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Abstract: The rapid development in information technology makes it easier to collect vast numbers of
data through the cloud, internet and other sources of information. Multiview clustering is a significant
way for clustering multiview data that may come from multiple ways. The fuzzy c-means (FCM)
algorithm for clustering (single-view) datasets was extended to process multiview datasets in the
literature, called the multiview FCM (MV-FCM). However, most of the MV-FCM clustering algorithms
and their extensions in the literature need prior information about the number of clusters and are also
highly influenced by initializations. In this paper, we propose a novel MV-FCM clustering algorithm
with an unsupervised learning framework, called the unsupervised MV-FCM (U-MV-FCM), such
that it can search an optimal number of clusters during the iteration process of the algorithm without
giving the number of clusters a priori. It is also free of initializations and parameter selection. We
then use three synthetic and six benchmark datasets to make comparisons between the proposed U-
MV-FCM and other existing algorithms and to highlight its practical implications. The experimental
results show that our proposed U-MV-FCM algorithm is superior and more useful for clustering
multiview datasets.

Keywords: clustering; fuzzy c-means (FCM); multiview FCM (MV-FCM); unsupervised multiview
FCM (U-MV-FCM); number of clusters

1. Introduction

Clustering is one of the fundamental techniques used to partition a dataset into clusters
such that the data points in the same cluster are the most similar as each other and the
data points in the different clusters are the most dissimilar [1,2]. It had been widely used
in many areas [3]. Clustering may be categorized into two groups, named the parametric
and non-parametric approaches. In 1993, model-based clustering was initially proposed by
Banified and Raftrey [4] with its applications [5–7]. In the non-parametric methods, one of the
renowned and pioneering partitional method is k-means [8,9]. Since Zadeh [10] first proposed
fuzzy sets in 1965 where he introduced partial memberships, Ruspini [11] coined a fuzzy
approach in the form of fuzzy c-partition for clustering by extending indicator membership
function to allow fuzzy memberships in the interval [0, 1]. Based on fuzzy c-partitions,
Dunn [12] introduced fuzzy c-means clustering as an advancement of k-means. Various
extensions of FCM and its applications can be found in the literature, such as [13–17].

Nowadays, social media, social networks, and IoT rapidly grow, and so collected data
are increasing each day. These produced data become more complex with a multiple-view
way. That is, with these information and communication technologies via internet, massive
numbers of data with multiview representation are generated each day. However, FCM
and its extensions were used to handle (single-view) datasets. Usually, particular views
capture specific aspects of information, and the evidence obtained from particular views is
mutually supportive. Some researchers may extract information from different angles and
then combined it. In general, the goal of multiview learning is to obtain more filtering and
higher level of information. In 2001, Dhillon [18] was the first to propose co-clustering for
2-view data, and then Bickel and Scheffer [19] introduced multiview clustering for dealing
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multiview data. With advances in clustering for multiple-view data, many researchers have
contributed to the literature, such as [20–24]. Recently, Huang et al. [25] used multiview
for deep matrix decomposition. Chen et al. [26] used it for graph regularized least square
regression. Tan et al. [27] constructed low-rank subspace multiview clustering through
squeezing integrated information from cross view and each view. Yang and Sinaga [28]
developed FCM clustering for multiview data using a collaborative way of feature weights.
Yang and Hussain [29] proposed unsupervised multiview k-means clustering algorithm.
Papakostas et al. [30] introduced an augmented reality spatial ability training application
based on fuzzy weights. Papakostas et al. [31] proposed customizing spatial aptitude
training in an augmented reality system using fuzzy logic. Lengyel, and Botta-Dukát [32]
introduced evaluating clustering efficiency with generalized mean-based silhouette width:
a flexible approach. Yang et al. [33] proposed active sensing in the categorization of visual
patterns and Xu et al. [34] offered reviews on determining the number of clusters.

Multiview clustering is a technique used in data analysis and machine learning to
group data points into clusters when multiple perspectives or “views” of data are available.
In the context of the evolving data landscape, it holds significant relevance for several
reasons, such as data complexity and diversity, improved accuracy, robustness and stability,
discovery of hidden patterns, and adaptability of new data, etc. However, the aforemen-
tioned traditional multiview clustering schemes are always affected by initials and necessity
to assign a prior cluster number. It is sensitive to the choice of initial condition, and it is
highly dependent on the initial guess for cluster centers. These sensitivity and dependence
will let algorithms be more complicated and have cost increasing. In this article, we first
formulate an unsupervised schema for multiview FCM (MV-FCM) clustering. We then
propose the unsupervised MV-FCM (MV-FCM) such that it can find an optimal number of
clusters without assigning a prior number of clusters and can also be free of initializations
and parameter selection.

The proposed U-MV-FCM algorithm presents several key innovations including the
ability to seamlessly integrate information from these multiple views to improve clustering
accuracy and in an unsupervised learning framework so that it does not rely on prior
knowledge of the number of clusters. Another notable innovation in the U-MV-FCM
algorithm is its ability to automatically determine the number of clusters. The initialization-
free nature and the capacity of automatically finding the number of clusters in the U-MV-
FCM algorithm make it a user-friendly and robust algorithm for clustering multiview
data. These advantages reduce the burden on users in terms of parameter tuning and
initializations and make it more accessible and effective in various real-world applications.
Some of the notations used in the paper are shown in Table 1. The reminder of this
paper is as follows. Section 2 demonstrates related works. In Section 3, we introduce an
unsupervised-regularization structure for MV-FCM clustering. More parameter estimations
are discussed, and then the unsupervised MV-FCM (U-MV-FCM) clustering scheme is
proposed. Section 4 presents the experimental results and comparisons, with some existing
algorithms. Finally, Section 5 offers some conclusions.

Table 1. Notations used in the paper.

n Number of data points

d Number of dimensions

ak Cluster centers

µik Memberships

dh Number of dimensions in the hth view

vh The hth view weight

m fuzziness index

ah
k Cluster centers in the hth view
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2. Related Works

Before delving into our proposed U-MV-FCM algorithm, it is essential to explore these
related existing MV-FCM clustering algorithms. This review offers a crucial foundation for
our study, as it helps us understand the state of the art in FCM and MV-FCM algorithms
in the realm of single-view as well as multiview clustering, which would be also used in
our experimental comparisons. By examining these prior approaches, we aim to identify
their strengths, limitations, and common trends. We also review cluster validity indices for
MV-FCM clustering that can be used to find the number of clusters. Let x1, . . . , xn be n data
points in the Euclidean space Rd and let a1, . . . , ac represents c cluster centers. Let µik be
the membership degree of the ith data point in the kth cluster center with µik ∈ [0, 1] and
∑c

k=1 µik = 1∀i. The well-known FCM [12,13] with its objective function is given by:

J(U , A) =
n

∑
i=1

c

∑
k=1

µm
ik ‖xi − ak‖2 (1)

where ‖xi − ak‖ is the Euclidean distance between ith data and kth cluster, m is the
fuzziness index, n denotes the data points, and c is the cluster number. The FCM algo-
rithm is iterated through the updating equations akj = ∑n

i=1 µm
ik xij/∑n

i=1 µm
ik and µik =(

∑c
k′=1(dik/dik′)

2
m−1
)−1

with dik = ‖xi − ak‖ for minimizing the objective function J(U, A)

of FCM.
Since FCM and its extensions need to give the prior number of clusters, and always

depend on initializations and some parameters like fuzziness index m, Yang and Natal-
iani [35] gave a novel FCM algorithm, called robust-learning FCM (RLFCM), to the robust
initializations and also free to the parameter selection with finding an optimal number of
clusters. The objective function is as follows:

JRLFCM(U, α, Ah) = [
n
∑

i=1

c
∑

k=1
µikd2

ik−η1
n
∑

i=1

c
∑

k=1
µik ln αk

+η2
n
∑

i=1

c
∑

k=1
µik lnµik − η3

n
∑

i=1

c
∑

k=1
αk ln αk]

(2)

where η1,η2,η3 ≥ 0 and d2
ik =

∥∥∥xh
i − ah

k

∥∥∥2
=

√
d
∑
j=

(
xh

i − ah
k
)2. The updated equations

of RLFCM are as follows: For cluster center akj, akj = ∑n
i=1 µikxij/∑n

i=1 µik , for member-

ship µik, µik = exp
(
−d2

ik+η1 ln αk
η2

)
/∑c

t=1 exp
(
−d2

it+η1 ln αt
η2

)
, and for mixing proportion αk,

α
(new)
k = 1

n

n
∑

i=1
µik +

η3
η1

α
(old)
k

(
ln α

(old)
k −

c
∑

t=1
α
(old)
t ln α

(old)
t

)
, where η1 = e−

t
150 , η2 = e−

t
400 .

In this study, we borrow the idea of Yang and Nataliani [35] to propose the unsupervised
multiview FCM clustering algorithm.

Although Bickel and Scheffer [19] proposed multiview clustering for the first time to
handle multiview data, Cleuziou et al. [20] was a pioneer in developing an advance ver-
sion of FCM, known as multiview FCM by augmenting more information among different
views, and they also created Co-FKM. Let X = {x1, . . . , xn} be a multiview dataset with

xi =
{

xh
i

}s

h=1
,xh

i ∈ Rdh , and xh
i =

{
xh

ij

}dh

j=1
. The Co-FKM algorithm [20] used the collabora-

tive idea of Pedrycz [36] with a sequencing strategy. To handle the multiview data, the Co-FKM
combines two strategies. In the first strategy, the average disagreement term between any

pair of the views, which are given as ∆ = 1
s−1

(
s
∑

h′=1,h′6=h

n
∑

i=1

c
∑

k=1

((
uh′

ik

)m
−
(

uh
ik

)m)(
dh

ik

)2
)

,

is integrated into the following objective function:

JCoFKM(U , A) =
s

∑
h=1

n

∑
i=1

c

∑
k=1

(
µh

ik

)m(
dh

ik

)2
+ η∆ (3)
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where dh
ik =

∥∥∥xh
i − ah

k

∥∥∥ =

√
∑dh

j=1

(
xh

ij − ah
kj

)2
, and η is used to control the weight of the

disagreement term. Thus, by minimizing the summation of the FCM objective function for
each view and the pair disagreement term ∆, the membership of each view is achieved. The
second strategy is then applied, in which the final consensus fuzzy membership is generated

by calculating the geometric mean of memberships of all views with µik = s

√
s

∏
h=1

µh
ik.

