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Abstract: This paper explores the optimization of quantum circuits for Argon2, a memory-hard
function used in password hashing applications. With the rise of quantum computers, the security
of classical cryptographic systems is at risk. This paper emphasizes the need to accurately measure
the quantum security strength of cryptographic schemes through highly optimized quantum circuits
for the target cryptography algorithm. The proposed method focuses on two perspectives: qubit
reduction (qubit-optimized quantum circuit) and depth reduction (depth-optimized quantum circuit).
The qubit-optimized quantum circuit was designed to find a point where an appropriate inverse
is possible and reuses the qubit through the inverse to minimize the number of qubits. The start
and end points of the inverse are determined by identifying a point where qubits can be reused
with minimal computation. The depth-optimized quantum circuit reduces the depth of the quantum
circuit by using the minimum number of qubits necessary without performing an inverse operation.
The trade-off between qubit and depth is confirmed by modifying the internal structure of the circuits
and the quantum adders. The qubit optimization achieved up to a 12,229 qubit reduction, while the
depth optimization resulted in an approximately 196,741 (approximately 69.02%) depth reduction.
In conclusion, this research demonstrates the importance of implementing and analyzing quantum
circuits from multiple optimization perspectives. The results contribute to the post-quantum strength
analysis of Argon2 and provide valuable insights for future research on optimized quantum circuit
design, considering the appropriate trade-offs of quantum resources in response to advancements in
quantum computing technology.

Keywords: quantum implementation; quantum computing; quantum circuit optimization; Argon2

1. Introduction

Quantum computers have gained attention for their ability to solve specific problems
faster than classical computers due to the properties of qubits. The emergence of large-
scale quantum computers is anticipated to pose a threat to existing cryptographic systems.
Constructing a scalable and fault-tolerant quantum computer is exceptionally challenging.
So it may not be an immediate problem, but we need to be prepared to respond to it [1].
In 1994, Peter Shor proposed an algorithm [2] capable of efficiently solving fundamental
problems in public-key cryptography, such as integer factorization and discrete logarithms,
thereby compromising the security of public-key cryptography. Consequently, the security
of target public-key cryptography is no longer guaranteed when large-scale quantum
computers capable of performing specific cryptographic attacks appear. In 1996, Lov
Grover introduced an algorithm [3]. This algorithm can accelerate brute-force attacks and
pre-image attacks on symmetric-key cryptography and hash functions. As a result, it
achieves a computational complexity of O(

√
2n) for finding specific data in unsorted n-bit

data. To counter this, the length of the encryption key (hash output length) can be doubled
to maintain resistance. However, classical computers and quantum computers differ in
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their operation, required resources, and feasible computations, making the security strength
of classical computers not directly correspond to the quantum security strength of quantum
computers. Accurately measuring the quantum security strength in the context of quantum
computers requires optimizing the necessary operations of the specific cryptographic
scheme using quantum circuits and accurately verifying the utilized quantum gates and
circuit depth. In previous studies, ciphers were implemented as quantum circuits, and
required quantum resources were estimated [4–20].

Quantum circuit optimization can be approached from two angles: reducing the
number of qubits and minimizing circuit depth. In each implementation, qubit count and
depth are often inversely related. Although the number of physically implemented qubits is
a key factor in the operation of quantum circuits, in the Noisy Intermediate-Scale Quantum
(NISQ) era, it is paramount to reduce depth to mitigate errors, thereby ensuring accurate
quantum computing outcomes. An increase in circuit depth not only prolongs computation
time but also exacerbates the error rate of qubits.

With this research motivation, this paper proposes two perspectives of optimized
quantum circuits for Argon2 and presents estimations of the required quantum resources.
These perspectives primarily aim at reducing the number of qubits and minimizing the
circuit depth. Each quantum circuit is categorized based on its focus: qubit optimization or
depth optimization for specific operations. To delve deeper, we adjust the internal addition
mechanism to explore the trade-off between qubit count and circuit depth, striving to
pinpoint the most efficient quantum circuit in both domains. In our evaluation, we verify
and analyze the resource estimates for both the qubit-optimized and depth-optimized
quantum circuits. In a qubit-optimized implementation, we find and set points where
inverse operations are possible, and continue to use reusable qubits. In the depth opti-
mization implementation, the minimum number of qubits required for computation is
allocated and used without including inverse computation. In addition, an attempt was
made to further reduce the depth by changing the adder structure to parallel operation.
As a result of optimizing the quantum circuit from both perspectives, the qubit-optimized
quantum circuit was reduced by up to 12,229 qubits, and the depth-optimized quantum
circuit showed a maximum 196,741 (approximately 69.02%) depth reduction.

