial factor in enhancing reconstruction performance. While IDSLR-Seg
and SegNetMRI performed well, they were slightly outperformed by the proposed method.
The proposed method showed the highest performance in terms of PSNR, with a value of
35.550, and was tied with SegNetMRI in SSIM with a score of 0.834.

4.2. Discussion of Segmentation Results

IDSLR-Seg led in terms of the DICE coefficient with a score of 0.826, closely followed
by the proposed method at 0.825 (0.055) and UNet at 0.824. The proposed method excelled
at minimizing the Hausdorff distance, achieving the lowest score of 4.63. The segmentation
of meniscus pixels proved more challenging than that of other tissues. The SegNetMRI
and IDSLR-SEG methods struggled to accurately segment the meniscus in the specific
slice depicted in Figure 3. Contrary to the reconstruction results, design variations be-
tween SegNetMRI and IDSLR-SEG influenced their segmentation performance. Specifically,
IDSLR-SEG outperformed SegNetMRI in terms of the Hausdorff distance, suggesting that
that the use of distinct denoisers across iterations or the merging of multiple segmentation
results using a 1× 1 convolutional operation can adversely affect segmentation perfor-
mance.

4.3. Ablation Study

To evaluate the influence of specific design elements on the performance of the pro-
posed method in MRI reconstruction and segmentation tasks, an ablation study was
performed. The analysis was mainly focused on two components: (i) feature distillation
between task-specific decoders, and (ii) implementation of a reconstruction cost function
guided by segmentation feedback.

To ascertain the individual contributions of feature distillation (FD) and segmentation
feedback (SF), the proposed model was evaluated under three different conditions: without
feature distillation and segmentation feedback, with only segmentation feedback, and with
both. The results were then used to determine the effects of these features on the model’s
performance compared to a baseline model devoid of these components.

Table 3 presents the results of the ablation study. The data suggest that both FD and SF
contributed to the enhanced performance of the proposed model. Specifically, When neither
FD nor SF was applied, the PSNR was 35.524 dB, the SSIM was 0.836, the DICE was 0.826,
and the Hausdorff distance was 4.702 mm. Implementing SF alone improved both the PSNR
(35.554 dB) and SSIM (0.840), indicating enhanced reconstruction performance; however, it
led to a slight degradation in the DICE (0.819) and an increase in the Hausdorff distance
(5.225 mm), suggesting that the segmentation performance suffered. Incorporating both FD
and SF yielded a PSNR of 35.550 dB and an SSIM of 0.834, maintaining strong reconstruction
performance. Notably, the DICE score was almost identical to the baseline (0.825) and the
Hausdorff distance improved to 4.63 mm, suggesting a balanced improvement across both
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reconstruction and segmentation tasks. In summary, while the inclusion of segmentation
feedback (SF) did improve reconstruction performance as measured by PSNR and SSIM,
it slightly compromised the segmentation performance in terms of DICE and increased
the Hausdorff distance. Incorporating feature distillation (FD) mitigated this sacrifice in
segmentation performance and resulted in a balanced overall performance improvement.

Table 3. Ablation study results comparing the effectiveness of Feature Distillation (FD) and Segmen-
tation Feedback (SF) on the peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM), Dice score, and 95% Hausdorff distance (mean (standard deviation)).

Proposed Method Reconstruction Segmentation

FD SF PSNR (dB) SSIM DICE Hausdorff
(mm)

No No 35.524 (1.024) 0.836 (0.021) 0.826 (0.054) 4.70 (2.55)

No Yes 35.554 (1.016) 0.840 (0.020) 0.819 (0.057) 5.23 (3.42)

Yes Yes 35.550 (1.012) 0.834 (0.021) 0.825 (0.055) 4.63 (3.14)

4.4. Limitations

This study has certain limitations tied to the dataset used in the experiment. The
method’s training and validation were limited to a specific set of MRI images sourced from
a single hospital and obtained using scanners from the same manufacturer. This might
restrict the generalizability of this study’s findings. Future studies should aim to validate
the proposed model with more diverse datasets incorporating images from a variety of
MRI machines and diverse patient populations.

Although our ablation study indicated improved performance due to the Transformer-
based network architecture, feature distillation, and segmentation feedback,the individual
contributions of these techniques deserve further exploration. Additionally, the computa-
tional cost of the proposed model might pose challenges in time-sensitive clinical settings.

5. Conclusions

The proposed model offers threefold benefits: enhanced accuracy in MRI reconstruc-
tion, precise tissue segmentation, and substantial time savings during both MRI acquisition
and post-acquisition image analysis. Employing an acceleration factor of eight for un-
dersampling theoretically reduces the MRI scan time by a factor of eight. Concurrent
segmentation capabilities further streamline the diagnostic process, potentially saving addi-
tional time in clinical workflows. The model’s proficiency in detail-rich reconstruction and
precise tissue segmentation holds promise for earlier diagnosis and more timely treatments.
These compelling results warrant further research to fully realize the model’s potential in
clinical settings.

