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Abstract: In the realm of image reconstruction, deep learning-based super-resolution (SR) has es-
tablished itself as a prevalent technique, particularly in the domain of text image restoration. This
study aims to address notable deficiencies in existing research, including constraints imposed by
restricted datasets and challenges related to model generalization. Specifically, the goal is to enhance
the super-resolution network’s reconstruction of scene text image super-resolution and utilize the
generated degenerate dataset to alleviate issues associated with poor generalization due to the sparse
scene text image super-resolution dataset. The methodology employed begins with the degradation
of images from the MJSynth dataset, using a stochastic degradation process to create eight distinct
degraded versions. Subsequently, a blank image is constructed, preserving identical dimensions to
the low-resolution image, with each pixel sourced randomly from the corresponding points across
the eight degraded images. Following several iterations of training via Finetune, the LR-HR method
is applied to the TextZoom dataset. The pivotal metric for assessment is optical character recognition
(OCR) accuracy, recognized for its fundamental role in gauging the pragmatic effectiveness of this
approach. The experimental findings reveal a notable enhancement in OCR accuracy when compared
to the TBSRN model, yielding improvements of 2.4%, 2.3%, and 4.8% on the TextZoom dataset. This
innovative approach, founded on pixel-level degradation, not only exhibits commendable generaliza-
tion capabilities but also demonstrates resilience in confronting the intricate challenges inherent to
text image super-resolution.

Keywords: degradation model; scene text image; super resolution

1. Introduction

Scene text recognition (STR) involves the process of converting images of text, such
as from books, newspapers, and other sources taken in natural scenes with less than ideal
lighting and focus, into digital text sequences. With the ubiquity of smartphones and similar
devices, the internet has been inundated with such scene text images. However, largely
due to hardware limitations and network bandwidth constraints, a significant portion of
these images exist in low resolution. This low clarity presents a considerable challenge for
text recognition.

While modern optical character recognition models exhibit impressive accuracy rates
on high-resolution (HR) text images [1,2], they still grapple with low accuracy when
it comes to low-resolution (LR) images. To ameliorate this, many in the research com-
munity have turned their focus towards applying super-resolution techniques to these
low-resolution scene text images.

Several researchers have proffered diverse methodologies for text image super-resolution.
Dong [3] proposed a method that synergizes deep learning with traditional sparse-coding-
based super-resolution techniques. He applied the SRCNN network to scene text images and
employed an end-to-end training approach, effectively enhancing the super-resolution results
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and overall quality. Wang et al. [4] took a multi-pronged approach: they not only introduced
the TextZoom dataset but also floated the TSRN network. This network ingeniously integrates
Spatial Transformer Networks and Bi-directional LSTM (BLSTM) mechanisms, facilitating
a more refined extraction of sequence information and superior low-level reconstruction.
Building on TSRN’s foundations, Chen et al. [5] unveiled the TBSRN network. Their novel
approach, centered on a text-sensitive loss, ensures that the network’s focus remains predomi-
nantly on the text rather than any irrelevant background. TSRGAN [6] employs a cutting-edge
generative adversarial network, introduces a triple-attention mechanism to enhance the net-
work’s representation ability, and employs traditional wavelet loss to reconstruct sharper
character edges. TATT [7] chooses the textual a priori semantic information, which is a large
amount of workload but with a better yield, to assist the network for training, and utilizes
a global attention mechanism to semantically steer the text prior to the text reconstruction
process. These pioneering methods have undeniably introduced innovative paradigms and
achieved commendable outcomes in text image super-resolution. However, challenges persist.
Among them are the limited generalization capabilities of models and the constraints of
having only a handful of training datasets, which hampers the robustness of these systems.
These challenges highlight the need for continued optimization and refinement in the field.

In the realms of text image processing research and application, one recurring lim-
itation stems from the paucity of suitable datasets and the intricacies of labeling. This
constraint not only restricts the depth of research but also impedes the widespread adop-
tion of super-resolution techniques. Existing datasets, such as SVT [8], CTW [9], and
CUTE80 [10], have been primarily tailored for scene text recognition, rendering them valu-
able for their intended purposes. However, their emphasis on recognition, as opposed to
super-resolution, presents a unique challenge. The absence of dedicated super-resolution
datasets not only hampers algorithm generalization and transferability but also curtails
their real-world practicality.