The structure of this paper is as follows. In Section 2, related research on quantum
computers, the Grover algorithm, and Argon2 is presented to help understand the paper,
and Section 3 describes the implementation of the proposed Argon2 quantum circuit.
Section 4 estimates and analyzes the resources required for the proposed quantum circuit.
Finally, Section 5 concludes the paper with a conclusion.

Our Contribution

In this paper, we implement the core operations used in Argon2 using quantum
circuits and estimate quantum resources using the ProjectQ tool [21]. We present four
distinct quantum circuits, derived by applying two separate optimization methods—qubit
optimization and depth optimization—and by incorporating two different types of adders
within each circuit. We demonstrated the qubit–depth trade-offs for the quantum circuits
through these two optimized quantum circuits (qubit Opt., depth Opt.). Consequently, we
achieved a reduction in the number of qubits by as many as 12,740 and a depth decrease
of approximately 89.59%. To the best of our knowledge, this is the first quantum circuit
for Argon2. In conclusion, this research emphasizes the significance of analyzing quantum
circuits from various optimization perspectives, contributing to post-quantum strength
analysis of Argon2 and offering key insights for future quantum circuit design.

2. Background
2.1. Quantum Computer

Quantum computers process data using quantum mechanical phenomena of qubits.
These quantum computers can express and process 2n data at once with n qubits due
to the superposition and entanglement properties of qubits, enabling faster calculations
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than classic computers. Qubits are controlled through quantum gates, and because of the
reversible nature of quantum gates, inverse operations are possible. The following shows
H, X, CNOT, and Toffoli matrices among representative quantum gates that control qubits:

H =
1√
2

[
1 1
1 −1

]
X =

1√
2

[
0 1
1 0

]

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 To f f oli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


The quantum gate operation of each gate is shown in Figure 1.

x H |ψ〉

(a)

x x

(b)

x • x

y x⊕ y

(c)

x • x
y • y

z xy⊕ z

(d)

Figure 1. Quantum gates. (a) H gate; (b) X gate; (c) CNOT gate; (d) Toffoli gate.

(a) H gate: The H gate works with a single qubit and makes the input a superposition.
(b) X gate: The X gate works with a single qubit and reverses the input.
(c) CNOT gate: The CNOT gate works with two qubits: control qubit and target qubit.

The state of the target qubit y is reversed when the control qubit x is one.
(d) Toffoli gate: The Toffoli gate works with three qubits: two control qubits and one

target qubit. The state of the target qubit z is reversed when the control qubits x and y
are both one.

2.2. Grover Algorithm

Quantum computers have the potential to significantly improve the efficiency of
certain computational tasks compared to classical computers. One such task is searching
for specific n-bit data in an unsorted list, where classical algorithms typically require O(2n)
operations. However, by employing the Grover algorithm on a quantum computer, the
search complexity can be reduced to O(

√
2n). The Grover algorithm for pre-image attacks

consists of two main components: an Oracle and a Diffusion operator, shown in Figure 2.
This is designed for known-plaintext attacks (KPAs) in block ciphers (hash functions),
where both the plaintext–ciphertext pairs are known. The Oracle function includes both
the hash function f (x) = y and its inverse operation f †(x) = y. When the result of f (x)
matches the target hash value y, the Oracle sets z = 1. Therefore, when the correct solution
is input through this process, the phase of the input state is inverted. The Diffusion operator

Us = 2|s〉〈s| − I (s: the uniform superposition; |s〉 = 1√
N

N−1
∑

x=0
|x〉) is then applied to enhance

the probability of observing this state. Through approximately bπ
4

√
Nc (N: search space)
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iterations of the Grover algorithm, the probability of measuring the correct solution qubit
can be significantly increased.

Figure 2. Grover algorithm with f : {0, 1}n → {0, 1}n.

