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Abstract: The reconfigurable intelligent surface (RIS) has been widely recognized as a rising paradigm
for physical layer security due to its potential to substantially adjust the electromagnetic propagation
environment. In this regard, this paper adopted the RIS deployed on an unmanned aerial vehicle
(UAV) to enhance information transmission while defending against both jamming and eavesdrop-
ping attacks. Furthermore, an innovative deep reinforcement learning (DRL) approach is proposed
with the purpose of optimizing the power allocation of the base station (BS) and the discrete phase
shifts of the RIS. Specifically, considering the imperfect illegitimate node’s channel state information
(CSI), we first reformulated the non-convex and non-conventional original problem into a Markov
decision process (MDP) framework. Subsequently, a noisy dueling double-deep Q-network with
prioritized experience replay (Noisy-D3QN-PER) algorithm was developed with the objective of
maximizing the achievable sum rate while ensuring the fulfillment of the security requirements.
Finally, the numerical simulations showed that our proposed algorithm outperformed the baselines
on the system rate and at transmission protection level.

Keywords: reconfigurable intelligent surface; unmanned aerial vehicle; anti-jamming; robust
beamforming design; deep reinforcement learning

1. Introduction

Recently, the advancement of next-generation wireless communications has led to
exponential growth in data transmission and connected nodes [1]. However, owing to the
open nature of wireless channels, wireless communications are progressively susceptible
to active jamming and passive eavesdropping [2,3]. With this as the focus, the academic
community has studied various techniques to combat jamming and eavesdropping attacks,
e.g., power control [4], frequency hopping [5], artificial-noise-aided beamforming [6], and
cooperative relaying scheme [7]. However, power control cannot handle the jamming
attacks with high power, and frequency hopping consumes additional spectrum resources.
On the other hand, releasing artificial noise consumes extra power, and employing relays
may incur additional hardware cost [4–7].

The above-mentioned shortcomings have motivated a new paradigm called the re-
configurable intelligent surface (RIS) [8]. This technology has recently been regarded as
a promising solution for enhancing the power/spectral efficiency of wireless communi-
cation systems [8–11]. Specifically, the RIS consists of massive passive elements, which
can dynamically adjust the reflection coefficient on the elements according to the needs of
different communication scenarios to increase the received signal power or significantly
reduce the impact of interference in the network [9–11]. Therefore, the RIS has garnered
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extensive research attention in the domain of secure communications [12–25]. However, in
the face of increasingly complex electromagnetic environments, there is an urgent need for
highly efficient and reliable beamforming algorithms for RIS-aided secure communications.

1.1. Related Works

In recent years, several fundamental technical challenges of RIS-assisted secure com-
munication systems have been addressed [12–14]. In [12], the joint beamforming scheme
was proposed to protect secure transmission from eavesdropping attacks, where sev-
eral optimization algorithms were applied, including alternating optimization (AO) and
semidefinite relaxation (SDR). To maximize the secrecy rate of the RIS-assisted Gaussian
multiple-input multiple-output (MIMO) channel, the authors in [14] used the AO algorithm
to jointly optimize the transmit covariance at the transmitter and the phase shift coefficient
at the RIS and further proposed the minimization–maximization (MM) algorithm to opti-
mize the local optimal phase shift. However, these works assumed that the base station (BS)
can acquire the ideal channel state information (CSI) of all nodes, which is impractical due
to the uncooperative relationship between the BS and the illegitimate nodes. To tackle this
matter, a robust algorithm has been developed to jointly optimize active beamforming and
passive reflecting beamforming to secure the wireless transmission system against jammer
attacks, where the CSI of illegitimate nodes at the BS is not completely known [15–17].
In addition, the authors in [18] iteratively solved an energy-efficient secure transmission
problem with the probabilistic outage constraint by low-complexity first-order algorithms
in the presence of imperfect information about the eavesdropper’s channel state.

Considering that the actual communication environment may become increasingly
complex, such as in densely populated areas with clusters of buildings, the links between
the RIS and various nodes may encounter obstacles. Unmanned aerial vehicles (UAVs)
have been widely used in complex communication networks due to their low cost and
flexible maneuverability [19–23]. In addition, when we mount the RIS on a UAV, the
channel attenuation of the ground-to-air channel is much lower than that of the ground
channel, which can significantly reduce the energy loss of passive reflection. The authors
in [21] utilized UAVs carrying reflective surfaces to facilitate power delivery to intelligent
devices, while simultaneously transmitting information. Liu et al. used an AO framework
to study a multi-controllable system for RIS-aided UAV communication [22]. In [23], the
authors studied the secrecy problem of RIS-based integrated satellite UAV relay networks
with multiple eavesdroppers.