To address the dataset challenge, certain approaches strive to bolster model general-
ization [11], often by instructing deep denoising networks in image content reconstruction.
Nevertheless, it is worth noting that the primary cause of text image degradation tran-
scends mere noise. Therefore, these methods may exhibit limited efficacy in resolving
scene-specific degradation issues. In a bid to surmount these constraints and bridge the
dataset gap, synthetic datasets have emerged as a viable solution. Image degradation stands
as a widely adopted synthetic method, simulating real-world text image degradation scenar-
ios, including scenarios involving images captured out of focus or under electromagnetic
influence, achieved through the introduction of blurring kernels and noise manipulation.

Nonetheless, prior endeavors in this domain have frequently relied on double or
triple downsampling, or intricate blur kernels, to generate degraded images [12–15]. While
these strategies provide versatility, they may not faithfully replicate real-world text im-
age degradation. Such deviations can encumber the model’s capacity to discern specific
degraded image features, ultimately affecting the efficacy of super-resolution algorithms.
Consequently, the accurate simulation of real-world degradation scenarios has arisen as a
pressing challenge in the realm of super-resolution research. Conquering this challenge is
pivotal for advancing the field and ensuring the practical applicability of super-resolution
techniques across diverse text image processing applications.

In response to the aforementioned challenges, an advanced pixel-level degradation
process is introduced in this study, encompassing blur, noise, and stochastic strategies.
This approach micro-targets degradation to each pixel, amplifying the scope of image
degradation. It aims to empower the model to holistically comprehend and enhance its
super-resolution reconstruction capabilities for text images. Preliminary results indicate
that datasets refined through this advanced degradation process considerably bolster
the model’s super-resolution capabilities, attesting to the efficacy and robustness of the
degradation procedure. Comparative experiments demonstrate that training and testing
using the advanced degradation process substantively boost model performance. Notably,
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in managing real-world low-resolution text images, the restoration detail and recognition
rates markedly surpass those of the contemporary TBSRN model.

The paper is structured as follows: Section 2 elaborates on the fundamental principles
of degradation and transfer learning. In Section 3, the network’s architecture is compre-
hensively explained. Section 4 offers visualizations and numerical comparisons of the
approach’s results, showcasing its viability. Lastly, Section 5 provides a concise summary
of the entire paper and draws conclusions.

2. Theoretical Foundations
2.1. Noise
2.1.1. Gaussian Noise

Gaussian noise is a prevalent random interference encountered in digital signal and
image processing, typically originating from imaging tools and transmission pathways.
Such interference compromises image clarity, necessitating denoising interventions. Its
applications span areas like image denoising, enhancement, and restoration. This study
harnesses a three-dimensional Gaussian noise model with zero mean, allowing manual
modulation of noise intensity by adjusting the standard deviation, symbolized by the
covariance matrix Σ. It is worth highlighting that the generalized Gaussian noise model
can morph into additive Gaussian white noise and grayscale Gaussian noise, though these
are extreme cases. Additive Gaussian white noise is characterized by its independent
components, each obeying Gaussian distribution principles, leading to its alternative name:
Gaussian white noise. Its probability density function follows a normal distribution, with
statistical features including zero mean and constant variance. Grayscale Gaussian noise
parallels the additive Gaussian white noise in its statistical attributes, maintaining zero
mean and uniform variance. Its power spectral density remains constant across frequencies,
affecting only pixel grayscale values without altering their hues. Acknowledging the
diverse and unpredictable nature of degradation, varying noise intensities are incorporated
in the study. Noise levels are uniformly sampled within the range {1/255, 2/255, . . ., 5/255},
generating samples under three scenarios with respective probabilities of 0.4, 0.4, and 0.2.
The probability density function of Gaussian noise can be represented as follows:

p(z) =
1√
2πσ

exp
{
−(z− µ)2/2σ2

}
. (1)

where ‘exp’ denotes the exponential function based on the natural constant e; ‘z’ is the
grayscale image value; ‘µ’ signifies the expected value of z; and ‘σ’ stands for the standard
deviation of z.

2.1.2. JPEG Compression Noise

JPEG, short for Joint Photographic Experts Group, is an image compression standard
tailored specifically for compressing natural, real-world full-color or grayscale imagery.
Its primary objective is to minimize data redundancy in images, facilitating efficient data
storage or transmission. The JPEG compression mechanism can introduce various types
of noise, among which quantization noise and encoding noise are most prevalent. Quan-
tization noise emerges due to errors in the quantization process post the DCT (discrete
cosine transform) phase in JPEG compression. High-frequency components within images
tend to be more susceptible to these quantization inaccuracies, leading to image distortions
and the appearance of noise. Encoding noise, on the other hand, arises when quantized
coefficients undergo encoding. To conserve the data stream, the encoding phase employs
compression techniques such as Huffman coding and run-length encoding. While these
methods manage to reduce the bitrate without compromising image integrity, they can
inadvertently add some noise.