2.3. Quantum Adder

In quantum circuits, arithmetic operations necessitate implementation through quan-
tum configurations. Research on the implementation of addition within quantum circuits
is extensive, with variations arising based on the quantum gates employed, the number
of qubits, and the depth of the circuit. In this paper, we utilize quantum adders proposed
in [22]. Specifically, we employ the adder with a depth of 6n− 2 (referred to as ‘ripple’ in
this paper) and the adder with a depth of 2n + 3 (referred to as ‘simple’ in this paper). For
the addition of n-bit inputs a = a0, · · · , an, and b = b0, · · · , bn, the adder stores the addition
result in one of the two inputs a and b. In adder, an additional qubit is used to store the
carry qubit arising from the previous bit addition. Consequently, the input to the quantum
circuit comprises 2n qubits corresponding to the two n-bit inputs, along with an ancilla
1-qubit for the temporary storage of the carry. After the one addition, an ancilla carry qubit
c is reset to 0, enabling its reuse in subsequent addition operations. After completing the
addition, the state of the qubit is ADD(a, b, c) = (a, a + b, c). The two adders have different
structures, leading to different depths.

In this paper, the ripple adder was employed for qubit optimization, whereas the
simple adder was utilized for depth optimization. As a result, in the ripple adder, a single
carry qubit, c, was allocated and reused for all n-bit operations, sequentially performing
calculations one bit at a time for the addition of two n-bit inputs. Consequently, there is
an increase in depth. In the simple adder, however, n-carry qubits, c, were allocated, and
calculations for the addition of two n-bit inputs occurred concurrently across all bits. The
carry qubit, c, used in this process is then reused in subsequent additions. As a result, while
there is a slight increase in the number of qubits, the depth is reduced.

2.4. Argon2: A Memory-Hard Function for Password Hashing and Other Applications

Argon2 is a key derivation function that won the 2015 Password Hashing Competition.
Argon2, a memory-hard function for password hashing and other applications, can be
used to hash for credential storage, key derivation, or other applications. It has a simple
design that targets fast fill rates of memory and effective use of multiple computing devices
while providing defense against trade-off attacks. Argon2 offers three variants: Argon2d,
Argon2i, and Argon2id; each variant has the following characteristics:

1. Argon2d: Argon2d uses fast, data-dependent memory accesses, making it highly
resistant to GPU cracking attacks and suitable for applications where side-channel
timing attacks are not the threat.

2. Argon2i: Argon2i uses data-independent memory access, but is slower, as it uses
more memory to protect against trade-off attacks (suitable for password hashing and
cipher-based key derivation).

3. Argon2id: Argon2id is a hybrid of Argon2i and Argon2d, using a combination of data-
dependent and data-independent memory accesses, giving Argon2i some resistance to
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side-channel cache timing attacks and most of Argon2d’s resistance to GPU cracking
attacks.

Figure 3 shows the operation of Argon2. Argon2 has two types of inputs: Primary
inputs and Secondary inputs or parameters. The Primary inputs are message P and nonce
S; the Secondary inputs are Degree of parallelism p (integer value from 1 to 224 − 1), Tag
length τ (integer number of bytes from 4 to 232 − 1), Memory size m (integer number of
kilobytes from 8p to 232 − 1), Number of iterations t (integer number from 1 to 232 − 1),
Version number v (one byte 0x13), Secret value K (length from 0 to 232− 1 bytes), Associated
data X (length from 0 to 232− 1 bytes), Type y of Argon2 (Argon2d: 0, Argon2i: 1, Argon2id:
2). These are used as inputs to hash function H (in this case Blake2b) and output the result.
For parallelism and efficiency, it is divided into several slices which reference previous
blocks or join them together, and feed them into functions such as G.

Figure 3. Operation process of Argon2.

2.5. Compression Function G

The compression function G included in H is based on the round function P of
Blake2b [23]. The operation of the compression function G is shown in Figure 4. P operates
on eight 16-byte registers (128-bit) inputs. The compression function G(X, Y) works with
two 1024-byte blocks X and Y. After first calculating R = X ⊕ Y, R is defined as 16-byte
registers R0 to R63. Then, it is applied to P in row-wise and column-wise order to obtain
Z. The P is based on the round function of Blake2b and operates as follows. The eight
inputs of 16 bytes each, S0, S1, · · · , S7, are written as a 4× 4 matrix of 64-bit words, where
Si = (v2i+1||v2i). 

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15


G(v0, v4, v8, v12) G(v1, v5, v9, v13)

G(v2, v6, v10, v14) G(v3, v7, v11, v15)
G(v0, v5, v10, v15) G(v1, v6, v11, v12)
G(v2, v7, v8, v13) G(v3, v4, v9, v14)

The operation of G(a, b, c, d) is as follows:
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a← a + b + 2× aL × bL;d← (d⊕ a) ≫ 32
c← c + d + 2× cL × dL
b← (b⊕ c) ≫ 24
a← a + b + 2× aL × bL
d← (d⊕ a) ≫ 16
c← c + d + 2× cL × dL
b← (b⊕ c) ≫ 63

Finally, G outputs the result of Z⊕ R.