The obvious challenge is that traditional convex optimization algorithms may be less
efficient for large-scale communication systems. Besides, the practical RIS’s coefficient
adjustment is discrete, which makes the traditional algorithms no longer applicable. Bene-
fiting from the rapid development of artificial intelligence (AI), reinforcement learning (RL)
has attracted much interest in beamforming design in RIS-assisted wireless communication
systems [24–30], which can effectively deal with the large-scale discrete RIS’s coefficients.
The authors in [24] proposed a passive phase shift design to maximize the downlink re-
ceived signal-to-noise ratio based on deep reinforcement learning (DRL). In [25], DRL
and extremum seeking control were incorporated for the purposes of model-free control
of the RIS. In response to increased network demand and interference challenges from
nearby UAV cells, a direct collaborative-communication-enabled multi-agent decentral-
ized double-deep Q-network (CMAD–DDQN) approach facilitates direct collaboration
among UAVs, optimizing their 3D flight trajectories to maximize energy efficiency while
outperforming existing methods by up to 85% [26]. However, these works did not explore
the issue of the security of AI in RIS-enhanced communication systems. In [27,28], the
authors proposed secure DRL-based beamforming methods for protecting RIS-assisted
wireless communications from active jamming or passive eavesdropping. Furthermore,
in order to maximize the energy efficiency of multi-UAV-assisted wireless coverage, the
authors in [29] proposed a cooperative multi-agent decentralized double-deep Q-network
(MAD-DDQN) approach, but the algorithm could not be directly applied to optimize the
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reflecting beamforming for the RIS. To the best of our knowledge, no exiting work has
considered the design of DRL in RIS-assisted secure transmission strategies in the presence
of both jammers and eavesdroppers and imperfect CSI conditions.

1.2. Contributions

In this paper, we aimed to delve into the anti-jamming and anti-eavesdropping prob-
lems in an RIS-assisted UAV transmission system and introduce an innovative robust
DRL-based approach to design discrete RIS coefficients in the presence of imperfect CSI
from illegitimate nodes. In conclusion, our principal contributions are itemized as follows:

• Considering the illegitimate nodes’ imperfect CSI, the joint optimization problem of
power allocation at the BS and reflecting beamforming at the RIS is formulated to maxi-
mize the achievable system rate, while ensuring fulfillment of the security requirements.

• To cope with the non-convex and non-conventional optimization problem, we first
used a robust method to process the imperfect CSI, and subsequently, the optimization
problem was reformulated into a Markov decision process (MDP) framework. Then,
a noisy dueling double-deep Q-network with prioritized experience replay (Noisy-
D3QN-PER) algorithm with safety performance awareness is proposed, where the
D3QN is the improvement of the DQN, the NoisyNet can be encouraged to avoid
falling into local optima, and the PER accelerates the convergence.

• The numerical results indicated that the Noisy-D3QN-PER algorithm outperformed
conventional approaches in improving the safety performance protection level and
achievable sum rate. For example, the proposed algorithm improved the system rate
and transmission protection level by 27.43% and 11.11%, respectively, compared to
the conventional DQN of the benchmark scheme.

2. System Model and Problem Formulation
2.1. System Model

Figure 1 depicts the secure transmission scenario under consideration, wherein a BS
aided by a fixed aerial RIS-UAV seeks to establish dependable links with K single-antenna
users in the presence of a smart jammer and a single-antenna eavesdropper. Here, we
assumed that the BS and the jammer are equipped with N, NJ antennas, respectively,
and the RIS deployed on the UAV has L reflecting units. For the ease of exposition, we
further denote the channel matrix between the BS and the RIS-UAV, the smart jammer and
the RIS-UAV, the BS and the k-th user, the RIS-UAV and the k-th user, the smart jammer
and the k-th user, the BS and the eavesdropper, and the RIS-UAV and the eavesdropper
by GBR ∈ CL×N , GJR ∈ CL×NJ , hH

BU,k ∈ C1×N , hH
RU,k ∈ C1×L, hH

JU,k ∈ C1×NJ , hH
BE ∈ C1×N ,

and hH
RE ∈ C1×L, respectively. Due to the cooperation between the legitimate nodes, we

assumed that the CSI of the involved legitimate channel
{

GBR, hBU,k, hRU,k
}

is accurately
available at the BS. However, in light of the expectation that illegitimate nodes will not
collaborate with the BS to perform channel estimation, we took the practical assumption
into account that the CSI of illegitimate channels, namely

