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Abstract: Signal propagation models play a fundamental role in radio frequency communication
research. However, emerging communication methods, such as body-coupled communication
(BCC), require the creation of new models. In this paper, we introduce mathematical models that
approximate the human body as an electrical circuit, as well as linear regression- and random
forest-based predictive models that infer the expected signal loss from its frequency, measurement
point locations, and body parameters. The results demonstrate a close correspondence between the
amplitude-frequency response (AFR) predicted by the electrical circuit models and the experimental
data gathered from volunteers. The accuracy of our predictive models was assessed by using their
root mean square errors (RMSE), ranging from 1.5 to 7 dB depending on the signal frequency within
the 0.05 to 20 MHz range. These results allow researchers and engineers to simulate and forecast the
expected signal loss within BCC systems during their design phase.

Keywords: signal propagation; intrabody communication; circuit model; predictive model

1. Introduction

The development of microelectronics has facilitated the placement of sensors on the
human body to create body-area networks (BANs). These networks serve as valuable data
sources for healthcare and fitness applications. Signals from on-body sensors are collected
and processed to derive clinically relevant information. Typically, this data collection is
carried out by a smartwatch or a device connected to a smartwatch, such as a mobile phone,
cloud server, or edge server. However, the transmission of potentially sensitive data from
on-body sensors to the collector device raises security concerns. Traditional options like
Bluetooth and WiFi are vulnerable to security threats and side-channel attacks via signal
interception. Body-coupled communication (BCC) emerges as a novel communication
technology that utilizes the human body for data transfer. Unlike traditional methods, BCC
eliminates data transmission over the air, significantly reducing the risk of security breaches.
This is particularly important for health-related data, given their stringent privacy and
authenticity requirements.

BCC uses low-voltage AC as the carrier wave, typically in frequencies up to 100 MHz.
This frequency range experiences lower signal attenuation within the human body com-
pared with radio frequency signals. Consequently, BCC systems hold the potential to be
an order of magnitude more efficient than their conventional wireless counterparts [1].
However, the specific characteristics of the human body as a transmission medium for BCC
signals remain incompletely understood. This is especially the case for galvanic (“voltage
mode”) BCC, where two pairs of electrodes are connected to the human body, and both
the forward and backward signal propagation paths go through the human body. In order
to address this knowledge gap, this paper utilizes a galvanic BCC dataset collected from
30 volunteers [2]. The dataset includes frequencies ranging from 0.05 to 20 MHz and is
described in more detail in [3].
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Our first approach is to model the BCC system, including the human body, with elec-
trical circuits. Here, the objectives are (1) to derive operator transfer functions from the pro-
posed circuit models, subsequently allowing us to obtain amplitude-frequency responses
(AFRs) for these models, and (2) to establish nominal values for the circuit components in a
manner that closely aligns the AFR of the model with experimental data.

Our second approach is to use statistics and machine learning to design predictive
models capable of estimating signal loss in BCC communication links. These models utilize
signal frequency, transmitter and receiver locations, and human body properties as input
parameters. We anticipate that these predictive models will find valuable applications,
for instance, to help create accurate BCC system simulators [4] and allow practitioners to
determine the minimum requirements and constraints for real BCC systems during their
design phase. To the best of our knowledge, we are the first to present BCC models of
this type. The feasibility of accurate statistical models is contingent on the availability of a
substantial experimental dataset, which was made possible through the collection of the
BCC measurement dataset available at [2].

Our main contributions are the following:

• Present two electrical circuit models of a BCC system: one adapted from existing work
(Model #1) and another that is simpler but similarly accurate (Model #2);

• Provide closed-form expressions of the transfer function in both circuit models;
• Apply linear regression and random forest regression methods to construct and

evaluate multiple predictive models.

This work uses materials from the extended abstract [5] presented at the International
Workshop on Embedded Digital Intelligence (IWoEDI’2023). Specifically, Model #2 in
the current article is taken from this source. The present article adds the description and
experimental results of Model #1, additional experimental results for #2, and the linear
regression and random forest regression-based predictive models (Section 4), as well as a
review of the related work on this topic.