G : (X, Y)→ R = X⊕Y → Q→ Z → Z⊕ R

Figure 4. Operation process of compression function G.

3. Optimized Quantum Circuit of Argon2

This paper proposes quantum circuits designed for Argon2 and provides estimates
for the quantum resources necessary for their operation. This section offers an in-depth
discussion of these proposed circuits. For Argon2 quantum circuit implementation, we
adopted two primary approaches: qubit reduction (referred to as ‘qubit Opt.’) and depth
reduction (referred to as ‘depth Opt.’). The qubit Opt. circuit strategy emphasizes reusing
qubits via inverse operations. In contrast, the depth Opt. circuit augments the qubit count,
without resorting to inverse operations, to preserve a consistent computational depth.
Additionally, this depth-optimized circuit employs a parallel addition design using ancilla
qubits to further reduce depth. To optimize this task, we strategically positioned the inverse
point. The operating point and starting point of the inverse are set by finding a point
where qubits can be reused with minimal computation.

Regarding the quantum adders used within the compression function, we apply both
the (6n− 2)-depth adder (referred to as ripple in this paper) and the (2n + 3)-depth adder
(referred to as simple in this paper) proposed in [22]. Each adder is applied to both qubit-
and depth-optimized quantum circuits, allowing for the examination of the qubit–depth
trade-offs. In both perspectives, we adopt a common operation called Classic to Quantum,
where the X-gate is applied to quantum data based on the positions where the correspond-
ing classic data have an index of 1. This operation is employed to reduce the number
of ancilla qubits. To reduce quantum circuit depth, the Shift operation is performed by
changing the indices of the array rather than using Swap gates. Figure 5 shows optimized
quantum circuits for G: (1) qubit-optimized quantum circuit and (2) depth-optimized
quantum circuit. For the two circuits in the figure, input m is pre-determined classic data,
sigma is pre-determined quantum data, and |a〉 to |d〉 are the quantum data input to G.
Detailed explanations of the two quantum circuits are provided in Sections 3.1 and 3.2. The
order in which |a〉 to |d〉 are input to G is as follows (The inputs to function G, denoted as
v0 to v15, represent 64 qubits. These qubits are updated within this function.):

1. G(a, b, c, d) = G(v0, v4, v8, v12); 2. G(a, b, c, d) = G(v1, v5, v9, v13)
3. G(a, b, c, d) = G(v2, v6, v10, v14); 4. G(a, b, c, d) = G(v3, v7, v11, v15)
5. G(a, b, c, d) = G(v0, v5, v10, v15); 6. G(a, b, c, d) = G(v1, v6, v11, v12)
7. G(a, b, c, d) = G(v2, v7, v8, v13); 8. G(a, b, c, d) = G(v3, v4, v9, v14)
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Figure 5. Optimized quantum circuits for G: (1) qubit-optimized quantum circuit; (2) depth-optimized quantum circuit; * symbol indicates the inverse and
start points.
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3.1. Qubit-Optimized Quantum Circuit

The qubit-optimized quantum circuit reuses qubits through reverse operation, increas-
ing the depth at the cost of reducing the number of qubits. This method reuses the used
64-qubit sigma through inverse operation so that all compression functions operate as a
single 64-qubit sigma. The quantum circuit for this can be seen in (1) of Figure 5. In this
circuit, there are two reverse points to reduce the number of qubits, and the sigma is reset
to |0〉 at both points. Allocated qubits for sigma are not only reused in functions but are
still available in all rounds. Including the inverse operation, the quantum data |a〉 to |d〉
are updated according to the order.

Algorithm 1 shows the operation of the qubit-optimized quantum circuit for the
compression function G. Lines 3 and 5 and lines 18 and 21 represent the reverse start and
end points, and lines 6 and 23 indicate the timing of the reverse operation of each reverse
point. In lines 1, 4, 12, 18, 21, and 27, ADD is implemented using two adders: depth 6n− 2
and depth 2n + 3, and the difference between each adder is shown in Section 4. The depth
was not increased by adjusting the operation index order instead of shift, and the depth
was reduced by adjusting the physical location of qubits using a logical array instead of a
SWAP gate. The Classic to Quantum function in lines 4 and 20 is designed so that m and
sigma are not quantum-to-quantum operations between qubits, but classic-to-quantum
operations according to the state of classic constant values. This approach reduces the
number of qubits and quantum gates used for m and sigma updates. Since constant m is a
known constant, m is stored in the pre-computation table, and the X gate is operated at the
same sigma index as the part where the index bit value of m is one in each round. These
operations are also very efficient in terms of quantum resources, as they can be replaced
with the use of a low-cost X gate rather than the CNOT gate.