{
GJR, hJU,k, hBE, hRE

}
, cannot be

perfectly obtained. To elaborate on this, considering a more-practical and more-general
situation, rather than using a statistical or bounded uncertainty model [15], we further
characterized the illegitimate CSI as a given angle-based range, i.e.,

∆J,G ={hJR|θ J,R
G ∈

[
θ J,R

G,L, θ J,R
G,U

]
, ϕJ,R

G ∈
[

ϕJ,R
G,L, ϕJ,R

G,U

]
,∣∣∣gJ

G

∣∣∣ ∈ [∣∣∣gJ
G,L

∣∣∣, ∣∣∣gJ
G,U

∣∣∣]}, (1)

∆J,h ={hJU,k|θ J
k ∈

[
θ J

k,L, θ J
k,U

]
, ϕJ

k ∈
[

ϕJ
k,L, ϕJ

k,U

]
,∣∣∣gJ

k

∣∣∣ ∈ [∣∣∣gJ
k,L

∣∣∣, ∣∣∣gJ
k,U

∣∣∣], ∀k ∈ K}, (2)
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∆E ={hi|θE
i ∈

[
θE

i,L, θE
i,U

]
, ϕE

i ∈
[

ϕE
i,L, ϕE

i,U

]
,∣∣∣gE

i

∣∣∣ ∈ [∣∣∣gE
i,L

∣∣∣, ∣∣∣gE
i,U

∣∣∣], i ∈ (BE, RE)}, (3)

where ∆J =
{

∆J,h, ∆J,G
}

, θL represents the minimum vertical angle of AoD (AoA), while
θU represents the maximum vertical angle of AoD (AoA). Similarly, ϕL represents the
minimum horizontal angle of AoD (AoA), while ϕU represents the maximum horizontal
angle of AoD (AoA). Finally, gL and gU represent the lower and upper limits of the channel
gain amplitude, respectively.

BRG

JRG

BU,khH

RU,khH
JU,khH

BEhH

RE

H
h

BS

Jammer

Eavesdropper

...

User 1

User 2

User k

RIS-UAV

Desired signal
Jamming signal
Wiretap signal

Figure 1. System model.

Let sk be defined as the information symbol transmitted to the k-th user, satisfying E[sk]

and E
[
|sk|2

]
= 1. Before transmission, sk should be multiplied by the beamforming vector

wk ∈ CN×1 satisfying ‖wk‖2 = 1. Consequently, the total transmitted signal at the BS can
be written as x = ∑K

k=1
√

Pkwksk, where Pk denotes the allocated transmit power assigned to
the k-th user. Meanwhile, the smart jammer endeavors to disrupt the legitimate communi-
cation by transmitting jamming signal wJsJ∈CNJ×1. As such, the RIS receives the superim-
posed signals and imposes the phase shift coefficient Φ = diag

(
β1ejφ1 , ..., βlejφl , ..., βLejφL

)
on them, where φl ∈ [0, 2π] and βl ∈ [0, 1] represent the phase shift and the amplitude of
the l-th RIS reflective element, respectively. Hence, the received signal at the k-th user and
the eavesdropper can be, respectively, expressed by

yU,k =h̄BU,k
√

Pkwksk +∑
i 6=k

h̄BU,k
√

Piwisi

+ h̄JU,kwJsJ + nU,k, (4)

yE =h̄BE
√

Pkwksk +∑
i 6=k

h̄BE
√

Piwisi + nE, (5)

where h̄BU,k= hH
RU,kΦGBR + hH

BU,k, h̄JU,k = hH
RU,kΦGBR + hH

JU,k, h̄BE = hH
RE,kΦGBR + hH

BE.

The symbol nU,k ∼ CN
(

0, σ2
U,k

)
represents the additive white Gaussian noise (AWGN) at

the k-th user, and nE ∼ CN
(
0, σ2

E
)

is the AWGN at the eavesdropper. Hence, the achievable
system rate of the k-th user and the wiretap rate of the eavesdropper can be, respectively,
expressed as
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RU,k = log2

1+
Pk

∣∣∣h̃BU,kwk

∣∣∣2
∑

i 6=k
Pi

∣∣∣h̃BU,kwi

∣∣∣2+ ∣∣∣h̃JU,kwJ

∣∣∣2+ σ2
U,k

, (6)

RE,k = log2

1 +
Pk

∣∣∣h̃BEwk

∣∣∣2
∑

i 6=k
Pi

∣∣∣h̃BEwi

∣∣∣2+ σ2
E

. (7)

The secrecy rate of the k-th user can be written as

Rsec,k = [RU,k − RE,k]
+, (8)

where [z]+ = max(z, 0).