Another extension to multiview FCM clustering with weighted views was proposed
by Jiang et al. [21], called WV-Co-FCM, where they considered different weights per view,
by considering the parameters to regulate the distribution of each view weights. The
objective function of the WV-Co-FCM is given as

JWVCoFCM(U, A, V) =
s

∑
h=1

vh

[
n

∑
i=1

c

∑
k=1

(
µh

ik

)m(
dh

ik

)2
+ ∆h

]
+ λ

s

∑
h=1

vh ln vh (4)

where vh is the hth view weight with ∑s
h=1 vh = 1, vh ∈ [0, 1],∑c

k=1 µik = 1µik ∈ [0, 1]. λ > 0

is used to regulate the view weights, dh
ik =

√
∑dh

j=1

(
xh

ij − ah
kj

)2
and ∆h =

n
∑

i=1
αh

ik

c
∑

k=1
µh

ik(
1−

(
µh

ik

)m−1
)
−

n
∑

i=1
βh

ik

c
∑

k=1
µh

ik

(
1−

(
µh

ik

)m−1
)

, where αh
ik = η

(
dh

ik

)2
, and βh

ik has four

cases including βh
ik = η 1

s−1

s
∑

h′=1,h′6=h

(
dh′

ik

)2
, βh

ik = η
s

s
∑

h=1

(
dh

ik

)2
, βh

ik = η min
h′6=h

{(
dh′

ik

)2
}

, and

βh
ik = η s−1

√
∏

h′6=h

(
dh′

ik
)2, and 0 < η < 1 is a parameter used to control the penalty related to

the disagreement. The term, ∆h, aims at reducing the disagreement between organizations
on different views. The clustering process of the WV-Co-FCM is based on minimizing the
objective function that highlights the fuzzy partition for a dataset using the collaborative
clustering technique, and the weight of each view that can be achieved by adding the
entropy regularization term. The WV-Co-FCM is used to tackle the multiview data and the
weights are utilized in the last step. That is, the membership for each object and cluster
center is updated independently with the influence of weights.

The multiview FCM clustering algorithm without the collaboration step that consid-
ered different weights for its view is called MinMax-FCM, and it was proposed by Wang
and Chen [22]. The MinMax-FCM is constructed based on the single-view FCM, which
measures the minimum distance between membership matrix U∗ and the cluster centers in
each view Ah. Here, the maximum value within views Vh impacts the minimum separation
between U∗ and Ah. In this sense, the unanimous clustering results in the MinMax-FCM
are produced by the MinMax optimization, in which the dissimilarities of the diverse views
are reduced. The MinMax-FCM [22] is formulated as:

min
U∗ ,{Ah}s

h=1

max
{vh}s

h=1

s

∑
h=1

(vh)
βQh (5)

where Qh =
n
∑

i=1

c
∑

k=1

(
u∗ik
)m
∥∥∥xh

i − ah
k

∥∥∥2
subject to ∑c

k=1 u∗ik = 1,1 ≤ i ≤ n,u∗ik ≥ 0∀i, k,

∑s
h=1 vh = 1 and vh ≥ 0,1 ≤ h ≤ s. The expression

(
u∗ik
)m
∥∥∥xh

i − ah
k

∥∥∥2
is considered as the

cost of the hth view, which is the FCM objective function. vh is the weight of hth view. The
parameter β ∈ (0, 1) controls the distribution of weights vh for different views, and m > 1
is the fuzzifier for fuzzy clustering, which controls the fuzziness of the membership.

In Co-FKM, there are two strategies. The first strategy is as follows: the average
disagreement between any pairs of the views is integrated into the objective function. The
second strategy is applied in which the final consensus fuzzy membership is generated by
calculating the geometric mean of the membership of all views. Based on similar strategies
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as applied in the Co-FKM, the WV-Co-FCM was proposed to handle multiview data. Like
the Co-FKM, the fuzzy membership for each object in each view is first calculated in the
WV-Co-FCM. An additional step is needed to calculate the final consensus membership.
There are mainly three differences between the aforementioned two approaches. First,
instead of using standard FCM, the WV-Co-FCM is based on GIFP-FCM (Zhu et al. [37])
in which the entropy is added to enhance the fuzzy membership. Second, the weight for
each view is considered in the WV-Co-FCM and the entropy regularization term of the
weight is introduced into the objective function. Third, instead of using the geometric
mean in Co-FKM, the final consensus membership is generated based on the weight of
each view. In the MinMax-FCM, the consensus clustering results are generated based on
the MinMax optimization, in which the maximum disagreements of the different weighted
views are minimized. According to Wang and Chen [22], the MinMax-FCM generates
harmonic consensus clustering results integrating the heterogeneous views of data on the
consensus memberships.

In order to make comparisons with the state of the art in multiview clustering algo-
rithms, the algorithms discussed above have been used. The key relationships among them
are summarized as follows: the Co-FKM serves as the foundational algorithm, and the
WV-Co-FCM is a variation with additional features, while the MinMax-FCM is a separate
algorithm that focuses on minimizing disagreements to achieve consensus clustering. Each
algorithm has its unique characteristics and strategies for handling multiview data. In the
multiview clustering algorithms, they always depend on initializations to achieve good
results. All three multiview algorithms of Co-FKM, WV-Co-FCM, and MinMax-FCM try
to calculate the consensus membership in different ways. The three multiview algorithms
required a number of clusters a priori with the parameter selection. In fact, we need to have
an algorithm that can tackle these issues and automatically find the number of clusters.
This is our goal in this research.

In general, cluster validity indices (CVIs) are used to assess the suitability of the parti-
tions shaped by clustering algorithms and are commonly used to determine an appropriate
clusters number for the datasets [12]. The most used fuzzy CVIs linked to FCM are the
partition coefficient (PC) [38] and the partition entropy (PE) [39], which both only use
fuzzy memberships obtained by the FCM algorithm. Since the geometry of data cannot be
taken into consideration by these indices, the fuzzy hypervolume (FHV) was introduced
by Gath and Geva [40]. The XB validity index introduced by Xie and Beni [41] is based
on fuzzy memberships and the geometrical structure of data with its objective function,
and Wu et al. [42] gave the robust-type CVIs. However, the FHV and XB validity indices
are not fitted for multiview FCM clustering algorithms even though we modify them by
considering the multiview FCM objective functions. In this sense, for the multiview FCM
clustering algorithms, we use PC, PE, and MPC as the validity indices.

The PC [38] is calculated by taking the overall summation of squared fuzzy mem-
berships µ2

ik. The total data points n is embedded to the controlling weights. Thus, PC
associated with fuzzy c-memberships is defined as

PC(c) =
1
n

c

∑
k=1

n

∑
i=1

µ2
ik (6)

It is known that 1/c ≤PC(c) ≤ 1. An optimal number c is determined by solving
max2≤c≤n−1PC(c). To normalize PC(c) such that it is between 0 and 1, Roubens [43]
modified PC(c) as

MPC(c) = 1− c
c− 1

(1− PC(c)) (7)

On the other hand, PE [39] is estimated by taking the entropy of fuzzy c-memberships µik.
The PE associated with fuzzy c-memberships is expressed as

PE(c) = − 1
n

n

∑
i=1

c

∑
k=1

µik log2 µik (8)
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Generally, we determine an optimal c by simplifying min2≤c≤n−1PE(c) to obtain an
optimal cluster number.

3. The Proposed Unsupervised Multiview Fuzzy C-Means Clustering Algorithm

The existing clustering algorithms of k-means and FCM are the most popular among
single-view data. It is a common fact that FCM is a fuzzy extension of the k-means clustering
algorithm. However, most multiview clustering algorithms need prior information such as
a number of clusters and the parameter selection. Therefore, there is a need for an algorithm
that can handle all these issues and automatically find an optimal number of clusters in
clustering the multiview data. For filling this important research gap, we introduce a novel
U-MV-FCM algorithm that has the capacity to address the drawbacks of these existing
algorithms. That has been demonstrated as follows.

Let X = {x1, . . . , xn} be a multiview dataset with xi =
{

xh
i

}s

h=1
, xh

i ∈ Rdh , and

xh
i =

{
xh

ij

}dh

j=1
, i = 1, . . . , n. Let V = [vh]1×s, where vh is the hth view weight and

Ah =
{

ah
1, . . . , ah

c

}
is the set of the c cluster centers in the hth view with ah

k =
{

ah
kj

}
,

j = 1, . . . , dh. Let U = [µik]n×c be the fuzzy c-membership matrix with µik ∈ [0, 1] and
∑c

k=1 µik = 1 ∀ i where µik is interpreted as the agreed membership of ith data point in the
cluster centers k shared across different view h. As the prime objective of our proposed
unsupervised-regularization structure is to determine an optimal number of clusters for
multiview FCM, we use the concept of robust-learning FCM proposed by Yang and Natal-
iani [35]. We first design an adequate membership architecture across different views to the
entire multiview dataset, and then add more penalty terms to construct the unsupervised-
regularization structure. Thus, we construct the following unsupervised multiview FCM
(U-MV-FCM) objective function:

JU−MVFCM(U, Ah, V, α) = [
s
∑

h=1
vβ

h

n
∑

i=1

c
∑

k=1
µik

∥∥∥xh
i − ah

k

∥∥∥2
− η1

n
∑

i=1

c
∑

k=1
µik ln αk

+η2
n
∑

i=1

c
∑

k=1
µik lnµik − η3

n
∑

i=1

c
∑

k=1
αk ln αk]

(9)

subject to ∑c
k=1 µik = 1,∀i, µik ∈ [0, 1], ∑s

h=1 vh = 1, vh ∈ [0, 1], and ∑c
k=1 αk = 1,

αk ∈ [0, 1], where
∥∥∥xh

i − ah
k

∥∥∥2
= ∑dh

j=1

(
xh

ij − ah
kj

)2
, η1, η2, η3 > 0, and β is a view-weight

exponent. We mention that αk is used to represent the probability of the kth cluster in the c
clusters that will be utilized to determine an optimal number of clusters. The first term of
JU−MVFCM(U, Ah, V, α) is the only simple objective function of the multiview FCM, and
the other three penalty terms are considered as unsupervised-regularization by using the
parameters η1, η2, and η3 to adjust these penalties. We will give the estimates of η1, η2, η3
and β later.