Algorithm 1 Qubit-optimized quantum circuit for the compression function (G).

Input: a , b, c, d, sigma
a← ADD(b, a)
gReverse Start Point1

sigma← Classic to Quantum(m[sigma[r][2 ∗ i + 0]])
a← ADD(sigma, a)
gReverse End Point1
Start reverse1(Start to End)
for (k=0 to length(d)) :

d[k]← CNOT(a[k], d[k])
for (k=0 to 64) :

dbox1.append(d[(k + 32)mod 64])
d = dbox1
c← ADD(d, c)
for (k=0 to length(b)) :

b[k]← CNOT(c[k], b[k])
for (k=0 to 64) :

bbox1.append(b[(k + 24)mod 64])
b = bbox1
a← ADD(b, a)
gReverse Start Point2

sigma← Classic_to_Quantum(m[sigma[r][2 ∗ i + 1]])
a← ADD(sigma, a)
gReverse End Point2
Start reverse2(Start to End)
for (k=0 to 64) :

dbox2.append(d[(k + 16)mod 64])
d = dbox2
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Algorithm 1 Cont.

c← ADD(d, c)
for (k=0 to 64) :

bbox2.append(b[(k + 64)mod 64])
b = bbox2

3.2. Depth-Optimized Quantum Circuit

Depth-optimized quantum circuits increase the use of ancilla qubits but decrease the
depth. The 64-qubit sigma used is not reused; it is allocated and used whenever sigma is
used in any function. The quantum circuit for this can be seen in Figure 5(2). Since there are
no reverse actions, there is no reverse point. The qubits assigned to sigma are non-reusable,
so it continues to be assigned in all rounds, not just in the function. Without including the
inverse operation, the quantum data |a〉 to |d〉 are updated according to the order.

Algorithm 2 shows the pseudo-code for a depth-optimized quantum circuit for com-
pression function G. In lines 2, 4, 10, 16, 18, and 22, ADD is implemented using two
adders: depth 6n − 2 adder and depth 2n + 3 adder, and the difference between each
adder is shown in Section 4. The depth was not increased by adjusting the operation index
order instead of shift, and the depth was reduced by adjusting the physical location of
qubits using a logical array instead of a SWAP gate. The Classic to Quantum function in
lines 3 and 17 is designed so that m and Sigma are not quantum-to-quantum operations
between qubits, but classic-to-quantum operations according to the state of classic constant
values. This method does not involve an inverse operation, allowing the total depth to be
reduced. As with qubit-optimized quantum circuits, the known constant m is stored in
the pre-computation table, and the X gate is operated at the same sigma index as the part
where the index bit value of m is one in each round. These operations are also very efficient
in terms of quantum resources, as they can be replaced with the use of a low-cost X gate
rather than the CNOT gate.

Algorithm 2 Depth-optimized quantum circuit for the compression function (G).

Input: a , b, c, d, sigma1, sigma2
a← ADD(b, a)
sigma1 ← Classic_to_Quantum(m[sigma1[r][2 ∗ i + 0]])
a← ADD(sigma1, a)
for (k=0 to length(d)) :

d[k]← CNOT(a[k], d[k])
for (k=0 to 64) :

dbox1.append(d[(k + 32)mod 64])
d = dbox1
c← ADD(d, c)
for (k=0 to length(b)) :

b[k]← CNOT(c[k], b[k])
for (k=0 to 64) :

bbox1.append(b[(k + 24)mod 64])
b = bbox1
a← ADD(b, a)
sigma2 ← Classic_to_Quantum(m[sigma2[r][2 ∗ i + 1]])
a← ADD(sigma2, a)
for (k=0 to 64) :

dbox2.append(d[(k + 16)mod 64])
d = dbox2
c← ADD(d, c)
for (k=0 to 64) :

bbox2.append(b[(k + 64)mod 64])
b = bbox2
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4. Evaluation

This paper proposes two perspectives on the design of quantum circuits for Argon2,
focusing on qubit reduction (referred to as ‘qubit optimization’) and depth reduction
(referred to as ‘depth optimization’). The qubit-optimized quantum circuit minimizes the
number of qubits by reusing them through inverse operations, while the depth-optimized
quantum circuit maintains the same level of computational depth by increasing the number
of qubits without using inverse operations. Additionally, the internal structure of the
quantum circuits is modified to explore the optimal design for both qubit number and depth,
analyzing the trade-off between the two. Four distinct quantum circuits are presented, each
representing one of the two optimization perspectives and one of the two variations of
adder circuits. The quantum resources required for these quantum circuits were estimated
using the ProjectQ tool [21].