2.2. Problem Formulation

Our objective is to maximize the achievable sum rate through jointly optimizing the
transmit power allocation {Pk}k∈K and the reflecting beamforming matrix Φ under the
imperfect illegitimate node’s CSI, while meeting the worst-case secrecy/achievable rate
constraints. As such, the optimization problem can be formulated as

F : max
{Pk}k∈K ,Φ

min
∆J

∑
k∈K

RU,k,

s.t. C1 : min
∆E

Rsec,k ≥ Rmin
sec,k

, ∀k ∈ K,

C2 : min
∆J

RU,k ≥ Rmin
k

, ∀k ∈ K,

C3 :∑K
k=1 Pk ≤ Pmax,

C4 :
∣∣∣βlejφl

∣∣∣ = 1, 0 ≤ θl ≤ 2π, ∀l ∈ L, (9)

where Rmin
sec,k

and Rmin
k

represent the minimum secrecy rate and the target rate of the k-th
user. The power allocation is restricted to C3 due to the limited energy supply at the BS,
and Pmax is the BS’s maximum transmit power. Note that, due to the non-convexity of
both the objective function and the constraints, (9) is a non-convex and non-trivial problem.
Many existing traditional optimization methods, such as the SDR algorithm and the AO
algorithm, obtain the solution in each time slot, where the correlation of consecutive instants
is ignored, and phase adjustment is usually discrete in form on practical RIS elements,
which leads traditional methods to no longer be applicable. In addition, in the scenario we
are considering, the jammer is intelligent and can change the unknown jamming strategy
in real-time. In order to be able to optimize in real-time and from the perspective of
long-term interests, instead of directly solving this problem mathematically, we propose a
robust DRL-based approach that can constantly interact with the environment that contains
eavesdroppers and smart jammers to learn the optimal solution.

3. DRL-Based Algorithm Design
3.1. Robust Channel Processing

As stated in Section 2, the imperfect CSI results in infinite non-convexity in both the
objective function and constraints. With this as the focus, according to the works [28–30],
the equivalent worst-case CSI of the illegitimate channel that can be obtained through
utilizing the discretization method is given, respectively, by
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G̃JR=∑NJ1
i1=1∑

NJ2
i2=1∑

N1
j1 ∑N2

j2
(1/(Nj+N))G(i1,i2)

JR , (10)

h̃M = ∑
MN1
i1=1 ∑

MN2
i2=1 (1/MN)h

(i1,i2)
M , (11)

where M ∈ (BE, RE, {JU, k}), MN ∈ (N, L, NJ), and G(i1,i2)
JR , h(i1,i2)

JU,k , h(i1,i2)
BE , h(i1,i2)

RE are the
discrete CSI by uniformly discretizing all the angles in the set of ∆J and ∆U , respectively, i.e.,

θ(i1) = θL + (i1 − 1)(θU − θL)/(Q1 − 1), i1 = 1, ..., Q1, (12)

ϕ(i2) = ϕL + (i2 − 1)(ϕU − ϕL)/(Q2 − 1), i2 = 1, ..., Q2, (13)

where Q1 and Q2 are the sample numbers of θ and ϕ. Here, the detail is omitted for brevity,
which can be referenced in [31,32].

3.2. Overview of DRL

DRL amalgamates the feature acquisition prowess inherent to deep learning (DL) with
the decision-making capabilities intrinsic to RL. It comprises two fundamental constituents:
the agent and the environment. The agent continuously improves its strategy by receiving
feedback through interactions with the environment to achieve maximum return. This
learning process is described as an MDP [33]. The MDP framework can be defined by a
tuple {S, A, P, R}. Herein, S represents the state space denoting the set of observations
characterizing the environment. A denotes the set of potential choices. P is the state
transition probability denoting the distribution of the next state st+1 given the action
at taken in the current state st. Lastly, R is the immediate reward, which provides the
quality evaluation rt(st, at) of the state–action pair (st, at). At each time step t, the agent
obtains the state st ∈ S from the environment and executes an action at ∈ A according
to the policy function π(at|st) = Pr(At = at|St = st). Subsequently, the environment will
transit to a new state st+1 with probability P(st+1|st, at) = Pr(St+1 = st+1|St = st, At = at);
in the meantime, the agent will receive the immediate reward rt ∈ R. The agent aims
at learning strategies maximizing the long-term reward, i.e., the cumulative discounted
future reward Ut = ∑∞

τ=0 γτ Rt+τ+1, where γ ∈ [0, 1] is the discount factor. Therefore, the
tuples (s1, a1, r1, s2, ..., st−1, at−1, rt−1, st) constitute the trajectory in an episode used for the
iterative updating of the agent.