In general, it is challenging to simplify the variables µik, vh, ah
k , and αk in Equation

(9) directly, as Equation (9) is nonconvex. Yet we observe that the objective function is
convex with respect to µik, vh, αk and is concave with respect to ah

k and therefore alternative
optimization (AO) is utilized for the optimization problem by fixing other variables while
solving the one.

Theorem 1. The updating equations to find the necessary conditions for minimization of the
U-MV-FCM objective function JU−MVFCM(U, Ah, V, α) of Equation (9) are

µik =
e

1
η2

(η1 ln αk−
s
∑

h=1
vβ

h ‖x
h
i −ah

k‖
2
)

c
∑

k′=1
e

1
η2

(η1 ln αk′−
s
∑

h=1
vβ

h ‖x
h
i −ah

k′‖
2
)

(10)
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vh =


s

∑
h′=1


n
∑

i=1

c
∑

k=1
µik

∥∥∥xh
i − ah

k

∥∥∥2

n
∑

i=1

c
∑

k=1
µik
∥∥xh′

i − ah′
k

∥∥2


1

β−1


−1

(11)

ah
kj =

n

∑
i=1

µikxh
ij/

n

∑
i=1

µik (12)

α
(t+1)
k =

1
n

n

∑
i=1

µik +
η3

η1
α
(t)

k

(
ln α

(t)

k −
c

∑
k′=1

α
(t)

k′ ln α
(t)

k′

)
(13)

Proof. The Lagrangian Multiplier technique is employed to resolve the optimization
problem regarding the proposed U-MV-FCM w.r.t. µik, vh,a

(h)
k and αk. The Lagrangian for

JU−MVFCM(U, Ah, V, α) is expressed as J̃(V, Ah, U, α) = JU−MVFCM − λ1(∑c
k=1 µik − 1)−

λ2(∑c
k=1 αk − 1)− λ3(∑s

h=1 vh − 1).
By taking the partial derivative of the Lagrangian J̃(V, Ah, U, α) w.r.t. µik equal to zero, we

obtain ∂J
∂µik

=
s
∑

h=1
vβ

h

∥∥∥xh
i − ah

k

∥∥∥2
− η1 ln αk + η2(ln µik + 1)− λ1 = 0. Then, we have ln µik =

1
η2

(
η1 ln αk −

s
∑

h=1
vβ

h

∥∥∥xh
i − ah

k

∥∥∥2
+ λ1 − η2

)
. Thus, we have µik = e

1
η2

(η1 ln αk−
s
∑

h=1
vβ

h ‖x
h
i −ah

k‖
2
)

e
λ1−η2

η2 . Since
c
∑

k=1
µik = 1, we obtain e

λ1−η2
η2 = 1/

c
∑

k=1
e

1
η2

(η1 ln αk′−
s
∑

h=1
vβ

h ‖x
h
i −ah

k′‖
2
)
. Hence, the

updating equation for µik can be obtained as µik = e
1

η2
(η1 ln αk−

s
∑

h=1
vβ

h ‖x
h
i −ah

k‖
2
)
/

c
∑

k=1
e

1
η2

(η1 ln αk′−
s
∑

h=1
vβ

h ‖x
h
i −ah

k′‖
2
)
. and the updating Equation (10) for µik is obtained. Simi-

larly, the partial derivative of the Lagrangian J̃
(

V, U, Ah, α
)

w.r.t. vh and if we make it

equal to zero, we can obtain the equation ∂ J̃
∂vh

= βvβ−1
h

n
∑

i=1

c
∑

k=1
µik

∥∥∥xh
i − ah

k

∥∥∥2
− λ3 = 0. Thus,

we have vh = (λ3)
1

β−1

(
β

n
∑

i=1

c
∑

k=1
µik

∥∥∥xh
i − ah

k

∥∥∥2
)− 1

β−1
. Since

s
∑

h′=1
vh = 1, vh ∈ [0, 1], we ob-

tain (λ3)
1

β−1 =

((
β

n
∑

i=1

c
∑

k=1
µik

∥∥∥xh′
i − ah′

k

∥∥∥2
)− 1

β−1
)−1

. Thus, the updating Equation (11)

for vh is obtained. The derivative of the U-MV-FCM objective function JUR−MVFCM w.r.t.

ah
k and equal to zero, we can obtain the equation ∂JU−MVFCM

∂ah
kj

= −2vβ
h

n
∑

i=1
µik

(
xh

ij − ah
kj

)
= 0,

and then
n
∑

i=1
µikxh

ij =
n
∑

i=1
µikah

kj. Thus, the updating Equation (12) for ah
k can be obtained as

ah
kj =

n
∑

i=1
µikxh

ij/
n
∑

i=1
µik . We next take the partial derivative of Lagrangian J̃

(
V, Ah, U, α

)
w.r.t. αk and make them equal to zero. We obtain the equation ∂J

∂αk
= −η1

n
∑

i=1
µik

(
1
αk

)
−

η3n(ln αk + 1) − λ2 = 0, and then −η1
n
∑

i=1
µik − nη3αk ln αk − nη3αk − λ2αk = 0. Thus,

we have −η1
n
∑

i=1

c
∑

k=1
µik − nη3

c
∑

k=1
αk ln αk − nη3

c
∑

k=1
αk − λ2

c
∑

k=1
αk = 0. with λ2 = −nη1 −

nη3
c
∑

k=1
αk ln αk − nη3. We obtain −η1

n
∑

i=1
µik − nη3αk ln αk − nη3αk − αk(

−nη1 − nη3
c
∑

k′=1
αk′ ln αk′ − nη3

)
= 0 and then we find the updating Equation (13) for
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αk as α
(t+1)
k = 1

n

n
∑

i=1
µik +

η3
η1

α
(t)
k

(
ln α

(t)
k −

c
∑

k′=1
α
(t)
k′ ln α

(t)
k′

)
, where t denotes the iteration

number in the algorithm. �

The data are commonly used as a potential source for reaching an educated decision.
In a multiview data scenario, the high-level detail information is used to capture the
correlation between the data features in the hth view. It is known that determining an
optimal number of clusters for the multiview FCM clustering algorithm is quite difficult,
and no work has been written yet in the literature. This process usually requires much
more effort to understand the data, especially in real world application. To make proper
assumptions, it is essential to have domain expertise in a specific application. In practice, to
assign a specific value to the number c of clusters is needed on the base of proprietary data
insights. However, different datasets may result in different c values. It becomes difficult in
real applications, like biological applications with Prokaryotic data analysis. This variability
becomes particularly prominent. Thus, the regularization of the proposed U-MV-FCM
clustering algorithm is designed to accommodate varying preferences and conceptual
frameworks (Figure 1). It is known that researchers had investigated the Prokaryotic
dataset with its actual number c as 4. Based on these insights, the users will specify c = 4 in
the implementation of most MV-FCM clustering algorithms for Prokaryotic data. However,
without giving the number c of clusters, U-MV-FCM can potentially obtain the optimal
number of clusters with c = 4.

In the U-MV-FCM objective function JU−MVFCM(U, Ah, V, α), we have four parameters
η1, η2, η3 and β. We now use two artificial datasets to analyze the behaviors of these
parameters and then give their estimations.

Artificial Data 1. A two-view numerical dataset with two clusters & two feature components is con-
sidered. Gaussian mixture model (GMM) is used to generate a two-component two-variate data point
for each view where their probability proportions are α

(1)
1 = α

(2)
1 = 0.7 and α

(1)
2 = α

(2)
2 = 0.3. The

means µ
(1)
k for the first view are (5, 6) and (12, 6). The means µ

(2)
k for the second view are (6, 12)

& (6, 5). For the two views, covariance matrices are ∑
(1)
1 = ∑

(2)
1 = ∑

(1)
2 = ∑

(2)
2 =

(
1 0
0 1

)
. The

x(1)1 and x(1)2 are the coordinates for the first view, x(2)1 & x(2)2 denotes the coordinates for the second
view, as displayed in Figure 2a and Figure 2b, respectively.

Artificial Data 2. A three-view numerical dataset with five clusters and two feature components is
considered. The data points in each view are generated from a two-component two-variate Gaussian mixture
model (GMM) with their mixing proportions α

(1)
1 = α

(2)
1 = α

(3)
1 = 0.1, α

(1)
2 = α

(1)
3 = α

(2)
2 = α

(2)
3 =

α
(3)
2 = α

(3)
3 = 0.25 and α

(1)
4 = α

(1)
5 = α

(2)
4 = α

(2)
5 = α

(3)
4 = α

(3)
5 = 0.2. The means µ

(1)
k for the

first view are
(
4.580 3.344

)
,
(
3.8730 2.637

)
,
(
1.752 1.930

)
,
(
1.752 3.344

)
,
(
1.044 2.637

)
.

The means µ
(3)
k for the third view are

(
2 5

)
,
(
0.65 0.67

)
,
(
3.10 2.48

)
,
(
2 3.5

)
,
(
1 2.48

)
.