Future work should concentrate on optimizing the algorithm to reduce computational
time without sacrificing performance. Furthermore, future studies should investigate the
scalability of the model [54] and assess the relationship between the number of parameters
and performance. Insight into this relationship could inform the development of more
efficient model architectures. Future investigations should explore pretraining strategies
that make use of extensive datasets. Studying the effects of large-scale pretraining on
the model’s performance could reveal new avenues for improving MRI reconstruction
and segmentation.

Funding: This work was supported in part by a National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (2022R1F1A1069055), in part by the MSIT (Ministry
of Science and ICT), Korea, under the Innovative Human Resource Development for Local Intel-
lectualization support program (IITP-2023-RS-2023-00259678) supervised by the IITP (Institute for
Information and Communications Technology Planning and Evaluation), in part by a Korean Institute
of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government
(MOTIE) (RS-2023-00243974, Graduate School of Digital-based Sustainable Energy Process Innovation



Electronics 2023, 12, 4434 12 of 15

Convergence), in part by an Institute of Information and Communications Technology Planning and
Evaluation (IITP) grant funded by the Korean government (MSIT) (No.RS-2022-00155915, Artificial
Intelligence Convergence Innovation Human Resources Development (Inha University)), and in part
by an Inha University Research Grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found at: https://github.com/StanfordMIMI/skm-tea (accessed on 6 July 2023).

Acknowledgments: The authors would like to acknowledge Arjun Desai (Stanford) for his invaluable
feedback regarding the utilization of the SKM-TEA dataset.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

MRI Magnetic Resonance Imaging
SKM-TEA Stanford Knee MRI with Multi-Task Evaluation
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
ML Machine Learning
ROI Region of Interest
FISTA Fast Iterative Shrinkage–Thresholding Algorithm
PMRI Parallel MRI
CLEAR Calibration-free Locally low-rank EncourAging Reconstruction
Swin Shifted Windows
ViT Vision Transformer
BraTS Brain Tumor Segmentation
MTL Multi-Task Learning
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
qMRI Quantitative MRI
DICOM Digital Imaging and Communications in Medicine
SENSE Sensitivity Encoding
JSENSE Joint Image Reconstruction and Sensitivity Estimation in SENSE
qDESS Double-Echo Steady-State
GPU Graphics Processing Unit
2D Two-Dimensional
3D Three-Dimensional
DSNA Denoising and Segmentation Network Architecture
SEDSN Shared Encoder between Denoising and Segmentation Networks
SDI Shared Denoiser across Iterations
MSPI Multiple Segmentation Predictions across Iterations
FD Feature Distillation
SF Segmentation Feedback

References
1. van Beek, E.J.; Kuhl, C.; Anzai, Y.; Desmond, P.; Ehman, R.L.; Gong, Q.; Gold, G.; Gulani, V.; Hall-Craggs, M.; Leiner, T.; et al.

Value of MRI in medicine: More than just another test? J. Magn. Reson. Imaging 2019, 49, e14–e25. [CrossRef] [PubMed]
2. Zbontar, J.; Knoll, F.; Sriram, A.; Murrell, T.; Huang, Z.; Muckley, M.J.; Defazio, A.; Stern, R.; Johnson, P.; Bruno, M.; et al. fastMRI:

An open dataset and benchmarks for accelerated MRI. arXiv 2018, arXiv:1811.08839.
3. Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.

Off. J. Int. Soc. Magn. Reson. Med. 2007, 58, 1182–1195. [CrossRef] [PubMed]

https://github.com/StanfordMIMI/skm-tea
http://doi.org/10.1002/jmri.26211
http://www.ncbi.nlm.nih.gov/pubmed/30145852
http://dx.doi.org/10.1002/mrm.21391
http://www.ncbi.nlm.nih.gov/pubmed/17969013


Electronics 2023, 12, 4434 13 of 15

4. Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. Stat. Methodol. 1996, 58, 267–288. [CrossRef]
5. Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a variational network for

reconstruction of accelerated MRI data. Magn. Reson. Med. 2018, 79, 3055–3071. [CrossRef] [PubMed]
6. Desai, A.D.; Schmidt, A.M.; Rubin, E.B.; Sandino, C.M.; Black, M.S.; Mazzoli, V.; Stevens, K.J.; Boutin, R.; Ré, C.; Gold, G.E.; et al.

SKM-TEA: A dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation. arXiv 2022,
arXiv:2203.06823.