To accommodate the proposed algorithm in our problem, we first reformulated Prob-
lem (9) into an MDP framework. The corresponding elements of the MDP problem are
specified as follows:

State S : The state st fed back from the RIS-UAV-assisted communication system is
given as {{

ht
k
}

k∈K,
{

ht
e
}

,
{

Rt−1
U,k

}
k∈K

}
, (14)

where hk and he denote the composite channel coefficients of the k-th user and eavesdropper,
respectively.

Action A: Based on the current state st, the agent needs to make a coordinated
decision on the phase shift at the RIS and the power allocation at the BS. Hence, the action
at at each time step t is given as

at =
{
{∆φl}l∈L, {∆Pk}k∈K

}
, (15)

where ∆φl ∈
{
−π

4 , 0, π
4
}

is the variable for the phase shift of the l-th reflection element and
∆Pk ∈ {− p̃, 0, p̃} is the variable for assigning the k-th user’s transmit power.

Reward R: Our goal was not only to maximize the achievable rate, but also to ensure
the system safety performance requirements. Therefore, we designed a composite reward
function expressed as
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rt = ∑
k∈K

RU,k︸ ︷︷ ︸
basic

− ∑
k∈K

ρ1 pU,k − ∑
k∈K

ρ2 pE,k︸ ︷︷ ︸
penalty

, (16)

where

pE,k =

{
1, i f Rsec,k < Rmin

sec,k, ∀k ∈ K,
0, otherwise.

, (17)

pU,k =

{
1, i f RU,k < Rmin

U,k , ∀k ∈ K,
0, otherwise.

. (18)

In (16), the base reward is the sum of the rates of all users, and when the constraints in (17)
or (18) are not satisfied, we add a penalty term to encourage the agent’s behavioral strategy
to be closer to our needs. The coefficients ρ1 and ρ2 are the positive constants.

With DRL, a well-known function measuring the expected return for the agent to
execute action at in the state st under the policy π is the action value function Q:

Qπ(st, at; w) = E[Ut|St = st, At = at], (19)

where w represents the parameters of the deep neural networks (DNNs). In the learning
process, the agent intends to find optimal policy π∗. Thus, the optimal Q function is
expressed as

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A. (20)

In order to obtain the above equation, the optimal Q function can be constantly approximate
by updating the parameter w using the temporal difference (TD) algorithm:

wt+1 = wt − α∇wL(w), (21)

where α ∈ (0, 1) is the learning rate for the update on w and∇wL(w) is the gradient of the
loss function L(w) with respect to w, which is given by

L(w) =

[
rt + γ max

a∈A
Q(st+1, a; w)−Q(st, at; w)

]2
, (22)

where rt + γ max
a∈A

Q(st+1, a; w) refers to the TD target value.

3.3. Joint Power Allocation and Reflecting Beamforming Using Noisy-D3QN-PER

Prevailing reinforcement learning techniques, such as Q-learning, the policy gradient,
and the deep Q-network (DQN), have demonstrated notable accomplishments in diverse
control tasks. However, regarding the safety beamforming policy requirements discussed
in Section 2, the policy gradient algorithm is inadequate for addressing Problem (9), as
it involves continuous action space optimization and may converge to suboptimal solu-
tions [34]. Furthermore, although the DQN performs well in in environments characterized
by high-dimensional continuous state spaces and discrete action spaces, it remains plagued
by several inherent limitations, which adversely affect algorithmic efficacy [35]. Therefore,
the Noisy-D3QN-PER algorithm was developed to deal with the challenges in this paper, as
shown in Figure 2, which can overcome the constraints associated with the aforementioned
methods and significantly enhance the attainable performance.
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Prioritized experience replay buffer

... ...
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... ...

Advantage 
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...

...
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...

...

...

...

Primary Network
Noiy Net parameters

Robust process 
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... ...
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... ...