Recognizing that low-resolution text images in real-world settings often undergo
significant compression, this study sets the image compression quality factor range between
[20, 65]. This choice mirrors actual degradation conditions and accentuates the randomness



Electronics 2023, 12, 4546 4 of 16

of degradation. Moreover, it introduces pronounced artifacts, expanding the degradation
spectrum. The fundamental equation of the JPEG compression method can be depicted
as follows:

Fi,j = round(
fi,j

Qi,j
), (2)

x(i, j) =
1
4∑7

u=0 ∑7
v=0 C(u)C(v) fu,v cos(

(2i + 1)uπ
16

) cos(
(2j + 1)vπ

16
). (3)

In Equation (2), fi,j represents the coefficients after the discrete cosine transformation;
‘round’ denotes the rounding function, rounding computational outcomes to the nearest
integer; Qi,j signifies elements within the quantization matrix; and Fi,j designates the
coefficients post-quantization. In Equation (3), C(u) and C(v) represent transformation
coefficients; for instances when u = 0 or v = 0, both C(u) and C(v) equate to 1/

√
2, otherwise,

they are set to 1; x(i, j) stands for pixel values of the decompressed image.

2.2. Gaussian Blur

Gaussian blurring serves as a technique in image processing, employing convolution
and Gaussian kernels to perform its function. It is particularly effective at reducing high-
frequency noise within images and softening finer details, contributing to a smoother and
more natural appearance. Isotropic Gaussian blurring is among the most straightforward
methods in this category, leveraging Gaussian filters to create a weighted average of each
pixel value in conjunction with its neighbors based on a Gaussian distribution. This
results in effective image smoothing. However, this approach treats details in all directions
equivalently, potentially leading to loss of nuances along certain orientations. To mitigate
this limitation, anisotropic Gaussian blurring is developed. It accounts for variations in
image details across different directions, using an asymmetrical Gaussian filter to apply a
directionally weighted average to each pixel and its surrounding pixels. This allows for
better preservation of image detail and texture.

Traditional SISR (Single-Image Super-Resolution) often employs isotropic Gaussian
kernels with standard deviations as its primary blurring mechanism, though there is
substantial room for improvement in terms of mimicking degradation. For a more realistic
simulation of natural degradation processes, this study incorporates both isotropic and
anisotropic Gaussian blurring kernels. As for the selection of kernel sizes, this study
randomly samples within a range of {9 × 9, 12 × 12, . . . 36 × 36}, while the rotation angles
for isotropic Gaussian kernels are randomly sampled from the interval [0, π]. The equations
representing isotropic and anisotropic Gaussian blurring are as follows:

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 , (4)

In Equation (4), x and y denote the spatial coordinates of the Gaussian blurring kernel,
and σ signifies its standard deviation.

G(x, y, σx, σy) =
1

2πσxσy
e
− 1

2 (
x2

σ2
x
+

y2

σ2
y
)
. (5)

Equation (5) specifies x and y as the spatial coordinates, while σx and σy represent the
standard deviations of the Gaussian kernel along the x and y axes, respectively.

2.3. Transfer Learning

Transfer learning is a widely acknowledged technique across numerous machine
learning domains, most notably in computer vision and natural language processing. The
core essence lies in harnessing the parameters of a sufficiently trained model and integrating
them into a fresh model, expediting the learning process of the latter. This tactic can not
only accelerate the learning pace but also enhance the generalization capabilities of the
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new model. This is especially advantageous when computational resources are scarce,
optimizing the training efficiency. The “pretrain-finetune” method represents a popular
form of transfer learning, and it can be dissected further into several subcategories.

Li and colleagues [16] devised a strategy that utilizes an L2 regularization loss to
manage the finetuning phase. By ensuring the model parameters across both stages are
closely aligned, it prevents potential overfitting during the fine-tuning period. The L2
regularization loss can be depicted as:

Ω(w) =
α

2

∥∥∥w− w0
∥∥∥2

2
, (6)

In Equation (6), w embodies the parameter vector encompassing all network parame-
ters designed for the target task. α is a regularization factor that dictates the intensity of
the penalty term, while w0 signifies the parameter vector of the pretrained model on the
source problem.