2. Related Work

BCC as a field was established over three decades ago with the pioneering work of
Wegmueller et al. [6]. While BCC remains at a relatively low technology readiness level
(TRL), this technology has attributes that render it competitive against more established
communication protocols such as Bluetooth and WiFi. BCC is considered especially suitable
for the transmission of health-related data. This is due to its inherent security features
(minimized signal leakage) and its ability to operate at low transmission power levels,
thanks to the lower attenuation of lower-frequency BCC signals when passing through the
human body, compared with radio frequency signals [7,8]. The main application of BCC
is in the construction of wireless body area networks [9]. The BCC-enabled devices can
transmit on-body or intrabody sensor data while only consuming a few µW of power [10].

The existing literature differs at the level at which the human body is modeled. Some
works treat the human body as a black box, representing it as a single element with
complex resistance [11]. In taking a step further, others model the forward and return
paths as separate impedances [12], while some incorporate interpath elements into the
circuit model [7,13,14]. The most comprehensive work using this approach so far is by
Modak et al. [15]. Their model includes the impedances of skin and muscles and the
impacts of the external (ground) couplings. Their results show that signal loss increases
gradually for short distances but converges to a fixed value for distances much further than
the separation distance between the contact electrode pairs.

When pushing towards higher levels of detail, some studies use different kinds of
models, such as finite element models [13,16,17]. Song et al. [13] provided a simplified 3D
model of the human body and used it in finite-element simulations, demonstrating a good
match between the simulation and experimental results. Park et al. [16] presented another
hybrid electrostatic finite element model and demonstrated measurement-to-simulation
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agreement within 2.5 dB. Ito et al. [17] focused on modeling a human arm with the help of
a finite element model.

Besides the capacitive and galvanic BCC usually presented in the research literature,
there are other modes. For instance, more recent work has started to investigate mag-
netic human-body communication (mHBC). Wen et al. [18] provide a radiating near-field
coupling model and numerical simulations to demonstrate that magnetic communication
minimizes channel loss at the 100–200 MHz frequency band. Moreover, radio frequency
signals can also be used to communicate through the human body. Asan et al. [19] used
numerical and ex vivo models to show that the intrabody fat tissue has good radio signal
propagation characteristics and can be used to send radio waves deep into the human body
without large absorption losses, whereas crossing a single blood vessel can cause up to
a 17.1 dB signal loss. Demir et al. [20] created RF signal propagation models from data
obtained from a human cadaver. Last but not least, ultrasound is another promising way
of achieving intrabody communication and comes with its own models. Jiang et al. [21]
presented an early-stage modeling work that uses simple geometric models for ultrasound
propagation. They derive the channel impulse response and other properties under these
simplified assumptions.

In our research, we build upon an electrical circuit model described in the survey paper of
Song et al. [13] , instantiating it and evaluating its performance, as well as introducing a new
version with lower complexity and similar numerical accuracy. Furthermore, to the best
of our knowledge, our work pioneers the application of statistical and machine-learning
techniques in this domain.

The adoption of statistical and machine learning approaches in our research is made
possible by our novel dataset [2]. As demonstrated in prior studies [22,23], existing em-
pirical BCC measurement studies suffer from setup issues and ambiguities surrounding
measurement parameters. The dataset used in this work aims to avoid these problems
and is collected using state-of-the-art methods [3]. Notably, the signal loss curves within
our dataset closely align with results found in the existing literature that employ similar
experimental setups [12,22,23].

3. Electrical Circuit Models
3.1. Problem Formulation

Consider the human body as a signal transmission medium between two pairs of
electrodes. The goal of a BCC system is to transmit a modulated carrier wave from
the transmitter (Tx) side to the receiver (Rx) side electrodes. A BCC system features a
generator with internal resistance Rg that generates an electrical sine wave and a receiver—
an oscilloscope or a similar detector—with internal impedance Zo.