These x(1)1 & x(1)2 are the coordinates for the first view, x(2)1 & x(2)2 denotes the second view coordinates,

and x(3)1 & x(3)2 denotes the third view coordinates, as presented in Figure 3a–c, respectively. As can be

seen, the two views of the x(1)1 & x(1)2 and x(2)1 & x(2)2 are mirror images of each other. So it is clear that the

data points x(2)1 & x(2)2 for the second view are generated on the basis of inverse data points of x(1)1 & x(1).2
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Figure 2. The two-view two-cluster dataset for (a) first view; (b) second view.
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Figure 3. The three-view-five-cluster dataset for (a) first view; (b) second view; (c) third view.

Parameter β: We know that the parameter β is a view-weight exponent. Our main
idea is to find an optimal clusters number and also to estimate the importance of different
views in multiview datasets. When we simulate with different values of β for the Artificial
Datasets 1 and 2, we find that it makes a difference for the proposed U-MV-FCM. That is,
if the values are too small or too large, then the overall accuracy rates will be decreasing.
Intuitively, a small or a large β can represent an imbalanced importance for one view. Thus,
the issue is: how to estimate β so that it can represent the importance of different views.
This question can be answered by designing an appropriate balancing estimator for β.
In this sense, a balance movement of β values can control the distribution of one view
in the multiview scenario for simultaneously finding a good number of clusters. To test
this hypothesis, we implement our balancing estimator of β by using the above Artificial
Datasets 1 and 2. This idea can be addressed by considering the minimum weights of the
probability proportion k into account. As at every iteration the values of mixing proportion
k is changed, the necessary condition estimating β is to have a sufficient number that
generated from µik, a(t)k and a(t)k′ . In machine learning, it is a common knowledge that π can
be used to measure the identifiability of the data. Therefore, the view-weight exponent
β will algebraically consider the minimal solution of α

(t−1)

k and then construct it with π
value. In this sense, the infinite series of π is suitable to adjust the dimensions of each view
into well-structured shapes. The values of β based on the movement of the probability
proportion kth shared across different views combined with π value can be presented in
the form

β(t) = 2πarg min
1≤k≤c

[α
(t−1)

k ] (14)

where arg min
1≤k≤c

[ ] stands for the argument for which the minimum of α
(t−1)

k is attained,

and that is a real and positive number. To be noted α
(t+1)

k it must be derived based on

the constant n, η1, η3,µik, α
(t)

k , and α
(t)

k′ . In this sense, the value of β not only depends on

the input of the k and k’ current probability proportion α
(t)

k , α
(t)

k′ , but also depends on the
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k and k’ value of the probability proportion at the previous time α
(t−1)

k , α
(t−1)

k′ . Using π and
the minimal solution of α to estimate β enables the proposed U-MV-FCM algorithm to
simultaneously approximate and reproduce the qualifying number of clusters such that
the Euclidean distances dik = ‖xi − ak‖ of hth components are minimized while α

(t)

k is
maximized. In this sense, the data points will be well-structured and easy to be classified.

Parameters η1, η2: One of the motivations for this simulation of balancing the param-
eters is to tune the level in determining the number of clusters in each iteration. A good
combination value between η1 and η2 needs to be in general stable, scalable, and fit to any
types of multiview data. Usually, the functions of e−t, e−t/150, e−t/250,e−t/400,e−t/600 and
e−t/1000 are used as the learning functions in which y = e−t decreases faster, but e−t/1000

decreases slower at each iteration t. According to the penalty term
n
∑

i=1

c
∑

k=1
µik lnαk, it has

effects on µik and αk. Thus, the learning behavior for η1 should not decrease too slowly or

too fast. Further, the penalty term
n
∑

i=1

c
∑

k=1
µik lnµik is the entropy on µik, and so the learning

function for η2 should decrease fast. Thus, the decreasing learning functions for η1 and η2
are chosen as follows:

η1 = e−
t

150 (15)

η2 = e−
t

400 (16)

The terms in (15) and (16) can accelerate the process in finding the number of clusters
during iterations in the algorithm. To address this issue, taking the square root of the
iteration t enables the U-MV-FCM algorithm to reduce the number of clusters in each
iteration. To assist the smooth movement, we use the following η1 and η2 for the U-MV-
FCM algorithm:

η1 = e−
t

150
1√

t
(17)

η2 = e−
t

400
1√

t
(18)

After updating the number of clusters c, the remaining mixing proportion αk′ and
corresponding µik′ need to be re-normalized by

αk′ =
αk′

∑ct+1

l=1 αl
(19)

µik′ =
µik′

∑ct+1

l=1 µil
(20)

For the two parameters η1 and η2 in Figure 4, we consider four decreasing learning
rates mentioned in Equations (15)–(18). From Figure 4a,b, we can see that, as the starting
steps, the decreasing rates based on Equations (15) and (16) are slower than that based on
Equations (17) and (18). However, the decreasing rates based on Equations (15) and (16)
are faster than that based on Equations (17) and (18) when the algorithm becomes stable. In
this sense, we suppose that the learning rates of Equations (17) and (18) should be better
than the learning rates of Equations (15) and (16) for our proposed U-MV-FCM algorithm.
For further observations, we represent the processes of the newly proposed U-MV-FCM
in determining the optimal number of clusters c* by using the learning rates of Equations
(17) and (18) as presented in Figure 4c,d, in which Figure 4c is for Artificial Dataset 1 and
Figure 4d is for Artificial Data 2. It is clear that Artificial Data 1 initially uses n data points
as the number of clusters c, i.e., c = n = 600. After the second iteration, the number of
clusters reduces from 600 to 327 and then it stops at the iteration t = 9 with the optimal
number of clusters c* = 2, as portrayed in Figure 4c. Given the result for Artificial Data 2
with initial c = n = 500, it successfully shows that the proposed U-MV-FCM can produce the
optimal number c* = 5 of clusters at the iteration t = 12, as shown in Figure 4d. These results
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reflect the parameters η1 and η2 with Equations (17) and (18) can obtain the correct optimal
number of clusters for Artificial Data 1 and 2. In general, the parameters η1 and η2 with
Equations (17) and (18) as the learning rates are more efficient than those with Equations
(15) and (16) for the proposed U-MV-FCM. In this sense, we use Equations (17) and (18) as
the learning rates in our proposed U-MV-FCM algorithm.
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Figure 4. Parameter sensitivity of η1, η2 with Equations (15) and (18) for (a) Artificial Data 1;
(b) Artificial Data 2; Further, the iterative c* when processing the U-MV-FCM in determining the
optimal number of clusters c* with the learning rates of Equations (17) and (18) for (c) Artificial Data
1; (d) Artificial Data 2.

Parameter η3: Furthermore, the Parameter η3 is the balancing parameter to control the
competition. Here, we directly use the restriction of−e−1 ≤ αk ln αk < 0. First, if 0 < αk ≤ 1∀ k

and E =
c
∑

l=1
αl lnαl < 0, then we have αkE = αk

c
∑

l=1
αl lnαl < 0. Second, using−e−1 ≤ αk ln αk <

0 and αkE = αk
c
∑

l=1
αl lnαl < 0, we obtain −e−1η3 < η3αk

(
ln αk−

c
∑

l=1
αl ln αl

)
< η3(−αkE).

Third, we apply ∑c
k=1 αk = 1 and αk < 1/2, then we can obtain

(
ln αk−

c
∑

l=1
αl ln αl

)
< 0.

Fourth, because αk > 0 then −e−1η3 > −max{αk|αk < 1/2, k = 1, 2, . . . , c}. So we obtain η3 <
max{αke|αk < 1/2, k = 1, 2, . . . , c} < e/2. Note that η3 is a solution to the matric αk, then justifying
an appropriate input value of this η3 is essential. The estimation of η3’s can easily be formulated, if
the dispersion between α

(t+1)

k and α
(t)

k is not too small, and to enhance the competition, it must be

large. If the dispersion between α
(t+1)

k and α
(t)

k is large, then to maintain stability η3 will be small.
Thus, we introduce an updating equation for η3 as

η3 =
∑c

k=1 exp
{
−rn

∣∣∣αt+1
k − αt

k

∣∣∣}
c

, (21)

In addition, we consider the restriction max
1≤k≤c

α
(t+1)

k ≤ 1. But, max
1≤k≤c

α
(t+1)

k ≤ max
1≤k≤c(

1
n ∑n

i=1 µik

)
+ η3

η1
max

1≤k≤c
α
(t)

k (ln max
1≤k≤c

α
(t)

k −∑c
l=1 α

(t)

l ln α
(t)

l ) max
1≤k≤c

(
1
n ∑n

i=1 µik

)
+ η3 max

1≤k≤c
α
(t)

k(
−∑c

l=1 α
(t)

l ln α
(t)

l

)
],
[

max
1≤k≤c

(
1
n ∑n

i=1 µik

)
+ η3

η1
max

1≤k≤c
α
(t)

k

(
ln max

1≤k≤c
α
(t)

k −∑c
l=1 α

(t)

l ln α
(t)

l

)
<

max
1≤k≤c

(
1
n ∑n

i=1 µik

)
+ η3 max

1≤k≤c
α
(t)

k

(
−∑c

l=1 α
(t)

l ln α
(t)

l

)]
. Thus, if max

1≤k≤c

(
1
n ∑n

i=1 µik

)
+ η3 max

1≤k≤c
α
(t)

k(
−∑c

l=1 α
(t)

l ln α
(t)

l

)
≤ 1, then the restriction will be held. It employs that

η3 ≤

(
1− max

1≤k≤c

(
1
n ∑n

i=1 µik

))
(
−max

1≤k≤c
α
(t)

k ∑c
l=1 α

(t)

l ln α
(t)

l

) (22)
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Thus, by combining Equations (21) and (22), we obtain

η3 = min

∑c
k=1exp (−rn

∣∣∣α(t+1)

k − α
(t)

k

∣∣∣)
c

,
1− max

1≤k≤c
( 1

n ∑n
i=1µik)(

−max
1≤k≤c

α
(t)

k ∑c
l=1α

(t)

l ln α
(t)

l

)
 (23)

We use Figure 5 to demonstrate the parameter sensitivity of η1, η2, η3, and β for
Artificial Datasets 1 and 2.