The estimated results are presented in Tables 1–5. Table 1 provides the estimated
quantum resources for each optimized function in Argon2. ’Qubit Opt’ and ’Depth Opt’
represent the qubit-optimized and depth-optimized quantum circuits, and ’ripple’ and
’simple’ are the (2n + 3) depth and (6n− 2) depth adders proposed in [22]. The 1qClifford
indicates 1 qubit Clifford gate; here it represents the X gate. The results indicate that the
qubit-optimized G operates with 1089 qubits, and the depth-optimized G operates with
13,318 qubits, demonstrating a reduction of up to 12,229 qubits through qubit optimization.
The depth per round for the qubit-optimized circuit is 74,713 and 220,033, depending on the
adder used, while the depth per round for the depth-optimized G is 23,401 (approximately
a 68.68% reduction) and 68,163 (approximately a 69.02% reduction), depending on the
adder. This suggests a potential reduction of up to approximately 69.02% in depth through
depth optimization. Tables 2–5 present the estimated quantum resources for each step of
Argon2. Among the steps, blake2b utilizes the most resources.

In summary (shown in Table 6), selecting the qubit-optimized quantum circuit can
reduce the number of qubits by up to 12,740, with the flexibility to choose the adder based
on optimization needs. Choosing the depth-optimized quantum circuit can reduce the
depth by up to approximately 89.59%, with the possibility of selecting the adder based
on the optimization perspective. The results of this paper indicate that selecting the
ripple adder in the depth-optimized quantum circuit minimizes the depth. This paper
has confirmed through our results that the quantum resources used can be determined
according to the optimization perspective of quantum circuit implementation by modifying
the operation sequence and structure. We have made efforts to design the operation
sequence and structure of the quantum circuit to reduce the number of qubits and depth
(qubit optimization and depth optimization), and we have achieved such results.

Table 1. Estimation results of quantum resources for each optimized function in Argon2. The result is
a measure of the amount of resources per round (Qubit Opt: qubit-optimized quantum circuit, Depth
Opt: depth-optimized quantum circuit).

Operation Adder #Qubit #1qClifford #CNOT #Toffoli Full Depth

G (Qubit Opt) ripple 1089 70,836 204,864 72,000 74,713
G (Qubit Opt) simple 1089 22 172,032 72,576 220,033
G (Depth Opt) ripple 13,318 70,284 204,864 72,000 23,401
G (Depth Opt) simple 13,318 12 172,032 72,576 68,163

Z⊕ R - 1536 - 1024 - 2
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Table 2. Quantum resource estimation results for steps in Argon2 (qubit Opt. adder: ripple).

Function #Qubit #1qClifford #CNOT #Toffoli Full Depth

Initial

1090

(None)
Update (None)

Final 1.62× 217 1.17× 219 1.64× 217 1.71× 217

Blake2b 1.51× 222 1.1× 224 1.54× 222 1.6× 222

Total 1.51× 222 1.14× 224 1.59× 222 1.65× 222

Table 3. Quantum resource estimation results for steps in Argon2 (qubit Opt. adder: simple).

Function #Qubit #1qClifford #CNOT #Toffoli Full Depth

Initial

1090

(None)
Update (None)

Final 1.03× 26 1.98× 218 1.66× 217 1.25× 219

Blake2b 1.93× 210 1.85× 223 1.55× 222 1.18× 224

Total 1.99× 210 1.91× 223 1.6× 222 1.21× 224

Table 4. Quantum resource estimation results for steps in Argon2 (depth Opt. adder: ripple).

Function #Qubit #1qClifford #CNOT #Toffoli Full Depth

Initial

13,830

(None)
Update (None)

Final 1.6× 217 1.17× 219 1.64× 217 1.42× 214

Blake2b 1.5× 222 1.1× 224 1.54× 222 1× 221

Total 1.55× 222 1.14× 224 1.59× 222 1.01× 221

Table 5. Quantum resource estimation results for steps in Argon2 (depth Opt. adder: simple).