Low signal loss between the Tx and Rx is a desirable property of such a system as it
allows the following:

• Makes the system more energy-efficient and alleviates any health-related concerns by
minimizing the electric current that enters the human body;

• Reduces the sophistication required from the detector on the Rx side, as higher ampli-
tude signals are easier to register and decode without errors.

The dataset [2] follows the convention in BCC that typically defines the signal loss in
the system in terms of a voltage drop between the sender and the receiver [23]. Although
some works do use power loss [22], it is more difficult to experimentally measure it with
high accuracy since power loss depends on whether the impedance is matched in the system.
In order to minimize the impact of the system itself on the measurement results if power
loss is measured, impedance matching or table-based correction is required. Therefore, it is
not practical to collect large, accurate datasets with power loss as the metric since every
human, every pair of Rx and Tx points, and every frequency has a different impedance.

The signal loss in a BCC system depends both on the properties of the human body
and the setup of the system itself. System parameters, such as generator output resistance,
Rg, and receiver input resistance, Zo, are determined by the choice of the devices and can
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take different values in different systems. Along with the generator voltage, the values of
Rg and Zo determine the current through the human body and the voltage drop over it. As
a result, the communication system needs to be modeled as a whole, with the human body
as a part of that system.

The voltage drop at a fixed signal frequency is defined as the ratio of the input voltage
to the output voltage at that frequency. This ratio is often expressed in decibels. For the
purposes of modeling, it is more conventional to refer to the amplitude-frequency response
(AFR) of the system—an alternative but equivalent way to treat voltage drop. For a fixed
frequency, f , the AFR is described by a scalar variable, K, such that K ·VTx = VRx.

Our approach takes the following form:

• Provide circuit models (Figures 1 and 4) of the communication system that include the
human body and the BCC equipment;

• Simplify and divide the models into parts to make it tractable to express the AFR with
closed-form algebraic equations;

• Find nominal values of the components in the models using experimental AFR data
as the ground truth.

Zo
G

RG

VTx

body

VIn VRx

Rd1

Rd3

Z1

Z3 Z4

Z2Rd2

Figure 1. Electrical circuit model #1, based on Song’s et al. work [13].

3.2. Circuit Model #1

The first model (Figure 1) is a modified version of the model proposed in [13]. The
following components are present in the model:

• G and RG — signal generator and its internal resistance;
• Rd1,d2,d3 — resistances related to electrode and skin contacts;
• Zo — the entry impedance of the signal detector;
• Z1,2,3,4 — impedances between the receiver and transmitter electrodes.

The components, Rdi, refer to the cumulative resistance values on both sides of the
body for the Tx and Rx-side electrodes.

The analysis of the model can be made more tractable by separating it in two parts:
the left and the right side. The left side of the model includes the divider resistances
Rd1, Rd2, Rd3 that describe the electrode-skin coupling [13]. As the resistances Rdi are much
smaller than the absolute values of the impedances, Zi, it is possible to simplify the algebraic
expression of the voltage gain with very little loss of accuracy by replacing the generator
voltage, VTx, and the divider resistances, Rdi, with an equivalent generator with a voltage,
VIn, and a small internal resistance, Rg, so that

K =
VIn
VTx
· VRx

VIn
(1)
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Let us denote the first ratio with Kle f t and the second ratio with Kright and analyze them
separately. The left side of the model is simple to analyze:

Kle f t =
Rd3

Rd1 + Rd2 + Rd3
(2)

Finding an analytic expression for the right side is the main task of the subsequent analysis.
The right side of the model (Figure 2) includes a circuit consisting of complex resis-

tances Z1, Z2, Z3, Z4. In order to find Kright, we use Kirchhoff’s second law to make the
following system of equations for circuit currents I1, I2, I3 (Figure 2):

Z1(I1 + I2) + Zo(I1 + I2 + I3) + Z2(I1 + I3) = VIn (3)

Z1(I1 + I2) + Zo(I1 + I2 + I3) + Z4 I2 = 0 (4)