On the other hand, Jang et al. [16] introduced a weighted feature matching loss,
articulated as:

Lm,n
w f m(θ|x, wm,n) =

1
HW ∑

c
wm,n

c ∑
i,j

(
rθ(Tn

θ (x))c,i,j − Sm(x)c,i,j

)2
. (7)

Equation (7) outlines H ×W as the spatial dimensions of Sm(x) and rθ(Tn
θ (x)). wm,n

c
represents the non-negative weight of channel c, with ∑c wm,n

c = 1. rθ stands as a linear
transformation parameter; Tn

θ (x) represents the intermediate feature map of the n-th layer
in the target network, while Sm(x) denotes the intermediate feature mapping of the m-th
layer in the pre-trained source network. This particular loss accentuates channels based on
their utility in the target task.

Through the aforementioned loss functions, models can autonomously enact the rules
of knowledge transfer, accommodating the discrepancies in architecture and tasks between
the source and target, eliminating the necessity for manual transfer adjustments. Ultimately,
by discerning the weight of each feature and the corresponding weights of source and
target layers, one can achieve selective transfer of the pretrained model.

3. Methods

The overall process of text image super-resolution based on pixel-level degradation
can be visualized as depicted in Figure 1. Initially, raw images from the input dataset
undergo high-order pixel degradation to produce corresponding low-resolution images.
The aim here is to emulate the image quality typically found in real-world scenarios.
These images are then passed through a super-resolution network for training, designed to
capture high-frequency details and augment image resolution. Later, the low-resolution
images from the TextZoom dataset are fed into the trained super-resolution network for
fine-tuning, enhancing the model’s performance in practical applications. The outcome
is a refined super-resolution image. The primary components of this method include the
super-resolution network module and the pixel-level high-order degradation module.

3.1. Super Resolution Network Module

The super-resolution network module employs the Hybrid Attention Transformer
(HAT) network [17], as visualized in Figure 2. The network mainly consists of a shallow
feature extraction layer, a deep feature extraction layer, and an image reconstruction layer.
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The deep feature extraction layer is composed of N Residual Hybrid Attention Groups
(RHAG) and a convolutional layer. The addition of an extra convolutional layer at the
conclusion of the deep feature extraction layer serves a pivotal role. This strategic placement
enhances the amalgamation of deep feature information, yielding more comprehensive
and representative feature maps. It introduces non-linearity, empowering the model to
capture intricate patterns and relationships within the features. This, in turn, bolsters its
ability to recognize and restore intricate text details during super-resolution. For any given
low-resolution image, PLR, an initial convolution layer named CSF extracts its shallow
features F1:

F1 = CSF(PLR), (8)

This shallow feature is subsequently passed into the deep feature extraction layer CDF
yielding the deep feature F2:

F2 = CDF(F1). (9)

In the final step, these deep features are summed element-wise with the initial shallow-
level features and processed in the image reconstruction layer to generate the final super-
resolution image.

Within the deep feature extraction layer, the Residual Hybrid Attention Group com-
prises M Hybrid Attention Blocks (HAB) and an Overlapping Cross-Attention Block
(OCAB). Inside the HAB, incoming feature maps undergo a series of transformations.
They initially traverse a Layer Normalization (LN) layer, ensuring input stability for subse-
quent computations. Parallel operations unfold within the Channel Attention Block (CAB)
and the Window-based Multi-Head Self-Attention (W-MSA) module. The CAB captures
global information by computing channel attention weights, facilitating the extraction of
structured features within the image. Concurrently, the W-MSA divides the image into
non-overlapping windows and executes self-attention operations within each window,
effectively capturing local dependencies. The resultant outputs from both branches are
combined element-wise with the initial feature maps, augmenting their representational
capacity. Subsequently, another normalization layer and a Multi-Layer Perceptron (MLP)
layer further refine the features before conveying them for subsequent processing. This
computation sequence can be represented as:

Fm = LN(Fl), (10)

Fn = W−MSA(Fm) + αCAB(Fm) + Fl , (11)

Y = MLP(LN(Fn)) + Fn. (12)