... ...
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...
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matrix
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Reward

1( , , , )t t t ts a r s +

w   

w   

w   

w   

Noisy Net parameters

State value 

function

Advantage 

function

State value 

function

Figure 2. The process of the Noisy-D3QN-PER algorithm.

It is noteworthy that a significant disadvantage inherent to the DQN algorithm is
over-estimation of the Q function value. The overestimation issue is primarily attributable
to two principal factors. First, the process of maximization causes the target value to
overestimate the value of the true value. Second, bootstrapping engenders the propagation
of bias. In order to address this issue, the double-DQN was adopted in the algorithm [36].
We applied another neural network, i.e., the target network Qπ(st, at; w−), whose neural
network architecture is identical to that of the primary network, but the parameter w−

is different from w. Specifically, the primary network was used to choose an action that
maximizes the output of the Q function a∗ = arg max

a∈A
Q(st+1, a; w), and then, the target

network calculates the TD target value rt + γQ(st+1, a∗; w−) with the selected action. Thus,
the primary network parameter is updated with the following loss function:

L(w) =
[
rt + γQ

(
st+1, a∗; w−

)
−Q(st, at; w)

]2. (23)

Subsequently, the parameter of the target network is updated with w and w− every
regular interval.

In order to further enhance the algorithm’s performance, we incorporated the dueling
layer [37], resulting in the formation of the dueling double-DQN (D3QN). The core concept
underlying the dueling layer is the decomposition of the optimal action value Q∗ into
the optimal state value V∗ and the optimal advantage D∗. As such, the expression of the
optimal advantage function is formulated as follows:

D∗(s, a) ∆
= Q∗(s, a)−V∗(s). (24)

The advantage of modeling the state value function and the advantage function separately
is that, in some specific situations, agents only pay attention to the value of the state and
do not care about the differences caused by different actions. More specifically, in the
optimization problem we are considering, the state values differ greatly, while the action in
the same state differs little. The agent pays attention to the difference in the advantage value
of different actions, which makes the algorithm converge more stably. As shown in Figure 3,
the dueling layer comprises two distinct neural networks. The neural network denoted
by D

(
s, a; wD) is an approximation of the optimal advantage function D∗(s, a), and the

other neural network is V(s; wV), which is an approximation of the optimal state value
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function V∗(s). The corresponding optimal action value function can be approximated as
the following neural network:

Q(s, a; w)
∆
=V(s;wV)+D(s, a;wD)−mean

a∈A
D(s, a;wD) (25)

where mean
a∈A

D(s, a;wD) ensures the stability of the parameters in the training process and

w ∆
= (wV ; wD), since, at each iteration, the function V(s; wV) is updated, which also affects

the action value of the other actions.

...

...
...

...

( )V s

( ),D s a

( ),Q s a

State-value function

Advantage function

Figure 3. Dueling layer.

In addition, there is a dilemma of exploration and exploitation in RL that greatly
affects the performance of the algorithm. By gathering more information, or sufficient
information, the agent can achieve the optimal long-term strategies on a macro-level at the
expense of some short-term benefits. In an effort to attain a good tradeoff between explo-
ration and exploitation, several basic strategies have been proposed, such as Boltzmann
exploration and the ε-greedy policy. However, these methods only utilize action dithering,
which results in a low exploration rate, especially in complex and unstable environments.
Therefore, we propose a NoisyNet technique to improve the exploration efficiency, i.e.,
adding parameterized noise to the DNN layer [38]. Specifically, as shown in Figure 4, the
weight parameter w of the DNN is replaced with

w = µ + σ ◦ ξ, (26)

where µ and σ are learnable parameters and denote the mean and standard deviation,
respectively, and ξ ∼ N (0, 1) is the noise. Here, the term ◦ denotes the multiplication of
the corresponding elements, i.e.,

wij = µij + σijξij. (27)

Hence, the Q function is written as

Q̃(s, a, ξ; µ, σ)
∆
= Q(s, a; µ + σ ◦ ξ). (28)

The loss function can be further rewritten as

L(µ,σ)=(rt+γQ̃(st+1,a∗,ξ′;µ−,σ−)−Q̃(st,at,ξ;µ,σ))2, (29)

where a∗ = arg max
a∈A

Q̃(st+1, a, ξ; µ, σ), and the noise value ξ is different from ξ′. In the train-

ing process, noise is added to the training parameters to force the algorithm to minimize
the error in the case of parameters with noise, which means that it is forced to tolerate the
disturbance of the parameters. It does not matter if the parameters are not strictly equal to
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the mean; as long as the parameters are in the neighborhood of the mean, the prediction
made by the agent can be reasonable. Therefore, the NoisyNet is not only beneficial to
enhance exploration, but also to enhance the robustness of the algorithm.