Z3 I3 + Zo(I1 + I2 + I3) + Z2(I1 + I3) = 0 (5)

By solving this system of equations, we find the currents, Ii, and from them, the voltage
at the receiver, VRx. Dividing VRx by the input voltage VIn results in Kright, by definition.
It equals

Kright =
Zo(Z3Z4 − Z1Z2)

Zo(Z2Z3 + Z1Z4 + Z1Z2 + Z3Z4) + Z1Z2(Z3 + Z4) + Z3Z4(Z1 + Z2)
(6)

ZoVRx

Z1

Z3

I1
I3

I2

Z4

Z2

VIn

Figure 2. Current paths on the right side of model #1.

Each of the impedances, Zi, can be modeled as series of R, L, C (resistance, inductance,
and capacitance) elements (Figure 3):

Zi = Ri + 2jπ f Li +
1

j2π f Ci
(7)

where f is the frequency of the signal.

Ri Li Ci

Figure 3. The internal structure of the impedances, Zi.

In most of the models described in the existing literature, the human body is repre-
sented as an RC circuit; the inductive (L) elements are typically not included (one exception
is Ito et al. [17]). However, Our models (Figures 1 and 4) do include L elements. As shown
in Figures 5 and 6, the experimentally obtained AFR curve of the human body has two
pronounced resonance peaks in the 0.05 to 20 MHz frequency band that we investigated.
It is not natural to obtain such large resonances using only RC elements; therefore, we
achieve them by using RLC circuits in the model.
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Zo
G

RG

VTx

body

VIn VRx

Rd1

Rd3

Z1

Z2

Z3

Z4Rd2

Figure 4. Electrical circuit model #2 of the human body.
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Figure 5. Amplitude-frequency response of the body in a particular measurement. Subject ID: 2695,
loin to knee transmission.

Let us now define the transfer function K( f ) such that the desired AFR K at a specific
frequency, f , is equal to the absolute value of K( f ):

K = |K( f )| (8)

The next step is to replace j2π f with a complex variable, p, in order to simplify the
expressions (K(p) = K( f )):

p := j2π f (9)

By combining Equations (2) and (6), replacing Zi with the series of elements and sim-
plifying the result, we obtain a formula for the transfer function K(p):

K(p) =
Ko

(
ap5 + bp4 + cp3 + dp2 + ep

)
hp6 + ip5 + kp4 + gp3 + mp2 + np + q

, (10)

where
Ko = ZoRd3

a = C1C2C3C4(L3L4 − L1L2)

b = C1C2C3C4(L3R4 + L4R3 − L2R1 − L1R2)

c = C1C2C3C4(R3R4 − R1R2) + C1C2(L3C3)− C3C4(L2C2 − L1C1)

d = C1C2(R3C3 + R4C4)− C3C4(R2C2 + R1C1)

e = C1C2 − C1C2

(11)
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The coefficients in the denominator are an order of magnitude more cumbersome expres-
sions; therefore, we only include the full K(p) expression in the Supplementary Materials.

105 106 107

Frequency, Hz

0.000

0.002

0.004

0.006

0.008

0.010

AF
R

Experimental
Smoothed experimental
Model #2

(a) Subject ID: 7405

105 106 107

Frequency, Hz

0.000

0.002

0.004

0.006

0.008

0.010

AF
R

Experimental
Smoothed experimental
Model #2

(b) Subject ID:1796

Figure 6. Additional amplitude-frequency response results for two more loin-to-knee measurements.

3.3. Circuit Model #2

Model #1 produces a good overall approximation of real-world characteristics, notably
the AFR, as shown later in Section 3.4. However, it has a limitation, namely, that each
of the Zi elements in the circuit exerts a significant influence on the entire AFR profile
since they are connected diagonally. Given the distinctive AFR characteristics anticipated,
featuring two closely spaced resonances, we present a second model (Figure 4) that closely
aligns with these requirements and differs from the previous one by eliminating the issue
of cross-links.