Equation (10) signifies that Fm denotes intermediary features while Fl is the incoming
feature map. In Equation (11), Fn represents intermediary features, and α is a minor
constant. Equation (12) illustrates that Y indicates the HAB’s output and MLP corresponds
to the Multi-Layer Perceptron module. The OCAB, on the other hand, incorporates the
Overlapping Cross-Attention (OCA) layer along with an additional MLP layer. This
particular design choice facilitates cross-window connections, thereby enhancing self-
attention mechanisms within each window. The OCA layer partitions windows into larger
sizes while maintaining a consistent step size, allowing for overlapping regions in windows
that would otherwise remain non-overlapping. This innovation encourages key/value
computation from more extensive fields and reinforces interactions between features in
neighboring windows. Through the integration of these advanced mechanisms, the deep
feature extraction layer achieves a delicate equilibrium between capturing global context
and preserving local intricacies. This, in turn, significantly augments the model’s capacity
to restore intricate details in text images during the super-resolution process. The actions
of the Residual Hybrid Attention Group, facilitated by the modules mentioned earlier, can
be summarized as:

Fi−1,j = CHABi,j(Fi−1,j−1), j = 1, 2 . . . , M , (13)
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Fi = Cconvi (COCABi (Fi−1,M)) + Fi−1. (14)

Equation (13) elaborates that Fi−1,0 represents the input features of the i-th RHAG, with
CHAB symbolizing the Hybrid Attention Block. In Equation (14), Fi−1,j is the j-th output
feature of the j-th Hybrid Attention Block within the i-th Residual Hybrid Attention Group.

3.2. Pixel-Level High-Order Degradation Module

In an effort to simulate intricate real-world degradation while also taking into account
the shooting scenario of low-resolution images, this study employed a combination of
Gaussian noise, Joint Photographic Experts Group (JPEG) noise, and Gaussian blur kernel
to establish the overall degradation process. Figure 3 showcases the results generated after
the implementation of a pixel-level high-order degradation module. The magnified image
in the center represents the final degraded image, while the surrounding eight images
represent eight different low-resolution images produced from a single high-resolution
image using a randomized degradation approach. Initially, an isotropic or anisotropic
Gaussian blur kernel was selected via a random strategy to blur the image, followed by the
addition of either standard Gaussian noise, grayscale Gaussian noise, or Additive white
Gaussian noise (AWGN). Subsequently, JPEG noise was incorporated to simulate noise
introduced during network transmission.
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A random strategy was employed to expand the degradation space, determining the
degree of degradation via random number generation. Diverging from conventional degra-
dation techniques, this study extended the degradation of an entire image to individual
pixels. A blank image of the same size as the original low-resolution image was first gener-
ated, into which pixels degraded at random were then populated, further enhancing the
degradation space and achieving pixel-level high-order degradation. The corresponding
formula can be expressed as follows:

P(i,j) =
(

A1(i,j), A2(i,j), A3(i,j),..., A8(i,j)

)
. (15)
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In Equation (15), P(i,j) denotes the pixel located at the i-th row and j-th column in P,
composed of corresponding pixels from randomly chosen images A1, A2, . . ., A8. From
both a performance and computational speed perspective, utilizing the eight degraded
images to populate pixels was deemed an optimal choice.

4. Results
4.1. Datasets
4.1.1. TextZoom Dataset

The TextZoom dataset stands out as the inaugural dataset focusing on real-world
text super-resolution, encompassing a series of paired scene text data. Traditional super-
resolution methods, which typically employ simple bicubic interpolation or blur kernel for
generating low-resolution images, fall short when applied to scene text, given its arbitrary
shapes, varying backgrounds, and distinct lighting conditions. To address this more
challenging issue, the TextZoom dataset incorporates LR-HR image pairs captured with
digital cameras, sourced from RealSR [18] and SR-RAW [19]. It comprises 17,367 LR-HR
image pairs for training. The test set is divided into three categories. The categorization is
based on the insight that “the smaller the focal length, the blurrier the image is at the same
height”. In consideration of the recognition accuracy of the low-resolution images, the test
set comprises 1619 image pairs cropped from RealSR, classified as belonging to the ‘easy’
difficulty category. These images are characterized by focal lengths greater than 100 mm,
and notably, the recognition rate of low-resolution images from RealSR, under the ASTER
recognition model, surpasses that of SR-RAW. A ‘medium’ difficulty category includes
1411 pairs of low-resolution images with focal lengths exceeding 50 mm. Finally, 1343 pairs
of low-resolution images featuring focal lengths less than 50 mm are categorized as ‘hard’
difficulty. During experiments, LR image resolutions were adjusted to 16 × 64 pixels, while
HR images were adjusted to 32 × 128 pixels. Figures 4–6, respectively, present samples
from the TextZoom dataset spanning the simple, medium, and difficult subsets. As evident,
while the simple difficulty LR images can be discerned with ease, those of high difficulty
are profoundly blurred.
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4.1.2. MJSynth Dataset