Electronics 2023, 11, x FOR PEER REVIEW 14 of 30 
 

 

Thus, by combining Equations (21) and (22), we obtain 

( ) ( )
( )

( ) ( )

( ) ( ) ( )

exp max
min ,    

max ln

1
1

1 11
3

11

1
t t

t t t

c n
k k n ikk ik c

c
kk c

rn

c

α α µ
η

α α α

+

= =≤ ≤

=≤ ≤

 − − − =  
− 

 

∑ ∑
∑

 



 
(23) 

We use Figure 5 to demonstrate the parameter sensitivity of 1 2 3, , ,η η η  and β  for 
Artificial Datasets 1 and 2. 

  
(a) (b) 

Figure 5. Parameter sensitivity of 1 2 3, , ,η η η  and β  for (a) Artificial 1; (b) Artificial 2. 

The formulation of multiview learning is significant as the growing of data is massive. 
Each data point can be represented by different views and hence various restrictions 
including the parameter estimations are required. In the U-MV-FCM, we propose several 
parameter estimators to explore patterns in the multiview data. There are many possible 
combinations of the parameters to process the data, but not all combinations can perform 
well. Thus, the multiview data can be patterned by using hundreds of possible combinations 
of the parameters before choosing the one that reveals meaningful insights behind the data. 
Our proposed U-MV-FCM aims to find the optimal number of clusters with high-quality 
cluster centroids in an efficient manner. One of the important parameters to determine the 
success of the U-MV-FCM is .r  In relation to 3η  estimator in (23), we also consider r  as 

a nonzero element. We then formulate r as { }{ }* / 2 1

1
min min 1,2 / * ,ht d

hh s
r t d −  

≤ ≤
=  where 

a    denotes the largest integer that is no more than .a  Thus, the proposed U-MV-FCM 
clustering algorithm is presented in Algorithm 1: 

Algorithm 1. The U-MV-FCM clustering algorithm 
Input: Dataset { }1, , nX x x= 

 with { }
1

sh
i i h

x x
=

= and { }
1

hdh h
i ij j

x x
=

= . 

Output: ,  ,h
kj ika µ hv and kα . 

Initialization: Give initial , (0) 1/k nα = , , initial ( )0
3 1η = , initialize view 

weight  (user may define ), and set iteration counter t = 0, 

and fit . 
Step 1: Calculate ( ) ( )

1 2,t tη η  by Equations (17) and (18). 

Step 2: Calculate  by Equation (14). 

Step 3: Compute the membership 
( )t

U  using , , 
( )1t

α
−

, , ( ) ( )
1 2,t tη η , and  

by Equation (10). 

Step 4: Update 
( )t

α  with ( ) ( )
1 3,t tη η , ( )t

U  and 
( )1t

α
−

 by Equation (13). 

Step 5: Compute ( )
3

tη  with ( )t
α  and ( )1t

α
−  by Equation (23). 

Step 6: Update  to  by discarding those clusters with ( )
1/

t

nα ≤  and adjust 
( )t

α  

Figure 5. Parameter sensitivity of η1, η2, η3, and β for (a) Artificial 1; (b) Artificial 2.

The formulation of multiview learning is significant as the growing of data is massive.
Each data point can be represented by different views and hence various restrictions in-
cluding the parameter estimations are required. In the U-MV-FCM, we propose several
parameter estimators to explore patterns in the multiview data. There are many possible
combinations of the parameters to process the data, but not all combinations can perform
well. Thus, the multiview data can be patterned by using hundreds of possible combina-
tions of the parameters before choosing the one that reveals meaningful insights behind
the data. Our proposed U-MV-FCM aims to find the optimal number of clusters with
high-quality cluster centroids in an efficient manner. One of the important parameters to
determine the success of the U-MV-FCM is r. In relation to η3 estimator in (23), we also con-
sider r as a nonzero element. We then formulate r as r = min

1≤h≤s

{
min

{
1, 2/t ∗ dh

bt∗dh/2−1c
}}

,

where bac denotes the largest integer that is no more than a. Thus, the proposed U-MV-FCM
clustering algorithm is presented in Algorithm 1:

We next demonstrate the parameters and cluster behaviors for the proposed U-MV-
FCM clustering algorithm. Parameter selection is one of the important step in clustering
data, as the high-quality structured data will be obtained if the choice of the combination
parameters is provided. The relation and interaction between η1, η2, η3, and β can be
parameterized and lead the proposed U-MV-FCM to give the optimal number of clusters c.
As displayed in Figure 6a–d, the proposed U-MV-FCM reduced the clusters number for
both views that are the first and second views of Artificial 1 from originally c = 600 to c =
327 after t = 2 and continuously reduced to c* = 2 after t = 9 with AR = 1.00. For Artificial
2 as shown in Figure 7a–f, the proposed U-MV-FCM processed the data from the three
views from originally c = 500 to 295 after the second iteration and converged after fourteen
iterations with c* = 5 and AR = 0.9980.
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Algorithm 1. The U-MV-FCM clustering algorithm

Input: Dataset X = {x1, . . . , xn} with xi =
{

xh
i

}s

h=1
and xh

i =
{

xh
ij

}dh

j=1
.

Output: ah
kj, µik,vh and αk.

Initialization: Give initial c(0) = n, α
(0)
k = 1/n, a(0)k,h = xi, initial η

(0)
3 = 1, initialize view

weight V(t) = [vh]1×s (user may define vh = 1/s∀h), and set iteration counter t = 0,
and fit ε > 0.

Step 1: Calculate η
(t)
1 , η

(t)
2 by Equations (17) and (18).

Step 2: Calculate β(t) by Equation (14).

Step 3: Compute the membership U
(t)

using Ah(t−1)
, Vh(t−1)

, α
(t−1)

, c(t−1), η
(t)
1 , η

(t)
2 , and β(t)

by Equation (10).

Step 4: Update α
(t)

withη
(t)
1 , η

(t)
3 , U

(t)
and α

(t−1)
by Equation (13).

Step 5: Compute η
(t)
3 with α

(t)
and α

(t−1)
by Equation (23).

Step 6: Update c(t−1) to c(t) by discarding those clusters with α
(t) ≤ 1/n and adjust α

(t)

and U
(t)

by Equations (19) and (20). IF t ≥ 60 and c(t−60) − c(t) = 0, THEN let

η
(t)
3 = 0.

Step 7: Update the view weight Vh(t) using c(t), Ah(t−1)
, β(t), and U

(t)
by Equation (11).

Step 8: Update Ah(t) with c(t) and U
(t)

by Equation (12).

Step 9: IF
∣∣∣∥∥∥Ah(t)

∥∥∥− ∥∥∥Ah(t−1)
∥∥∥∣∣∣ < ε, then stop;

ELSE let t = t +1 and return to Step 1.
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Figure 6. (a) Processes of U-MV-FCM for first view after the second iteration; (b) Convergence results
for first view; (c) Process of U-MV-FCM for second view after the second iteration; (d) Convergence
results for second view.
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Figure 7. Processes of the U-MV-FCM after second iteration for: (a) first view; (b) second view;
(c) third view; Convergence results for: (d) first view; (e) second view; (f) third view.

4. Experimental Results and Comparisons

In this section, we show the comparison results of the proposed U-MV-FCM with the
the Co-FKM, MinMax-FCM, and WV-Co-FCM algorithms with consideration of biological,
image, text, and webpage news datasets. The six benchmark datasets used are Wikipedia
Articles [44,45], Prokaryotic [46], WebKB [47,48], 3-Sources [49], Reuters [50] and Extended
YaleB [51]. These three artificial datasets such as Artificial 1, Artificial 2, and Syn500 [52]
are also involved in experiments to evaluate our proposed U-MV-FCM algorithm. Table 2
represents the brief descriptions of these six benchmark dataset numbers in terms of data
types, view s, cluster c, data points n, and feature dimension dh.

Table 2. Characteristics of the MV datasets: name, number of clusters c, number of views v, the
feature dimension dh, number of data points n and data types.

Dataset Prokaryotic Wikipedia Articles 3-Sources Reuters WebKB Extended YaleB

c 4 10 6 6 3 10

n 552 693 169 1200 203 640

s 3 2 3 5 3 3

d1 393 128 3560 2000 1703 1024

d2 3 10 3631 2000 230 256

d3 - - - 2000 - -

d4 - - - 2000 - -

d5 - - - 2000 - -

Type Biological Text Text Text Web Page Face

4.1. Performance Evaluation of MV-FCM Clustering Algorithms

In this subsection, the proposed U-MV-FCM and these existing algorithms such as
the Co-FKM, MinMax-FCM, and WV-Co-FCM are validated by using the three artificial
datasets and six benchmark multiview datasets. In order to evaluate the performance of
the aforementioned MV-FCM clustering algorithms, we utilize the performance evaluation
measures including AR (accuracy rate), RI (rand index) [53], FMI (Fowlkes and Mallows
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index) [54], NMI (normalized mutual information) [55], and JI (Jaccard index) [56]. In
general, these performance evaluation measures are the most commonly used indices in
the literature. The values of these external validation measures range from 0 to 1. The
higher the rate, the better the performance. For a fair comparison, simulation for the
Co-FKM, MinMax-FCM, and WV-Co-FCM would be designed over 51 different random
initializations. For quantitative evaluation, we only report the average of 51 different
random initializations and then summarize the average of fuzziness m ranging from 1.1–2.0.
It should be noted that our proposed U-MV-FCM aims at finding the optimal number of
clusters with a high-quality cluster centroids in an efficient manner. Furthermore, our
proposed U-MV-FCM is designed to automatically assign the viewpoint data as initial
cluster centers. While in the existing algorithms, users need to specify a certain number as
initialization for clusters. Therefore, in these experimental setups of Co-FKM, WV-Co-FCM,
and MinMax-FCM, we assign the accurate clusters number on each multiview data as their
initial number of clusters.