For this circuit, the search for the transfer function is a simpler task. If we represent
the parallel connections Z1 and Z2 as Z12, and Z3 and Z4 as Z34, then using Kirchhoff’s
second law, we get the following expression for Kright:

Kright =
Zo

Z12 + Zo + Z34
(12)
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Expanding the Zi values according to Equation (7) and multiplying it by Kle f t, we obtain
the following expression for the transfer operator function:

K(p) =
ZoRd3

(
ap5 + bp4 + cp3 + dp2 + ep

)
hp6 + ip5 + kp4 + gp3 + mp2 + np + q

(13)

The full expression of K(p) is provided in the Supplementary Materials. Finally, to complete
the solution and find the K for a fixed frequency f , one can replace p in Equation (13) back
with j2π f and compute its absolute value.

3.4. Instantiation of the Models

In this section, we show how to instantiate the models for specific examples. By
changing the nominal values of the elements in the models, we can adjust the shape of the
AFR model to match the real experimental AFR of the human body. We did not use the
phase-frequency characteristic because the dataset does not include phase measurements.

The experimental data used here are taken from the dataset [2]. The description of
the dataset, as well as the full experimental protocol, schematics, post-processing software,
and other details, are available in the dataset’s repository. A comprehensive overview of
the collection process is also available in the accompanying paper [3]. For completeness,
we also provide a brief summary of the data collection process in this article. The process
was as follows: the experiment, aimed at measuring signal loss across a subject’s body,
was conducted in a specially designated room under a controlled temperature, free of
extraneous equipment. Each of the participants, one at a time, lay supine on a medical
couch while elastic tourniquets fastened electrodes to their skin. The skin was lubricated by
electrocardiogram (ECG) gel at the point of electrode contact. The signals were transmitted
and received through six locations each, totaling 36 point pairs. The hardware included a
function generator, an oscilloscope, an Analog Discovery 2 unit, multiplexer and demulti-
plexer units, gold-plated electrodes, RG58 coaxial cables, a Raspberry Pi 4, and a laptop.
The analog discover unit and the Raspberry Pi were battery-powered and communicated
with the laptop via WiFi to avoid electrical coupling with the transmission side. Python
scripts controlled the transmission and reception of the signals, switching electrode pairs
and recording data. The receiver-side script employed a Fourier-transform-based filter to
recover the signal amplitude and reduce noise. The equipment and processing algorithm
were validated on reference loads, ensuring less than a 1 % error at 4 MHz at lower frequen-
cies and less than 10 % at all frequencies. The data were recorded iteratively for different
frequencies and saved in JSON files, and post-processing scripts computed impedance and
signal loss.

Returning back to the models, we first observe that some of the nominal values are
fixed. Specifically, in the dataset collection experiments, Rg and Zo were both set to 50 ohm
since this resistance is commonly used in previous BCC studies; see [12] for an example
and [22,23] for discussions on this choice. The 50 ohm value originally comes from the
standard values used by a convention in radio frequency communication equipment, as the
resistances need to be equal on both sides of the cable in order to minimize signal reflections.

Subsequently, let us take an example measurement from the dataset that describes the
AFR of the human body for the experiment subject with the ID: 2695 (all participants in the
dataset are assigned pseudo-random identifiers) for transmission between the electrodes
placed on the right leg’s loin muscle and electrodes placed on the left leg’s knee.

In order to simplify the presentation, we present the transfer function K(p) as the ratio
of the numerator expression to the denominator expression:

K(p) =
N(p)
D(p)

. (14)

Subsequently, after replacing p with j2π f and taking modulo, we find the AFR of the
model, which is then compared with the data from the experimental measurements.
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3.5. Model #1 Instantiation

For model #1, the formulas of the Kp components are

N(p) = −14.9 · (1.8 · 10−52 p5 + 2.1 · 10−44 p4 + 2.5 · 10−37 p3 + 2.8 · 10−29 p2 − 1.6 · 10−21 p)