Introduced by Jaderberg et al. [20], the MJSynth dataset encompasses 9 million images
and 90,000 English words. The dataset’s creation involved a meticulous and deliberate
process, ensuring its suitability for a broad array of applications. Font selection within the
dataset is marked by its dynamic nature, with each image being meticulously generated
through random font selection from a pool of over 1400 fonts sourced from Google Fonts.
This deliberate randomness in font selection significantly contributes to the dataset’s
diversity and realism, guaranteeing that the text images portray an extensive array of
font styles.

Furthermore, the MJSynth dataset is distinct in its blending of data from various
sources. The dataset enriches its corpus by combining each image layer with random
crops extracted from images featured in the training dataset of SVT. This blending process
introduces a substantial degree of diversity into the dataset. The blending operations
incorporate a range of alpha blend modes, including ‘normal’, ‘add’, ‘multiply’, ‘max’, and
others, further amplifying the dataset’s complexity and richness.

Given its vast data volume and the relevance of its text content to the experiments,
this study employs this dataset for model pre-training, aiming to enhance the model’s
performance ceiling. Figure 7 exhibits a selection of images from the MJSynth dataset.
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4.2. Implementation Details

Throughout the research, PyTorch served as the primary framework for method
implementation. High-resolution images were resized to dimensions of 128 × 32 pixels,
while the degraded low-resolution images were adjusted to 64 × 16 pixels. All experiments
were conducted on a NVIDIA GeForce RTX 3090 GPU equipped with 24 GB of memory.
The Adam optimizer was employed for model training, with a batch size set to 16.

Model training utilized the Adam optimizer with a batch size of 16. The training
procedure was divided into two distinct phases. In the initial phase, the training dataset
comprise the extensive MJSynth dataset, which consists of 9 million images. Low-resolution
images were generated using the pixel-level degradation process introduced in this re-
search. Subsequently, the test dataset encompassed the three challenging test sets from
the TextZoom dataset. In the second phase of training, the dataset comprised 17,367 im-
ages from the TextZoom training set. Importantly, no modifications were made to the
low-resolution images during this stage. The test dataset remained consistent with the first
phase evaluation.

When training on the MJSynth dataset, the learning rate was established at 1 × 10−4,
while for fine-tuning using the TextZoom dataset, it was set at 7 × 10−4. For evaluating
recognition accuracy, OCR models such as ASTER, MORAN, and CRNN were employed,
assessed using the official Pytorch code released on GitHub. To ensure fairness, the study
adhered to prior practices in text image super-resolution research, converting all uppercase
letters to lowercase. Experimental outcomes were gauged using OCR recognition rates to
evaluate the model’s performance.



Electronics 2023, 12, 4546 11 of 16

In the experiments of this paper, four Residual Hybrid Attention Groups (RHAGs)
were utilized, each equipped with six Hybrid Attention Blocks (HABs). Furthermore, the
local window size was set to 7, enabling the model to focus on nearby pixel regions for
super-resolution. Additionally, a 4:1 ratio was maintained for the MLP hidden dimension
to the embedding dimension, determining the model’s non-linear transformation capacity.

4.3. Experiment Result

In this section, the study delves into a comprehensive assessment of the text im-
age super-resolution model based on pixel-level degradation processes on the TextZoom
dataset. A meticulous comparison with prevailing super-resolution models is presented,
encompassing EDSR [21], RDN [22], SRCNN, SRResNet [23], ESRGAN [24], TSRN, TSR-
GAN, and TBSRN. The results illustrate that the model proposed in this study outperforms
others across all recognition rate metrics of various recognizers. It is pivotal to emphasize
that the comparison was predominantly centered on recent models like TSRN, TSRGAN,
and TBSRN, which are particularly tailored for text image super-resolution. Tables 1 and 2
contrast the outcomes of the methodology with other techniques based on ASTER and
MORAN recognition models. It is evident that, in the ASTER recognition model, the
methodology’s recognition rates across simple, medium, and difficult levels reached 78.7%,
63.3%, and 45.5%, respectively. Compared to the current most proficient TBSRN technique,
the proposed model enhances the average accuracy on ASTER by 2.4% and on MORAN by
2.3%. In terms of recognition rates of images with high difficulty, both ASTER and MORAN
exhibited the most substantial growth at 3.9% and 4.2%, respectively, underscoring the
significant advancements of the approach in super-resolving particularly blurred images.