7. Pal, A.; Rathi, Y. A review and experimental evaluation of deep learning methods for MRI reconstruction. J. Mach. Learn. Biomed.
Imaging 2022, 1, 001. [CrossRef]

8. Caballero, J.; Bai, W.; Price, A.N.; Rueckert, D.; Hajnal, J.V. Application-driven MRI: Joint reconstruction and segmentation from
undersampled MRI data. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014:
17th International Conference, Boston, MA, USA, 14–18 September 2014; Proceedings, Part I 17; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 106–113.

9. Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al.
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018, 15, e1002699. [CrossRef]

10. Liu, Z.; Tong, L.; Chen, L.; Jiang, Z.; Zhou, F.; Zhang, Q.; Zhang, X.; Jin, Y.; Zhou, H. Deep learning based brain tumor
segmentation: A survey. Complex Intell. Syst. 2023, 9, 1001–1026. [CrossRef]

11. Sun, L.; Fan, Z.; Ding, X.; Huang, Y.; Paisley, J. Joint CS-MRI reconstruction and segmentation with a unified deep network. In
Proceedings of the Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, 2–7
June 2019; Proceedings 26; Springer: Berlin/Heidelberg, Germany, 2019; pp. 492–504.

12. Pramanik, A.; Jacob, M. Joint calibrationless reconstruction and segmentation of parallel MRI. In Proceedings of the European
Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 437–453.

13. Huang, Q.; Yang, D.; Yi, J.; Axel, L.; Metaxas, D. FR-Net: Joint reconstruction and segmentation in compressed sensing cardiac
MRI. In Proceedings of the Functional Imaging and Modeling of the Heart: 10th International Conference, FIMH 2019, Bordeaux,
France, 6–8 June 2019; Proceedings 10; Springer: Berlin/Heidelberg, Germany, 2019; pp. 352–360.

14. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

15. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009,
2, 183–202. [CrossRef]

16. Trzasko, J.D.; Manduca, A. CLEAR: Calibration-free parallel imaging using locally low-rank encouraging reconstruction. Proc.
Int. Soc. Magn. Reson. Med. 2012, 517.

17. Pramanik, A.; Aggarwal, H.K.; Jacob, M. Deep generalization of structured low-rank algorithms (Deep-SLR). IEEE Trans. Med.
Imaging 2020, 39, 4186–4197. [CrossRef] [PubMed]

18. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

19. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin transformer v2: Scaling up
capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LO, USA, 21–24 June 2022; pp. 12009–12019.

20. Fessler, J.A. Optimization methods for magnetic resonance image reconstruction: Key models and optimization algorithms. IEEE
Signal Process. Mag. 2020, 37, 33–40. [CrossRef] [PubMed]

21. Sandino, C.M.; Cheng, J.Y.; Chen, F.; Mardani, M.; Pauly, J.M.; Vasanawala, S.S. Compressed sensing: From research to clinical
practice with deep neural networks: Shortening scan times for magnetic resonance imaging. IEEE Signal Process. Mag. 2020,
37, 117–127. [CrossRef]

22. Combettes, P.L.; Pesquet, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in
Science and Engineering; Springer: New York, NY, USA, 2011; pp. 185–212.

23. Mardani, M.; Sun, Q.; Donoho, D.; Papyan, V.; Monajemi, H.; Vasanawala, S.; Pauly, J. Neural proximal gradient descent for
compressive imaging. Adv. Neural Inf. Process. Syst. 2018, 31, 9596–9606.

24. Aggarwal, H.K.; Mani, M.P.; Jacob, M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans. Med.
Imaging 2018, 38, 394–405. [CrossRef]

25. Diamond, S.; Sitzmann, V.; Heide, F.; Wetzstein, G. Unrolled optimization with deep priors. arXiv 2017, arXiv:1705.08041.
26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.
27. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. Adv.

Neural Inf. Process. Syst. 2019, 32, 68–80.

http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1002/mrm.26977
http://www.ncbi.nlm.nih.gov/pubmed/29115689
http://dx.doi.org/10.59275/j.melba.2022-3g12
http://dx.doi.org/10.1371/journal.pmed.1002699
http://dx.doi.org/10.1007/s40747-022-00815-5
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1109/TMI.2020.3014581
http://www.ncbi.nlm.nih.gov/pubmed/32755854
http://dx.doi.org/10.1109/MSP.2019.2943645
http://www.ncbi.nlm.nih.gov/pubmed/32317844
http://dx.doi.org/10.1109/MSP.2019.2950433
http://dx.doi.org/10.1109/TMI.2018.2865356


Electronics 2023, 12, 4434 14 of 15

28. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

29. Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in medical imaging: A survey. Med.
Image Anal. 2023, 88, 102802. [CrossRef] [PubMed]

30. Feng, C.M.; Yan, Y.; Chen, G.; Xu, Y.; Hu, Y.; Shao, L.; Fu, H. Multi-modal transformer for accelerated MR imaging. IEEE Trans.
Med. Imaging 2022, 42, 2804–2816. [CrossRef] [PubMed]

31. Hatamizadeh, A.; Nath, V.; Tang, Y.; Yang, D.; Roth, H.R.; Xu, D. Swin unetr: Swin transformers for semantic segmentation of
brain tumors in MRI images. In Proceedings of the International MICCAI Brainlesion Workshop, Virtual Event, 27 September
2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 272–284.