D(p) = 4.4 · 10−57 p6 + 5.8 · 10−49 p5 + 8.0 · 10−41 p4+

+ 5.1 · 10−33 p3 + 2.5 · 10−25 p2 + 7.4 · 10−18 p + 1.3 · 10−10

For the respective AFR, the elements’ nominals are as follows: Rd1 = Rd2 = 60 ohm;
Rd3 = 51 ohm; L1 = 0.3µH; R1 = 20 ohm; C1 = 20 pF; L2 = 23µH; R2 = 100 ohm;
C2 = 20 pF; L3 = L4 = 15µH; R3 = R4 = 900 ohm; C3 = C4 = 45 pF.

The nominal values were found empirically using the electronic circuit simulator
software Multisim. Software like Z-view would be able to automate this task; however,
there are some problems that must first be solved before applying it; notably, Z-view
expects complex impedance measurements as the input, while our experimental data only
include absolute value (|Z|) measurements.

3.6. Model #2 Instantiation

For model #2, the numerator and denominator expressions for K(p) are as follows:

N(p) = 6.6 · 10−52 p5 + 4.4 · 10−44 p4 + 9.3 · 10−36 p3+

+ 2.4 · 10−28 p2 + 2 · 10−20 p

D(p) = 6 · 10−58 p6 + 6.8 · 10−50 p5 + 1.5 · 10−41 p4+

+ 8.9 · 10−34 p3 + 8.9 · 10−26 p2 + 2.2 · 10−18 p + 1.1 · 10−10

For the corresponding AFR, we have Zd1 = Zd2 = 60 ohm; Zd3 = 18 ohm; L1 = 15µH;
R1 = 240 ohm; C1 = 45 pF; L2 = L3 = 5µH; R2 = R3 = 200 ohm; C2 = C3 = 25 pF;
L4 = 4.5µH; R4 = 220 ohm; C4 = 18.5 pF.

Figure 5 shows a comparison of the models with the experimental data. A close
match between the models and data is visible over a wide range of frequencies, and both
models are similarly accurate: Model #1 has a 0.67 dB root mean square error (RMSE) in
the example, and Model #2 has an RMSE of 0.66 dB.

Since Model #2 has similar but slightly better accuracy and is simpler, we selected it
as the preferred model due to Occam’s razor. Figure 6 shows additional results from two
more instantiations of Model #2.

4. Predictive Models
4.1. Problem Formulation

The electrical circuit models presented so far show good approximations of the real-
world characteristics of the system, specifically its AFR. However, when it comes to investi-
gating the relationship between the parameters of the human body, such as the transmitter
and receiver locations, the distance between these locations, subcutaneous fat thickness,
and the shape of the AFR curve, these models are less suitable. The problem arises from
the fact that for each setup, the nominal values of the models need to be refitted, which, in
turn, can only be carried out if the ground-truth data already exist.

The large dataset [2] collected in our project enabled us to create predictive models
that rely on statistics or machine learning. These models take the signal, measurement,
and human-body parameters as input variables and predict the expected signal loss under
these specific conditions. The full set of the potential input variables is described in the
dataset. For the purposes of this paper, we consulted with a medical expert in our group
to select a subset of the variables (Table 1) as the most relevant ones. For “fat level”, we
denote the subcutaneous fat thickness at the point of electrode attachment by using data
from [24]. “Total fat level” is the sum of the fat level metrics at the Tx and Rx points.
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Table 1. Input variables used as model features.

Name Units

Signal variables
Frequency Hz

Measurement point variables
Distance between points relative units

Tx point fat level relative units
Rx point fat level relative units

Human body variables
Height cm
Weight kg

BMI kg/m2

Body fat %
Male Boolean

Age group years

Figure 7 shows the correlations between the signal loss and a few selected features
from the dataset. Fat level has almost no effect in the lower frequencies but decreases
the signal loss in higher frequencies. This means that if the electrode attachment points
have deeper subcutaneous fat, the received signal is stronger, especially in the higher
frequencies. An explanation of this is that areas with more fat tissue (e.g., the loins)
also have deeper muscles and more numerous blood vessels, both of which are good for
BCC signal transmission [14,25]. More distance between the transmission points slightly
increases the signal loss, especially in higher frequencies. However, the effect peaks around
8–9 MHz.
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(a) Tx and Rx fat levels.
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(b) Distance between points.