Table 1. Comparison of the results of this paper’s method with other methods on ASTER recognition.

Backbone Easy/% Medium/% Hard/%

BICUBIC 64.7 42.4 31.2
SRCNN 69.4 43.4 32.2

SRResNet 69.6 47.6 34.3
EDSR 72.3 48.3 34.3
RDN 70.0 47.0 34.0

ESRGAN 68.4 49.5 35.6
TSRN 75.1 56.3 40.1

TSRGAN 75.7 57.3 40.9
TBSRN 75.7 59.9 41.6

Ours 78.7 63.3 45.5

Table 2. Comparison of the results of this paper’s method with other methods on MORAN recognition.

Backbone Easy/% Medium/% Hard/%

BICUBIC 60.6 37.9 30.8
SRCNN 63.2 39.0 30.2

SRResNet 60.7 42.9 32.6
EDSR 63.6 45.4 32.2
RDN 61.7 42.0 31.6

ESRGAN 63.4 43.2 34.3
TSRN 70.1 53.3 37.9

TSRGAN 72.0 54.6 39.3
TBSRN 74.1 57.0 40.8

Ours 75.7 61.5 45.0

Table 3 showcases a comparative analysis of the outcomes achieved by the proposed
approach and other established methods when assessed with the CRNN recognition model.
It is evident that the methodology achieves recognition accuracies of 62.7%, 55.0%, and
41.1% across the three defined levels of difficulty. When juxtaposed with the current state-
of-the-art TBSRN method, the proposed approach exhibits an increment in recognition
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rate by 3.1%, 7.9%, and 5.8% across these difficulties, respectively. Notably, when drawing
a comparison between contemporaneous models, the most pronounced improvement
between our model and the TBSRN is evident in the medium difficulty level, underscoring
our technique’s superior visual quality in text image super-resolution.

Table 3. Comparison of the results of this paper’s method with other methods on CRNN recognition.

Backbone Easy/% Medium/% Hard/%

BICUBIC 36.4 21.1 21.1
SRCNN 38.7 21.6 20.9

SRResNet 39.7 27.6 22.7
EDSR 42.7 29.3 24.1
RDN 41.6 24.4 23.5

ESRGAN 50.2 33.0 28.9
TSRN 52.5 38.2 31.4

TSRGAN 56.2 42.5 32.8
TBSRN 59.6 47.1 35.3

Ours 62.7 55.0 41.1

Tables 4 and 5 depict the comparison of the proposed method with other models
in terms of PSNR and SSIM values. Notably, the approach yields lower scores in these
metrics. However, this discrepancy is explainable. It is imperative to emphasize that the
unconventional approach, which results in a reduction in PSNR and SSIM scores, stems
from the specific nuances of super-resolution in text image restoration and the subsequent
improvements in recognition accuracy.

Table 4. Comparison of this paper’s method with other models in terms of PSNR values.

Backbone
PSNR

Easy Medium Hard

EDSR 24.26 18.63 19.14
RDN 22.27 18.95 19.70

LapSRN 24.58 18.85 19.77
ESRGAN 24.01 19.62 20.30

TSRN 25.07 18.86 19.74
TSRGAN 24.22 19.17 19.99
TBSRN 23.82 19.17 19.68

Ours 20.64 18.88 19.20

Table 5. Comparison of this paper’s method with other models in terms of SSIM values.

Backbone
SSIM

Easy Medium Hard

EDSR 0.8633 0.6440 0.7108
RDN 0.8249 0.6427 0.7113

LapSRN 0.8556 0.6480 0.7087
ESRGAN 0.8489 0.6569 0.7290

TSRN 0.8897 0.6676 0.7302
TSRGAN 0.8791 0.6770 0.7420
TBSRN 0.8660 0.6533 0.7490

Ours 0.8029 0.6292 0.6655

Beyond Pixel-Level Metrics: While PSNR and SSIM are valuable in various image
processing tasks, they primarily operate at the pixel level. In tasks where fine details
and specific content, such as text, are of paramount importance, these metrics might not
comprehensively reflect the true super-resolution results. Text image restoration demands
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an exceptional level of detail and legibility, which goes beyond the scope of pixel-level
assessments. The impact of super-resolution on character recognition, text clarity, and OCR
accuracy is more effectively captured by a metric that assesses these higher-level qualities.