Findings and Discussion: The results regarding the performance of the proposed U-
MV-FCM with the existing MV-FCM clustering algorithms on the nine multiview datasets
have been demonstrated. Table 3 shows the clusters number obtained by the proposed
U-MV-FCM as well as the information regarding the actual number of clusters. The
optimal number of clusters c* obtained by the proposed U-MV-FCM is displayed inside the
parentheses. It can be observed that the proposed U-MV-FCM obtains an optimal number
of clusters for Artificial Data 1 (c* = 2), for Artificial Data 2 (c* = 5), Syn500 (c* = 2), and
the real-world datasets Prokaryotic (c* = 4), Wikipedia Articles (c* = 10), WebKB (c* = 3),
Extended YaleB (c* = 10), 3-Source (c* = 3), Reuters (c* = 2), respectively.

Table 3. Number of clusters obtained by U-MV-FCM.

Datasets Cluster No. Obtained Cluster No.

Artificial Data 1 2 2

Artificial Data 2 5 5

Syn500 2 2

Prokaryotic 4 4

Wikipedia Articles 10 10

WebKB 3 3

Extended YaleB 10 10

3-sources 6 3

Reuters 6 2

We established the results of the U-MV-FCM in terms of AV-AR, AV-FMI, AV-RI, AV-
NMI, and AV-JI in Tables 4–10. It should be noted that the best result is marked in boldface,
and the second one is marked in underlining. It can be witnessed that the proposed U-MV-
FCM performs superior in the case of the evaluation measure as well as the comparison to
other state-of-the-art algorithms on Artificial Data 1, Artificial Data 2, Syn500, Prokaryotic,
Wikipedia Articles, and WebKB datasets. In the case of 3-Sources and Reuters datasets,
the proposed U-MV-FCM failed to recognize the optimal number of clusters c* as six. It
is apparent that the MV-FCM unveils a higher AR, FMI, RI, and JI in most of the real
MV datasets.
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Table 4. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
Artificial Data 1.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 2) 1 1 1 1 1

Co-FKM (with c = 2) 0.785 0.730 0.798 0.383 0.676

MinMax-FCM (with c = 2) 0.700 0.579 0.761 0.000 0.579

U-MV-FCM (without c) 1 1 1 1 1

Table 5. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
Artificial Data 2.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 5) 0.579 0.744 0.659 0.669 0.452

Co-FKM (with c = 5) 0.531 0.702 0.568 0.505 0.376

MinMax-FCM (with c = 5) 0.274 0.216 0.465 0.000 0.216

U-MV-FCM (without c) 0.998 0.998 0.996 0.993 0.992

Table 6. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
syn500 Multiview Data.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 2) 0.759 0.638 0.640 0.223 0.474

Co-FKM (with c = 2) 0.546 0.545 0.610 0.102 0.432

MinMax-FCM (with c = 2) 0.500 0.499 0.706 0.000 0.499

U-MV-FCM (without c) 0.874 0.779 0.786 0.560 0.647

Table 7. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
Prokaryotic Multiview Data.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 4) 0.484 0.572 0.487 0.232 0.320

Co-FKM (with c = 4) 0.455 0.552 0.469 0.114 0.304

MinMax-FCM (with c = 4) 0.313 0.596 0.394 0.214 0.240

U-MV-FCM (without c) 0.773 0.778 0.686 0.502 0.515
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Table 8. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
Wikipedia Articles Multiview Data.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 10) 0.124 0.715 0.172 0.056 0.087

Co-FKM (with c = 10) 0.507 0.848 0.439 0.493 0.278

MinMax-FCM (with c = 10) 0.144 0.664 0.188 0.049 0.090

U-MV-FCM (without c) 0.592 0.887 0.478 0.550 0.314

Table 9. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
WebKB Multiview Data.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 3) 0.583 0.644 0.539 0.234 0.355

Co-FKM (with c = 3) 0.577 0.693 0.574 0.350 0.403

MinMax-FCM (with c = 3) 0.527 0.393 0.627 0.000 0.393

U-MV-FCM (without c) 0.699 0.727 0.666 0.403 0.498

Table 10. Clustering Performances of WV-Co-FCM, MinMax-FCM, Co-FKM, and U-MV-FCM for
Extended YaleB Multview Data.

Algorithms\Measures
Evaluation Methods (Average)

AV-AR AV-RI AV-FMI AV-NMI AV-JI

WV-Co-FCM (with c = 10) 0.100 0.099 0.314 0.000 0.099

Co-FKM (with c = 10) 0.171 0.830 0.155 0.153 0.084

MinMax-FCM (with c = 10) 0.100 0.099 0.314 0.000 0.099

U-MV-FCM (without c) 0.136 0.825 0.146 0.128 0.079

It can be clearly seen from Table 4 that the evaluation measures for the proposed
U-MV-FCM performs better compared to the other algorithms except the WV-Co-FCM for
Artificial Data 1.

Table 5 shows that our proposed U-MV-FCM performed the best compared to the
other algorithms, and the WV-Co-FCM is ranked second on the base of the performance
evaluation measures. It is important to note that, in our proposed U-MV-FCM, the optimal
c is calculated automatically, while in the other algorithms the performance measures are
calculated with a given number of clusters as initialization.

Table 6 shows that our proposed U-MV-FCM performed the best compared to the
other algorithms. The WV-Co-FCM is ranked second on the base of the performance
evaluation measures for AV-AR, AV-RI, AV-NMI, and the MinMax-FCM for AV-FMI and
AV-JI, respectively. It is worth mentioning that our proposed U-MV-FCM calculates the
optimal c in an automatic way, while in the other algorithms the performance evaluation
measures are calculated with a given number of clusters.

From Table 7, it is evident that our proposed U-MV-FCM performed the best compared
to the other algorithms. The WV-Co-FCM is ranked second in respect to the performance
evaluation measures for AV-AR, AV-FMI, AV-NMI, AV-JI, and the MinMax-FCM for AV-RI,
respectively. We mention that our proposed U-MV-FCM calculates the optimal c in an
automatic way, but in the other algorithms, the performance evaluation measures are
calculated with a given number of clusters.
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It can be seen from Table 8 that our proposed U-MV-FCM performed the best compared
to the other algorithms, and the Co-FKM is ranked second in the performance evaluation
measures. It is worth saying that our proposed U-MV-FCM calculates the optimal c in an
automatic way. But, in the other algorithms, the performance evaluation measures are
calculated with a given number of clusters.

Table 9 shows that our proposed U-MV-FCM performed the best compared to the other
algorithms, while the Co-FKM is ranked second in respect to the performance evaluation
measures for AV-RI, AV-NMI, AV-JI, WV-Co-FCM for AV-AR and the MinMax-FCM for
AV-FMI, respectively. It is worth mentioning that our proposed U-MV-FCM calculates the
optimal c in an automatic way, while in the other algorithms the performance evaluation
measures are calculated with a given number of clusters in initialization.

Co-FKM performs the best for the Extended YaleB dataset in terms of AV-AR, AV-RI,
and AV-NMI, while for AV-FMI and AV-JI, the WV-Co-FCM and MinMax-FCM performs
the best, and our proposed algorithm ranked second.

The running time (RTs) for all algorithms on the nine datasets are reported in Table 11.
The RTs on Artificial Data 1, Artificial Data 2, Syn500, Prokaryotic, Wikipedia Articles,
3-Sources, WebKB, Reuters, and Extended YaleB for the MinMax-FCM are less compared to
our proposed U-MV-FCM. However, it is noteworthy that the MinMax-FCM and the other
compared algorithms depend on the fuzziness parameter m. Hence, if we calculate and
report the total running time of the MinMax-FCM under 51 different random initializations
for ten different m’s, then the introduced U-MV-FCM is faster and more efficient.

Table 11. The Running Time (RT) obtained by the proposed U-MV-FCM, Co-FKM, MinMax-FCM,
and WV-Co-FCM (The best is marked in boldface, and the second is marked in underline).

Algorithms\Measures
The Performances of RT (In Seconds)

Co-FKM MinMax-FCM WV-Co-FCM U-MV-FCM

Artificial 1 7.141 1.082 10.73 2.346

Artificial 2 51.83 1.434 52.16 2.361

Syn500 3.633 0.356 4.811 0.960

Prokaryotic 37.55 2.127 23.57 4.528

Wikipedia Articles 90.72 1.320 4.990 4.594

3-Sources 563.2 9.108 18.54 11.49

WebKB 3.408 1.314 14.77 2.476

Reuters 1767.8 75.75 478.71 668.1

Extended YaleB 422.7 14.99 238.1 83.08

For visual comparison, the performance results for the Co-FKM, WV-Co-FCM, and
MinMax-FCM algorithms in terms of minimum values, average values, and maximum val-
ues on Prokaryotic, Wikipedia Articles, WebKB, and Extended YaleB datasets are displayed
in Figures 8–16.
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Figure 8. The performance results of Co-FKM for Prokaryotic data (a) minimum values; (b) average
values; (c) maximum values.
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Figure 9. The performance results of Co-FKM for Wikipedia Articles data (a) minimum values;
(b) average values; (c) maximum values.
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Figure 10. The performance results of Co-FKM for WebKB data (a) minimum values; (b) average
values; (c) maximum values.
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Figure 11. The performance results of MinMax-FCM for Prokaryotic data (a) minimum values;
(b) average values; (c) maximum values.
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Figure 12. The performance results of MinMax-FCM for Wikipedia Articles data (a) minimum values;
(b) average values; (c) maximum values.
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Figure 13. The performance results of MinMax-FCM for WebKB data (a) minimum values; (b) average
values; (c) maximum values.
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Figure 14. The performance results of WV-Co-FCM for Prokaryotic data (a) minimum values;
(b) average values; (c) maximum values.
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Figure 15. The performance results of WV-Co-FCM for Wikipedia Articles data (a) minimum values;
(b) average values; (c) maximum values.
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Figure 16. The performance results of WV-Co-FCM for WebKB data (a) minimum values; (b) average
values; (c) maximum values.