Function #Qubit #1qClifford #CNOT #Toffoli Full Depth

Initial

13,830

(None)
Update (None)

Final 1.12× 25 1.98× 218 1.66× 217 1.56× 217

Blake2b 1.05× 210 1.85× 223 1.55× 222 1.46× 222

Total 1.08× 210 1.91× 223 1.6× 222 1.51× 222

Table 6. Quantum resource estimation results in Argon2.

Operation (Opt., Adder) #Qubit #1qClifford #CNOT #Toffoli Full Depth

Argon2 (qubit, ripple) 1090 1.51× 222 1.14× 224 1.59× 222 1.65× 222

Argon2 (qubit, simple) 1090 1.99× 210 1.91× 223 1.6× 222 1.21× 224

Argon2 (depth, ripple) 13,830 1.55× 222 1.14× 224 1.59× 222 1.01× 221

Argon2 (depth, simple) 13,830 1.08× 210 1.91× 223 1.6× 222 1.51× 222

5. Conclusions

This paper presents quantum circuits from two perspectives for Argon2. In the qubit-
optimized quantum circuit, the number of qubits is reduced by reusing previously used
qubits through inverse operations, but the depth increases due to the computations re-
quired for the inverse. Conversely, the depth-optimized quantum circuit augments the
number of qubits by employing ancilla qubits and parallel adder structures, avoiding
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inverse operations and thus markedly reducing the depth. Our quantum resource analysis
indicates a disparity of up to 12,740 qubits and 196,741 in depth between the four variations
of qubit-optimized and depth-optimized quantum circuits. Given the current limitations of
imperfect fault-tolerant quantum computers, it is necessary to analyze the post-quantum
resistance strength through the implementation of quantum circuits from various perspec-
tives. By appropriately adjusting the trade-off between qubits and depth, the most suitable
quantum circuit can be identified. Therefore, the implementation and analysis of quantum
circuits from various optimization perspectives are crucial research areas. The results of
this paper contribute to the post-quantum strength analysis of Argon2 and provide insights
for future research on quantum circuit design with appropriate trade-offs of quantum
resources in response to advancements in quantum computing technology.

Author Contributions: Software, G.S.; Investigation, H.K. and M.S.; Writing—original draft, G.S.;
Writing—review & editing, S.E., M.L. and H.S.; Supervision, H.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was financially supported by Hansung University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aumasson, J.P. The impact of quantum computing on cryptography. Comput. Fraud Secur. 2017, 2017, 8–11. . [CrossRef]
2. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
3. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on THEORY of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.
4. Grassl, M.; Langenberg, B.; Roetteler, M.; Steinwandt, R. Applying Grover’s algorithm to AES: Quantum resource estimates. In

Post-Quantum Cryptography; Springer: Cham, Switzerland, 2016; pp. 29–43.
5. Almazrooie, M.; Samsudin, A.; Abdullah, R.; Mutter, K.N. Quantum reversible circuit of AES-128. Quantum Inf. Process. 2018,

17, 112. [CrossRef]
6. Anand, R.; Maitra, A.; Mukhopadhyay, S. Grover on SIMON. Quantum Inf. Process. 2020, 19, 340. [CrossRef]
7. Chauhan, A.K.; Sanadhya, S.K. Quantum resource estimates of grover’s key search on aria. In Proceedings of the Security,

Privacy, and Applied Cryptography Engineering: 10th International Conference, SPACE 2020, Kolkata, India, 17–21 December
2020; Proceedings 10; Springer: Cham, Switzerland, 2020; pp. 238–258.

8. Luo, Q.; Li, Q.; Li, X.; Yang, G.; Shen, J.; Zheng, M. Quantum implementaion of SM4 block cipher with less qubits. Res. Sq. 2023,
preprint. [CrossRef]

9. Baksi, A.; Jang, K.; Song, G.; Seo, H.; Xiang, Z. Quantum implementation and resource estimates for rectangle and knot. Quantum
Inf. Process. 2021, 20, 395. [CrossRef]

10. Anand, R.; Maitra, A.; Mukhopadhyay, S. Evaluation of quantum cryptanalysis on speck. In Proceedings of the Progress in
Cryptology–INDOCRYPT 2020: 21st International Conference on Cryptology in India, Bangalore, India, 13–16 December 2020;
Proceedings 21; Springer: Cham, Switzerland, 2020; pp. 395–413.