Evaluating Super-Resolution Results: Although PSNR and SSIM are widely recognized
metrics in the super-resolution community, it is essential to acknowledge that they are
not the ultimate authority on image quality. In practice, super-resolution results are often
subjectively evaluated. Visual assessment by human observers remains a valuable approach
to rank the visual reproduction effects of super-resolution result maps. This underscores
the recognition that super-resolution quality is not solely determined by mathematical
metrics but also by the perceptual experience.

Emphasizing Recognition Rate: In the context of scene text image super-resolution,
where the legibility of characters and OCR performance are critical, the recognition rate
stands out as a more reflective and practical performance metric. This is particularly
pertinent when using the same pre-training OCR model. The recognition rate intuitively
reflects the impact of character enhancement, making it an essential measure for assessing
the real-world benefits of super-resolution in text image clarity and legibility. It is also
aligned with the broader goal of super-resolution in facilitating downstream applications,
where text recognition is often the ultimate objective.

In essence, the approach prioritizes the enhancement of text image legibility and
character recognition, aligning with the practical applications of super-resolution in the
domain of text image restoration. While PSNR and SSIM results may appear lower, the
emphasis on recognition accuracy in this paper highlights the tangible and real-world
applicability of the super-resolution technique. This reflects the commitment to optimizing
text clarity and OCR performance, which is paramount in many text processing and
analysis tasks.

To provide a more lucid comparative visualization of the super-resolution results
across different models, Figure 8 delineates the enhanced super-resolution images from var-
ious models. For the purpose of offering improved clarity regarding finer details, Figure 9
displays an enlarged section of the model. Upon combining Figure 8 with Figure 9, it be-
comes evident that for the label “VARIETY”, TBSRN incorrectly restores the letter “i” as “v”.
In the context of the “SWEEPING” label, TBSRN fails to recover the letter “E”, interpreting
it as “C” instead. In stark contrast, the proposed super-resolution model impeccably recon-
structs these characters. Observing the labels “STORY” and “CONSTRUCTION”, while
other models manage a rudimentary contour restoration, their results are plagued with arti-
facts, elongated trailing distortions, and suboptimal reconstructions. This approach, on the
other hand, delivers artifact-free and precise reconstructions, closely mirroring the original
content. Thus, when juxtaposed with other text-focused super-resolution methodologies,
the model not only evinces fewer artifacts and distortions but also maintains fidelity to
the original content. To sum up, the proposed pixel-level degradation-based text image
super-resolution technique holds promising potential for practical real-world applications
in text image super-resolution.

When assessing the complexity of super-resolution models for text images, the number
of parameters emerges as a crucial metric. It signifies the model’s capacity to capture
intricate features and details while maintaining efficiency. Table 6 presents a comparison
of the model utilized in this study with the number of parameters in other models. With
5.2 million parameters, the model effectively balances complexity and utility. Remarkably,
it achieves the highest recognition rate among the compared models, highlighting its
suitability for optical character recognition (OCR)-oriented tasks. This refined feature
extraction capability positions the model as a compelling choice for enhancing the legibility
of text images in practical applications, solidifying its prominence in the field.
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Table 6. Comparison of this paper’s method with other models in terms of the number of parameters.

Backbone SRCNN EDSR ESRGAN TSRN TBSRN Ours

Parameters 1.8 M 43 M 16 M 2.6 M 3.2 M 5.2 M

4.4. Limitation

Although the method in this paper can effectively improve the recognition rate of scene
text images, there remain areas that warrant further attention, particularly in addressing
highly blurred images. While recognition rates have exhibited substantial improvements,
conventional metrics like PSNR and SSIM may still suggest room for optimization.

5. Conclusions

This paper has presented a novel approach to text image super-resolution, which
amalgamates pixel-level degradation techniques, transfer learning, and conventional degra-
dation methods. The methodology has yielded substantial improvements in recognition
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rates, underscoring its practical applicability in enhancing text image clarity and legi-
bility, particularly in OCR and text processing applications. Looking ahead, there is a
compelling need to address the identified limitations, particularly in augmenting super-
resolution efficacy for highly blurred images and optimizing performance across various
contexts, including traditional quality metrics such as PSNR and SSIM. Moreover, extend-
ing the applicability of this approach to multi-language and multi-script scenarios holds
significant promise.
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