Figure 8 shows the minimum, average, and maximum values for the Co-FKM on
Prokaryotic data; the Min-AR, Min-RI, Min-FMI, and Min-JI in Figure 8a are varied over
the entire m, while the Min-NMI is stable. The Avg-AR, Avg-RI, Avg-FMI, Avg-NMI, and
Avg-JI in Figure 8b show fluctuating patterns. Figure 8c shows a higher variability.

Figure 9 shows the performance results for the Co-FKM on the Wikipedia Articles dataset.
The Min-AR, Min-RI, Min-FMI, Min-NMI, and Min-JI in Figure 9a show a downward pattern.
The Avg-AR, Avg-RI, Avg-FMI, Avg-NMI, and Avg-JI in Figure 9b show a downward trend
when m = 1.1, but stable when m = 1.3, and a decreasing movement when m = 1.9. The
Max-AR, Max-FMI, and Max-JI in Figure 9c is stable when m =1.1, but a descending trend at
m = 1.8. The Max-RI and Max-NMI have a downward trend when m = 1.9.

Figure 10 portrays the performance results for the Co-FKM on WebKB data. The Min-AR,
Min-RI, and Min-NMI in Figure 10a show an irregular pattern, initially decreases and reaches
stability when m = 1.9. The Min-FMI and Min-JI show a downward trend when m = 1.1, but
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stable when m = 1.3. The Avg-AR, Avg-NMI, Avg-FMI, and Avg-JI in Figure 10b is stable
when m = 1.2. The Avg-RI in Figure 10c reaches stability over the entire m.

Figures 11–13 display the performance results for the MinMax-FCM on Prokaryotic,
Wikipedia Articles, and WebKB data, respectively, while Figures 14–16 show the perfor-
mance for WV-Co-FCM on Prokaryotic, Wikipedia Articles and WebKB data, respectively.

4.2. The Effect of Parameters for MV-FCM Clustering Algorithms

It is commonly known that (single-view) FCM is basically affected by the fuzziness
parameter m. The m values are generated to control the distribution of intra-clusters in
the data. Since m values are varied, it leads to different structures. In this sense, m is vital
to trial the data for producing a recommended result. At the same time, MV-FCM, as
a high considerably clustering algorithm, considers more parameters to maintain good
performance. Since the MV-FCM clustering algorithms are developed to handle multiview
data, it is reasonable if the objective function became more complex. The MV-FCM involves
additional variables such as view weights, feature-view weights, an agreement between
memberships, etc. These additional variables are driven by some parameters to handle
their distribution, and mostly are generated by users. Due to these complexities, it is highly
recommended to measure these MV-FCM performances by employing different values of
the parameters. The sequences of m with 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 are
implemented in this experiment. The parameter setting of Co-FKM, MinMax-FCM, and
WV-Co-FCM is varied and control different tasks. Since these parameters are correlated to
each other, parameter tunings are required to obtain a precious pattern. In this sense, an
experiment to evaluate the consistency of m with fixed combination parameters on three
MV-FCM algorithms is considerable. Table 12 reports the parameter setting for these three
MV-FCM clustering algorithms of Co-FKM, MinMax-FCM, and WV-Co-FCM. We mention
that our proposed U-MV-FCM clustering algorithm is free of parameters.

Table 12. Parameter setting for Co-FKM, MinMax-FCM, and WV-Co-FCM.

Algorithms Datasets m β η

Co- FKM

Prokaryotic

1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2.0 3 -

Wikipedia Articles

WebKB

Extended YaleB

MinMax- FCM

Prokaryotic

1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2.0

s−1
s

-
Wikipedia Articles

WebKB

Extended YaleB

WV-Co-FCM

Prokaryotic

1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2.0 4 s−1

s

Wikipedia Articles

WebKB

Extended YaleB

4.3. Ensembling Membership-Based Indices to MV-FCM Clustering Algorithms

For further experiments, we consider ensembling MV-FCM clustering algorithms
with some membership-based internal indices. These MV-FCM clustering algorithms of
Co-FKM, MinMax-FCM, and WV-Co-FCM will be employed with these membership-based
CVIs of Partition Coefficient (PC) [32], Partition Entropy (PE) [33], and Modified Partition
Coefficient (MPC) [36]. For MV-FCM cases, the cluster centers are initially generated and
updated separately for each view. In this sense, different clusters number will lead to
different output. Since cluster-center-based CVIs were designed only for (single view) FCM
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clustering algorithm, it is not recommended to perform them for the MV-FCM clustering
algorithms. However, membership-based CVIs are applicable to the MV-FCM clustering
algorithms. The MV-FCM clustering algorithms usually generate their memberships in
two ways. One is generated by treating the importance of each data-view membership
equally. Another one is to generate the membership for each view (local-membership),
and then to estimate a global solution by collaborating local-memberships based on their
agreement/disagreement degree. In this sense, membership-based CVIs are well consid-
ered for this experiment. These membership-based CVIs are PC, PE, and MPC. In order
to verify the effectiveness of Co-FKM, MinMax-FCM, and WV-Co-FCM algorithms with
the CVIs of PC, PE, and MPC for finding an optimal number of clusters, we ensemble the
MV-FCM clustering algorithms with PC, PE, and MPC, which are termed as Co-FKM+PC,
Co-FKM+PE, Co-FKM+MPC, MinMax-FCM+PC, MinMax-FCM+PE, MinMax-FCM+MPC,
WV-Co-FCM+PC, WV-Co-FCM+PE, and WV-Co-FCM+MPC, respectively.

Findings and Discussion: These Co-FKM+PC, Co-FKM+PE, Co-FKM+MPC, MinMax-
FCM+PC, MinMax-FCM+PE, MinMax-FCM+MPC, WV-Co-FCM+PC, WV-Co-FCM+PE,
and WV-Co-FCM+MPC are implemented on three artificial and five real multiview datasets,
called Artificial 1, Artificial 2, Syn500, Prokaryotic, Wikipedia Articles, 3-Source, WebKB,
and Reuters, respectively. Figures 17–19 visualize the distribution of these Co-FKM+PC,
Co-FKM+PE, and Co-FKM+MPC on the three artificial multiview datasets, with m rang-
ing from 1.1 to 2.0. As it can be seen, the weights for Co-FKM+PC, Co-FKM+PE, and
Co-FKM+MPC follow a similar distribution. In this sense, each m mostly produces the
same optimal number of clusters. The same behavior is also presented for CVIs- ensem-
bled MinMax-FCM and WV-Co-FCM. As shown in Figures 20–23, in cases of Artificial 2
and Syn500 MV datasets, the pattern distributions of these MinMax-FCM+MPC, WV-Co-
FCM+PC, WV-Co-FCM+PE, and WV-Co-FCM+MPC give the same optimal number of
clusters. As noted, Figures 17–23 are generated based on a random initialization.

Figure 17. Cluster validity indices results on Artificial 1 data with m ranging from 1.1 to 2.0 and
cmin = 2 to cmax = 10 for (a) Co-FKM+PC; (b) Co-FKM+PE; (c) Co-FKM+MPC.
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Figure 18. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and
cmin = 2 to cmax = 10 for (a) Co-FKM+PC; (b) Co-FKM+PE; (c) Co-FKM+MPC.
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Figure 19. Cluster validity indices results on Syn500 data with m ranging from 1.1 to 2.0 and cmin = 2
to cmax = 10 for (a) Co-FKM+PC; (b) Co-FKM+PE; (c) Co-FKM+MPC.

Electronics 2023, 11, x FOR PEER REVIEW 25 of 30 
 

 

   
(a) (b) (c) 

Figure 18. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and 

min 2c =  to max 10c =  for (a) Co-FKM+PC; (b) Co-FKM+PE; (c) Co-FKM+MPC. 

   
(a) (b) (c) 

Figure 19. Cluster validity indices results on Syn500 data with m ranging from 1.1 to 2.0 and 

min 2c =  to max 10c =  for (a) Co-FKM+PC; (b) Co-FKM+PE; (c) Co-FKM+MPC. 

   

(a) (b) (c) 

Figure 20. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and 

min 2c =  to max 10c =  for (a) MinMax-FCM+PC; (b) MinMax-FCM+PE; (c) MinMax-FCM+MPC. 

  

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

P
C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

C
E

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

M
P

C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

PC

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

C
E

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

M
P

C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

P
C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

C
E

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.2

0.4

0.6

0.8

1

M
P

C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

Figure 20. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and
cmin = 2 to cmax = 10 for (a) MinMax-FCM+PC; (b) MinMax-FCM+PE; (c) MinMax-FCM+MPC.

Electronics 2023, 11, x FOR PEER REVIEW 26 of 30 
 

 

   
(a) (b) (c) 

Figure 21. Cluster validity indices results on Syn500 data with m ranging from 1.1 to 2.0 and 

min 2c =  to max 10c =  for (a) MinMax-FCM+PC; (b) MinMax-FCM+PE; (c) MinMax-FCM+MPC. 

   

(a) (b) (c) 

Figure 22. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and

min 2c =  to max 10c =  for (a) WV-Co-FCM+PC; (b) WV-Co-FCM+PE; (c) WV-Co-FCM+MPC. 

   
(a) (b) (c) 

Figure 23. Cluster validity indices results on Syn500 with m ranging from 1.1 to 2.0 and min 2c = .to

max 10c = for (a) WV-Co- (a) WV-Co- FCM+PC; (b) WV-Co-FCM+PE; (c) WV-Co-FCM+MPC. 