11. Jang, K.; Baksi, A.; Breier, J.; Seo, H.; Chattopadhyay, A. Quantum implementation and analysis of default. Cryptol. ePrint Arch.
2022, 1–17. [CrossRef]

12. Rahman, M.; Paul, G. Grover on KATAN: Quantum resource estimation. IEEE Trans. Quantum Eng. 2022, 3, 3100809. [CrossRef]
13. Jang, K.; Song, G.; Kim, H.; Kwon, H.; Kim, H.; Seo, H. Parallel quantum addition for Korean block ciphers. Quantum Inf. Process.

2022, 21, 373. [CrossRef]
14. Huang, Z.; Sun, S. Synthesizing quantum circuits of AES with lower t-depth and less qubits. In Proceedings of the International

Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 5–9 December 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 614–644.

15. Jang, K.; Baksi, A.; Song, G.; Kim, H.; Seo, H.; Chattopadhyay, A. Quantum Analysis of AES. Cryptol. ePrint Arch. 2022. Available
online: https://eprint.iacr.org/2022/683 (accessed on 31 October 2023).

16. Song, G.; Jang, K.; Kim, H.; Seo, H. A Parallel Quantum Circuit Implementations of LSH Hash Function for Use with Grover’s
Algorithm. Appl. Sci. 2022, 12, 10891. [CrossRef]

17. Song, G.; Jang, K.; Kim, H.; Lee, W.K.; Hu, Z.; Seo, H. Grover on SM3. In Proceedings of the Information Security and
Cryptology–ICISC 2021: 24th International Conference, Seoul, Republic of Korea, 1–3 December 2021; Revised Selected Papers;
Springer: Cham, Switzerland, 2022; pp. 421–433.

18. Zou, J.; Li, L.; Wei, Z.; Luo, Y.; Liu, Q.; Wu, W. New quantum circuit implementations of SM4 and SM3. Quantum Inf. Process.
2022, 21, 181. [CrossRef]

http://doi.org/10.1016/S1361-3723(17)30051-9
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1007/s11128-018-1864-3
http://dx.doi.org/10.1007/s11128-020-02844-w
http://dx.doi.org/10.21203/rs.3.rs-3105531/v1
http://dx.doi.org/10.1007/s11128-021-03307-6
http://dx.doi.org/10.1007/s12095-023-00666-y
http://dx.doi.org/10.1109/TQE.2022.3140376
http://dx.doi.org/10.1007/s11128-022-03714-3
https://eprint.iacr.org/2022/683
http://dx.doi.org/10.3390/app122110891
http://dx.doi.org/10.1007/s11128-022-03518-5


Electronics 2023, 12, 4485 13 of 13

19. Song, G.; Jang, K.; Kim, H.; Eum, S.; Sim, M.; Kim, H.; Lee, W.; Seo, H. SPEEDY quantum circuit for Grover’s algorithm. Appl. Sci.
2022, 12, 6870. [CrossRef]

20. Song, G.; Jang, K.; Seo, H. Improved Low-Depth SHA3 Quantum Circuit for Fault-Tolerant Quantum Computers. Appl. Sci. 2023,
13, 3558. [CrossRef]

21. Steiger, D.S.; Häner, T.; Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2018, 2, 49.
[CrossRef]

22. Cuccaro, S.A.; Draper, T.G.; Kutin, S.A.; Moulton, D.P. A new quantum ripple-carry addition circuit. arXiv 2004, arXiv:quant-
ph/0410184.

23. Aumasson, J.P.; Neves, S.; Wilcox-O’Hearn, Z.; Winnerlein, C. BLAKE2: Simpler, smaller, fast as MD5. In Proceedings of the
Applied Cryptography and Network Security: 11th International Conference, ACNS 2013, Banff, AB, Canada, 25–28 June 2013;
Proceedings 11; Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app12146870
http://dx.doi.org/10.3390/app13063558
http://dx.doi.org/10.22331/q-2018-01-31-49

	Introduction
	Background
	Quantum Computer
	Grover Algorithm
	Quantum Adder
	Argon2: A Memory-Hard Function for Password Hashing and Other Applications
	Compression Function G

	Optimized Quantum Circuit of Argon2
	Qubit-Optimized Quantum Circuit
	Depth-Optimized Quantum Circuit

	Evaluation
	Conclusions
	References