Figure 7. Signal loss correlation with example features at different frequencies.

Moreover, related to the signal variables, there are two promising approaches:

1. Create a single model that takes the frequency as one of the input data features.
2. Create a custom-fitted model for each of the measured frequencies.

4.2. Model Description

We construct the following types of predictive models:

1. Linear regression models;
2. Random forest (RF) regression models.

For each of the model types, we train (1) one model that takes frequency as a feature,
and (2) 19 models are each optimized for a specific frequency. The RF models are configured
to have 1000 decision trees in each RF and use the squared error as the splitting criteria.
The accuracy of the models is compared using the root-square mean error (RMSE) metric.
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It is widely known that using too many features reduces the accuracy of models due
to overfitting and noise. We use a greedy algorithm to select the most important features:
the signal frequency, cumulative fat levels (sum of Rx and Tx fat levels), distance between
attachment points, height, and weight. In future work, this could be further optimized by
choosing the most important features for each frequency range; for instance, a person’s
weight is a more important feature for frequencies around 1 MHz, whereas the importance
of the distance between the points peaks in the 8–9 MHz range. However, we did not
pursue this here in order to avoid overfitting.

4.3. Model Evaluation

We used the scikit-learn library (https://scikit-learn.org/, accessed on 4 November
2023) to fit and evaluate the models. The evaluation consists of a 10-fold cross-validation,
with a random 70:30 % train:test split in each iteration. We report the average RMSE from
all 10 iterations.

Figure 8 shows the results. The main takeaways are

• The linear regression model, with frequency as the input data, has larger errors as it
fails to capture the complex, nonlinear relationship between the input variables and
the signal loss.

• For the other models, the prediction error is the highest at the lower frequencies;
this decreases up to 10 MHz, reaching or going below 2 dB RMSE, and then starts
increasing again.

• If the frequency is fixed, linear regression shows a similar performance to RF.
• RF shows even better results if the frequency is passed as a feature, likely due to the

larger training dataset size.

In terms of the number and importance of the features, the most important by far is the
frequency (Figure 9). Figure 9 shows a large decrease in the error between 0 and 1 features
for the all-frequency model; this is due to the fact that the frequency feature is added as the
first one. Adding more features improves the accuracy up to a point, but the results are
diminishing, and training the model on more than five features can make the error worse.

The results suggest that a large part of the signal loss variation in the dataset, unfor-
tunately, is not explained by the features captured in the dataset. Improving this result
is planned for our future work. However, since the absolute magnitude of the error is
relatively small, even knowing just the target frequency should be sufficient for most use
cases, such as creating design constraints for BCC communication hardware.
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Figure 8. Accuracy comparison for the predictive models.
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Figure 9. Accuracy, depending on the number of features for RF models. “0 features” on the x-axis
corresponds to a model that returns the mean signal loss value for each frequency.

5. Conclusions

This paper introduces models for characterizing the human body as a signal transmis-
sion medium. Circuit models exhibit a low RMSE (below 0.7 dB). However, they require
manual fitting for good accuracy. In contrast, statistical models, particularly linear regres-
sion, demonstrate RMSE errors of around 2.0 dB in the 2 to 15 MHz frequency bands. While
errors increase for frequencies beyond this range, in general, the accuracy is sufficiently
high enough to enable researchers and engineers to simulate and predict anticipated signal
loss in BCC systems as part of their design process.

Our analysis reveals that signal frequency is the most influential feature in predicting
signal loss, and factors such as the distance between communication points and human
body parameters hold secondary importance. A substantial portion of the variance in
signal loss remains unexplained, suggesting a potentially fertile area for future research.
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