...

...

...

...

w   

Figure 4. NoisyNet.

Experience replay is often utilized in the classical DQN to store and uniformly sample
experience transitions, which help in reusing experiences and breaking the correlation of
experience transition sequences. However, due to the uncertainty of the jamming strategy
of the jammer, the importance of different transitions is different, and uniformly sampling
may be ineffective. Hence, we adopted prioritized experience replay (PER) to make the
algorithm learn more efficiently and converge faster [39]. PER non-uniformly samples
each transition, where the priority of the transition is proportional to its TD error value.
Therefore, the sampling probability of transition j is given by

P(j) = |δi|αj / ∑n |δn|αj , (30)

where αj adjusts the importance of the priority. In addition, the loss function needs to be
multiplied by importance sampling weights to counteract the bias caused by varying the
sampling probabilities. Thus, the parameters of the proposed algorithm are update by a
mini-batch transition:

σt+1 = σt − ασ∇σ
1
m

m

∑
j=1

((N · P(j))−v Lj(µ,σ)), (31)

µt+1 = µt − αµ∇µ
1
m

m

∑
j=1

((N · P(j))−v Lj(µ,σ)), (32)

where ασ and αµ are the learning rate, m is the mini-batch size, N represents the number
of samples in the buffer, and v ∈ (0, 1) is a hyperparameter that determines the extent to
which PER affects the convergence result.

The detailed training process of the Noisy-D3QN-PER algorithm is shown in Al-
gorithm 1. At the beginning of the training, we sample new channel realizations and
randomly choose the phase shifts and power allocation to compute the first state s0. Since
the NoisyNet is inherently random, exploration can be encouraged. Based on the current
state st, the ε-greedy policy is implemented to select action at and, subsequently, receive
feedback reward rt and the next state st + 1. The transition sequence (st, at, rt, st+1) is saved
in the experience replay bufferD. After storing enough experiences transitions, the training
of the primary networks starts, and mini-batch transitions are selected according to the
PER principle and put into the neural networks to obtain the loss function according to
Equation (29). Then, the parameters of the primary networks are updated by the Adam op-
timizer according to Equations (31) and (32), and the target network copies the parameters
of the primary networks in every TNET time interval. In addition, each time the experience
transitions are sampled, the selected transitions need to update the priority with the new
TD error.
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Algorithm 1 Noisy-D3QN-PER algorithm

Require: environment simulator, experience replay buffer D, learning rate ασ and αµ,
mini-batch size m.

1: Initialize: experience replay buffer D with size D, mini-batch size m, primary network
parameters (µ, σ), target network parameters (µ− = µ, σ− = σ).

2: for each episode = 1, 2, ... , Nepi do
3: Perceive an initial system state s.
4: for each step = 1, 2, ... , T do
5: Select action at using ε-greedy policy, i.e., select the action that yields the largest

action value with a probability of 1− ε, or randomly select from all the possible
actions with the probability of ε.

6: Receive an instantaneous reward rt, and obtain the next state st+1.
7: Store the experience transitions (st, at, rt, st+1).
8: if |D| ≥ m then
9: Sample mini-batch transitions based on PER using (30), and then, update the

priority of the selected transition based on its TD error.
10: Calculate the loss function for the mini-batch according to (29).
11: Perform gradient descent, and update the parameters of the primary networks

using (31) and (32).
12: if t mod TNET = 0 then
13: target network copies the parameters of the primary networks.
14: end if
15: end if
16: end for
17: end for
Ensure: joint power allocation and RIS phase shift design strategy.

4. Simulation Results

This section presents an evaluation of the Noisy-D3QN-PER algorithm. We varied
the maximum transmission power P max between 10 dBm and 30 dBm. The number of
antennas on both the BS and the jammer were N = NJ = 64, and the number of users was
K = 2. The fixed deployment height of the RIS-UAV was 100 m. The minimum secrecy rate
and target data rate were Rmin

sec,k = 0.5 bits/s/Hz and Rmin
k = 1 bits/s/Hz, respectively. The

background noise at each user and eavesdropper was set to σ2
U,k = σ2

E = −90 dBm. All
involved neural networks were considered to be fully connected. The learning rates ασ and
αµ were set as α = 0.001. The initial exploration rate ε was 1, then was linearly annealed
to 0.1. The parameters ρ1 and ρ2 in (12) were set to ρ1 = ρ2 = 2. The replay buffer size
was D = 100,000, and the mini-batch size was m = 32. In addition, the jammer chooses
power was from 10 dBm to 30 dBm based on its own jamming strategy, which the BS could
not access. Besides, we chose three conventional approaches as benchmarks, namely the
classical DQN, the DDQN, and the optimal transmit power allocation without the RIS
approach. All of the displayed illustrations are the average results of over 100 independently
executed implementations.