We generate 51 different random initializations for Co-FKM+PC, Co-FKM+PE, Co-
FKM+MPC, MinMax-FCM+PC, MinMax-FCM+PE, MinMax-FCM+MPC, WV-Co-
FCM+PC, WV-Co-FCM+PE, and WV-Co-FCM+MPC with m = 2 on the eight multiview 
datasets. The results based on 51 different random initializations on the eight datasets are 
reported in Table 13. In terms of the three artificial and five real multiview datasets, Table 
13 illustrates that WV-Co-FCM+PC, MinMax-FCM+PE, and MinMax-FCM+MPC are the 
best investigators, while the second investigators are Co-FKM+PC, Co-FKM+PE, and WV-
Co-FCM+MPC. Furthermore, we report the running time (RTs) for these CVIs- ensembled 
Co-FKM, MinMax-FCM, and WV-Co-FCM on the eight multiview datasets in Table 14. It 

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

P
C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

C
E

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

M
P

C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

P
C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6 7 8

c

0

0.5

1

1.5

2

2.5

3

C
E

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

1 2 3 4 5 6

c

0

0.5

1

1.5

2

2.5

3

M
P

C

m=1.1

m=1.2

m=1.3

m=1.4

m=1.5

m=1.6

m=1.7

m=1.8

m=1.9

m=2.0

Figure 21. Cluster validity indices results on Syn500 data with m ranging from 1.1 to 2.0 and cmin = 2
to cmax = 10 for (a) MinMax-FCM+PC; (b) MinMax-FCM+PE; (c) MinMax-FCM+MPC.
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Figure 22. Cluster validity indices results on Artificial 2 data with m ranging from 1.1 to 2.0 and
cmin = 2 to cmax = 10 for (a) WV-Co-FCM+PC; (b) WV-Co-FCM+PE; (c) WV-Co-FCM+MPC.
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Figure 23. Cluster validity indices results on Syn500 with m ranging from 1.1 to 2.0 and cmin = 2 to
cmax = 10 for (a) WV-Co- (a) WV-Co- FCM+PC; (b) WV-Co-FCM+PE; (c) WV-Co-FCM+MPC.

We generate 51 different random initializations for Co-FKM+PC, Co-FKM+PE, Co-
FKM+MPC, MinMax-FCM+PC, MinMax-FCM+PE, MinMax-FCM+MPC, WV-Co-FCM+PC,
WV-Co-FCM+PE, and WV-Co-FCM+MPC with m = 2 on the eight multiview datasets. The
results based on 51 different random initializations on the eight datasets are reported in
Table 13. In terms of the three artificial and five real multiview datasets, Table 13 illus-
trates that WV-Co-FCM+PC, MinMax-FCM+PE, and MinMax-FCM+MPC are the best
investigators, while the second investigators are Co-FKM+PC, Co-FKM+PE, and WV-Co-
FCM+MPC. Furthermore, we report the running time (RTs) for these CVIs- ensembled
Co-FKM, MinMax-FCM, and WV-Co-FCM on the eight multiview datasets in Table 14. It
can be seen that MinMax-FCM+PC, MinMax-FCM+PE, and MinMax+MPC perform faster
as compared to the others.
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Table 13. Optimal cluster number obtained by Co-FKM+PC, Co-FKM+PE, Co-FKM+MPC, MinMax-
FCM+PC, MinMax-FCM+PE, MinMax-FCM+MPC, WV-Co-FCM+PC, WV-Co-FCM+PE, and WV-Co-
FCM+MPC with m = 2 and t_max=10 on eight MV datasets (Percentages of correct c in parantheses).

Algorithms Artificial 1 Artificial 2 Syn500 Prokaryotic Wikipedia Articles 3-Sources Reuters WebKB

Co-FKM+PC 2 (13.7%) 5 (15.7%) 2 (100%) 4 (0%) 10 (11.7%) 6 (1.9%) 6 (3.9%) 3 (0%)

MinMax-FCM+PC 2 (100%) 2 (0%) 2 (100%) 4 (0%) 10 (0%) 6 (0%) 6 (0%) 3 (0%)

WV-Co-FCM+PC 2 (98.0%) 2 (0%) 2 (100%) 4 (7.84%) 10 (13.7%) 6 (0%) 6 (0%) 3 (0%)

Co-FKM+PE 2 (66.7%) 5 (3.9%) 2 (100%) 4 (0%) 10 (0%) 6 (0%) 6 (0%) 3 (0%)

MinMax-FCM+PE 2 (100%) 5 (0%) 2 (100%) 4 (0%) 10 (0%) 6 (0%) 6 (0%) 3 (0%)

WV-Co-FCM+PE 2 (98.0%) 5 (0%) 2 (100%) 4 (0%) 10 (0%) 6 (0%) 6 (0%) 3 (0%)

Co-FKM+MPC 2 (7.8%) 5 (13.7%) 2 (54.9%) 4 (29.4%) 10 (11.8%) 6 (3.9%) 6 (11.7%) 3 (17.6%)

MinMax-FCM+ MPC 2 (100%) 5 (3.9%) 2 (72.6%) 4(13.7%) 10 (2.0%) 6 (9.8%) 6 (7.8%) 3 (23.5%)

WV-Co-FCM+MPC 2 (98.0%) 5 (0%) 2 (66.7%) 4 (7.8%) 10 (13.7%) 6 (0%) 6 (0%) 3 (25.4%)

Table 14. Running time for Co-FKM+PC, Co-FKM+PE, Co-FKM+MPC, MinMax-FCM+PC, MinMax-
FCM+PE, MinMax-FCM+MPC, WV-Co-FCM+PC, WV-Co-FCM+PE, and WV-Co-FCM+MPC with m
= 2 and t_max = 10 on eight MV datasets.

Algorithms Artificial 1 Artificial 2 Syn500 Prokaryotic Wikipedia Articles 3-Sources Reuters WebKB

Co-FKM+PC 42.53 72.89 34.9 113.7 63.5 751.6 251.1 88.3

MinMax-FCM+PC 0.98 1.06 0.97 2.8 1.5 29.3 78.3 2.5

WV-Co-FCM+PC 37.86 51.43 16.2 85.3 68.1 277.6 704.7 26.4

Co-FKM+PE 37.26 70.89 31.8 113.4 55.1 582.2 202.1 84.5

MinMax-FCM+PE 1.13 1.15 0.88 3.9 1.8 33.9 67.16 3.2

WV-Co-FCM+PE 32.86 53.36 17.1 82.4 37.8 285.7 749.6 26.7

Co-FKM+MPC 42.53 72.89 34.9 113.7 63.5 751.6 251.1 88.3

MinMax-FCM+MPC 0.98 1.06 2.8 1.5 29.3 78.3 2.5

WV-Co-FCM+MPC 37.86 51.43 16.2 85.3 68.1 277.6 704.7 26.4

5. Conclusions

In this paper, we proposed a novel multiview fuzzy c-means (MV-FCM) clustering
algorithm to find the optimal number of clusters with high-quality cluster centroids in an
efficient manner, called U-MV-FCM. The proposed U-MV-FCM can automatically produce
an optimal number of clusters and simultaneously improve the accuracy rate without a
parameter setting. The view-points on the multiview data are assigned as the initial cluster
centers, and the proposed U-MV-FCM can directly reduce the number of clusters and
automatically produce an optimal number of clusters. To assess the performance of the pro-
posed U-MV-FCM algorithm, a comparative analysis with the existing MV-FCM algorithms,
such as the Co-FKM, MinMax-FCM, and WV-Co-FCM, was made. Furthermore, experi-
mental results based on the CVIs-ensembled MV-FCM clustering algorithms are generated,
namely Co-FKM+PC, Co-FKM+PE, Co-FKM+MPC, MinMax-FCM+PC, MinMax-FCM+PE,
MinMax-FCM+MPC, WV-Co-FCM+PC, WV-Co-FCM+PE, and WV-Co-FCM+MPC. The
effectiveness of experimental results is conducted by using three artificial and six bench-
mark multiview datasets, including Artificial Data 1, Artificial Data 2, Syn500, Prokaryotic,
Wikipedia Articles, 3-Sources, WebKB, Reuters and Extended YaleB. For the Artificial 1,
Artificial 2, Syn500, Prokaryotic, Wikipedia Articles, WebKb datasets, our proposed method
outperforms these existing algorithms on the base of five validity indices, namely AV-AR,
AV-FMI, AV-RI, AV-NMI and AV-JI, except Extended YaleB dataset in which our proposed
method shows the second better performance.

Based on the experimental results, it is evident that the U-MV-FCM outperformed the
existing algorithms on most datasets, as indicated by the higher accuracy rates and more
accurate cluster identification with automatically finding an optimal number of clusters.
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Thus, it can also be concluded that the learning approach for multiview data in the U-MV-
FCM is suitable to obtain more a accurate number of clusters and has better clustering
accuracy than others, such as these CVIs-ensembled MV-FCM clustering algorithms. In
addition, the U-MV-FCM is more stable from the aspect of the variance of multiple results
as our parameter settings are more robust and so it improves the performance of fuzzy
clustering algorithms in multiview scenarios. As in the U-MV-FCM, we use the idea
of global membership; thus, to study further we suggest the scheme of collaboration in
membership, and we can extend it to feature extraction for the U-MV-FCM. On the other
hand, we mention that if the desired selected clusters are not applicable to MV data, then
the proposed U-MV-FCM failed to evaluate the accurate number of clusters c*. This will be
our further research to improve the proposed U-MV-FCM clustering algorithm. The work
presented in this paper, introducing the U-MV-FCM clustering algorithm, holds significant
promise and potential impact in the field of multiview clustering. The conclusions drawn
from this study highlight several key aspects that underline the significance of this work.
The U-MV-FCM algorithm outperforms existing multiview clustering algorithms in terms
of accuracy and the identification of an optimal number of clusters across various datasets.
On the other hand, our research emphasizes the stability of the U-MV-FCM in which the
algorithm is less prone to variations in results, due to the robust parameter settings. The
research has real-world implications, as the improved multiview clustering offered by
the U-MV-FCM can benefit various domains, such as data analysis, information retrieval,
bioinformatics, social network analysis, and more. It can lead to more accurate insights and
decision-making in these application areas. In general, the U-MV-FCM may fail to evaluate
the accurate number of clusters in case the selected clusters are not applicable to multiview
data, and so future research may explore methods to address this limitation. This might
involve the development of adaptive clustering techniques that can adjust the number
of clusters. On the other hand, the U-MV-FCM does not consider feature weights. Thus,
an advanced U-MV-FCM with feature weights and feature reduction will be our further
research topic.
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