32. Baid, U.; Ghodasara, S.; Mohan, S.; Bilello, M.; Calabrese, E.; Colak, E.; Farahani, K.; Kalpathy-Cramer, J.; Kitamura, F.C.; Pati, S.;
et al. The RSNA-ASNR-MICCAI BRATS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv
2021, arXiv:2107.02314.

33. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
34. Vandenhende, S.; Georgoulis, S.; Van Gansbeke, W.; Proesmans, M.; Dai, D.; Van Gool, L. Multi-task learning for dense prediction

tasks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3614–3633. [CrossRef]
35. Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098.
36. Eigen, D.; Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2650–2658.
37. Standley, T.; Zamir, A.; Chen, D.; Guibas, L.; Malik, J.; Savarese, S. Which tasks should be learned together in multi-task learning?

In Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020; pp. 9120–9132.
38. Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018,
pp. 7482–7491.

39. Chen, Z.; Badrinarayanan, V.; Lee, C.Y.; Rabinovich, A. Gradnorm: Gradient normalization for adaptive loss balancing in deep
multitask networks. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July
2018; pp. 794–803.

40. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R. Fully-adaptive feature sharing in multi-task networks with applications
in person attribute classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 5334–5343.

41. Guo, P.; Lee, C.Y.; Ulbricht, D. Learning to branch for multi-task learning. In Proceedings of the 37th International Conference on
Machine Learning, Online, 13–18 July 2020; pp. 3854–3863.

42. Misra, I.; Shrivastava, A.; Gupta, A.; Hebert, M. Cross-stitch networks for multi-task learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3994–4003.

43. Liu, S.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF Conference On
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1871–1880.

44. Vandenhende, S.; Georgoulis, S.; Van Gool, L. MTI-net: Multi-scale task interaction networks for multi-task learning. In
Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part
IV 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 527–543.

45. Xu, D.; Ouyang, W.; Wang, X.; Sebe, N. Pad-net: Multi-tasks guided prediction-and-distillation network for simultaneous depth
estimation and scene parsing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 675–684.

46. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image
segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 205–218.

47. Bhattacharjee, D.; Zhang, T.; Süsstrunk, S.; Salzmann, M. Mult: An end-to-end multitask learning transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12031–
12041.

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

49. Ying, L.; Sheng, J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn. Reson. Med. Off. J. Int. Soc.
Magn. Reson. Med. 2007, 57, 1196–1202. [CrossRef]

50. Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. Off. J.
Int. Soc. Magn. Reson. Med. 1999, 42, 952–962. [CrossRef]

51. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.P.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026.

52. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

http://dx.doi.org/10.1016/j.media.2023.102802
http://www.ncbi.nlm.nih.gov/pubmed/37315483
http://dx.doi.org/10.1109/TMI.2022.3180228
http://www.ncbi.nlm.nih.gov/pubmed/35704546
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1109/TPAMI.2021.3054719
http://dx.doi.org/10.1002/mrm.21245
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
http://dx.doi.org/10.1109/TIP.2003.819861


Electronics 2023, 12, 4434 15 of 15

53. Desai, A.D.; Ozturkler, B.M.; Sandino, C.M.; Vasanawala, S.; Hargreaves, B.A.; Re, C.M.; Pauly, J.M.; Chaudhari, A.S. Noise2Recon:
A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising. arXiv 2021, arXiv:2110.00075.

54. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws
for neural language models. arXiv 2020, arXiv:2001.08361.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Materials and Methods
	Background
	Compressed Sensing in MRI
	Transformers in Medical Imaging
	Multi-Task Learning for Dense Predictions

	Proposed Method
	Incorporating Segmentation Feedback into the Reconstruction Cost Function
	Swin Transformer-Based Encoder–Decoder Approach
	Feature Sharing and Distillation across Multitask Decoders


	Results
	Dataset Details
	SKM-TEA Dataset
	Data Preprocessing

	Baseline and Comparative Methods
	Details on Implementation and Training
	Results: Quantitative and Qualitative Evaluation

	Discussion
	Discussion of Reconstruction Results
	Discussion of Segmentation Results
	Ablation Study
	Limitations

	Conclusions
	References