Figure 5 shows the average gain graph of the Noisy-D3QN-PER algorithm and the
benchmark algorithm. It can be observed that, in the initial phase of training, the algorithms
obtained approximately the same reward gain. However, after 100 episodes of training, the
Noisy-D3QN-PER algorithm significantly achieved higher gains and faster convergence
compared to the benchmark algorithm. This was due to the fact that the preferred empirical
playback and competition layers included in the proposed algorithm were better able to
adapt to the dynamic and complex interference environment. Specifically, the dueling
layer helps to analyze the state bias due to unknown jammer power and unknown location
information, and the NoisyNet encourages the exploration of more reflecting beamforming
strategies for higher long-term benefits. Moreover, it can be observed that both the DDQN
and the proposed algorithm outperformed the classical DQN, which suggests that the use
of the DDQN can effectively mitigate the overestimation problem.
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Figure 5. Average reward of the Noisy-D3QN-PER algorithm and other comparison approaches.

Figure 6 shows the achievable sum rate with varying maximum transmit power Pmax.
Here, we set L = 64. As expected, the proposed algorithm outperformed other approaches.
This was because the dueling layers modeling the advantage function and the state value
function separately can better focus on states that are less correlated with the current
strategy–action relationship and better predict the jammer’s strategy when the transmit
power changes. Besides, the NoisyNet can prevent the proposed algorithm from becoming
stuck at the undesired suboptimal solutions. It can be also observed that the three RIS-UAV-
assisted approaches can obtain a much higher achievable rate than that without the RIS,
which indicates that deploying the RIS-UAV can efficiently enhance the secure performance.
To elaborate on this, the system can enhance the desired signals at the users and eliminate
the jamming signal by adjusting the reflecting beamforming at the RIS.

To further highlight the security performance enhancement of the proposed algorithm,
the security requirement satisfaction probability (the probability of the satisfaction of the
rate constraints [27,28]) of different approaches is shown in Figure 7. It is evident from the
figure that the security performance of the optimal PA without the RIS approach cannot
be guaranteed when the Pmax is low, and the security performance protection improved
until Pmax was raised to a certain value. However, the other approaches with the RIS-
UAV can obtain satisfactory performance at different Pmax, which further confirmed the
superiority of deploying the RIS-UAV in wireless communication systems. Furthermore, it
is noteworthy that the proposed algorithm achieved the best result as compared to other
conventional approaches. This can be explained by the fact that the comparison approaches
usually fell into the suboptimal solution, which only increased the achievable sum rate, but
ignored the security performance requirement. However, due to the adopted NoisyNet
and the security-aware reward function, the proposed Noisy-D3QN-PER algorithm can
explore strategies and make a desirable balance between the security performance and the
achievable rate.
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Figure 6. Achievable sum rate with varying maximum transmit power Pmax.
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Figure 7. System security requirement satisfaction probability versus the maximum transmit
power Pmax.

5. Conclusions

This paper delved into the optimization of joint power allocation and reflecting beam-
forming regarding secure communication via RIS-UAV assistance with imperfect CSI.
Specifically, the original optimization problem was formulated into an MDP framework
and solved by a Noisy-D3QN-PER algorithm, in which the agent can estimate the unknown
jamming strategy through constantly interacting with the environment to quickly adapt
to the dynamic environment and, finally, obtain the optimal policy that maximizes the
achievable rate and meets the requirements of system security performance, which pro-
vides technical support for the realization of the intelligence of the RIS-assisted robust
beamforming system. The numerical results confirmed the predominance of the proposed
Noisy-D3QN-PER algorithm over other existing conventional approaches in improving
the achievable sum rate and system security performance. Although the method proposed
in this paper can effectively resist the jamming attack with the uncertainty of the CSI, it is
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still necessary to know the variation range of interference. The next step needs to focus on
the following two aspects of research: one is to study the anti-jamming method without
any interference information; the other is to explore the AI interpretability, to improve the
trustworthiness and effectiveness of the AI method.
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