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Abstract: Cross-Domain Facial Expression Recognition (CD-FER) aims to develop a facial expression
recognition model that can be trained in one domain and deliver consistent performance in another.
CD-FER poses a significant challenges due to changes in marginal and class distributions between
source and target domains. Existing methods primarily emphasize achieving domain-invariant
features through global feature adaptation, often neglecting the potential benefits of transferable local
features across different domains. To address this issue, we propose a novel framework for CD-FER
that combines reliable global–local representation learning and dynamic label weighting. Our frame-
work incorporates two key modules: the Pseudo-Complementary Label Generation (PCLG) module,
which leverages pseudo-labels and complementary labels obtained using a credibility threshold to
learn domain-invariant global and local features, and the Label Dynamic Weight Matching (LDWM)
module, which assesses the learning difficulty of each category and adaptively assigns corresponding
label weights, thereby enhancing the classification performance in the target domain. We evaluate
our approach through extensive experiments and analyses on multiple public datasets, including
RAF-DB, FER2013, CK+, JAFFE, SFW2.0, and ExpW. The experimental results demonstrate that our
proposed model outperforms state-of-the-art methods, with an average accuracy improvement of
3.5% across the five datasets.

Keywords: facial expression recognition; pseudo-label learning; label dynamic weight matching;
domain adaptation

1. Introduction

CD-FER is the task of automatically recognizing and inferring human emotional states
across different domains, playing a significant role in human–computer interaction [1],
affective computing [2], and similar applications. Unlike traditional facial expression
recognition methods that operate within a single dataset [3–6], CD-FER faces significant
challenges due to subtle variations between different facial expression categories and sub-
stantial differences among facial expression recognition datasets. Over the past decade,
several CD-FER methods have been proposed to address the performance degradation
caused by data inconsistency. These methods have been extensively evaluated using pop-
ular FER datasets, including RAF-DB [7], FER2013 [8], CK+ [9], JAFFE [10], SFW2.0 [11],
and ExpW [12]. Earlier research primarily addressed this problem using techniques such as
transfer learning [13] and supervised kernel mean matching [14]. However, these methods
require several annotated samples in the target domain, making them unsuitable for unsu-
pervised CD-FER scenarios. Subsequently, other learning strategies have been introduced,
such as dictionary learning [15], metric learning [16], and contrastive learning [17]. These
strategies enable cross-domain learning even without labeled data in the target domain.
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Researchers have recently explored domain adaptation models to tackle the CD-
FER task. These models incorporate adversarial learning mechanisms [18–20] to acquire
transferable domain-invariant features. However, most of these models focus on extracting
global features for domain adaptation, overlooking advantages of local features such
as their greater transferability across different domains and their ability to provide fine-
grained feature representation. A number of studies [21,22] have modeled the correlations
between global and local features within and across domains as a way to mitigate domain
drift. Furthermore, a few recent works [23,24] have incorporated semantic information into
multi-view feature learning in order to narrow the semantic gap in the domain adaptation
process. Unfortunately, these methods have often neglected the impact of imbalanced class
distribution across various domains, resulting in unsatisfactory recognition performance.

To address these issues, we propose a novel framework for addressing the performance
degradation caused by data inconsistency in cross-domain scenarios. Our framework
focuses on global–local feature learning and dynamic label weighting based on consistency
regularization. It introduces two main modules, PCLG and LDWM. In the PCLG module,
we generate pseudo-labels and complementary labels for target domain samples, applying
a fixed threshold to filter reliable pseudo-labels. Collaborative training of pseudo-labels
and complementary labels helps to mitigate the performance degradation caused by noisy
labels. The LDWM module adjusts class weights based on the number of generated pseudo-
labels, reflecting the importance of these classes. This ensures that the model pays more
attention to minority classes, thereby mitigating the class imbalance issue. Moreover, we
incorporate local features and construct multiple classifiers to learn global and local features
and select the best classification performance.

Our contributions can be summarized as follows: (i) we propose a global–local feature
learning and dynamic label weighting framework to address domain shift; (ii) we develop
a pseudo-complementary label generation method to help calibrate confirmation biases;
(iii) we introduce a dynamic label weighting matching strategy to mitigate the impact of
class imbalance. Codes and trained models are available at https://github.com/chttyte/
/GLRLDLW (accessed on 26 October 2023).

The structure of this paper is as follows: in Section 2, we provide a summary of
the most relevant works related to our research; Section 3 introduces the details of our
proposed method; experimental results and comprehensive analyses are presented in
Section 4; finally, our conclusions are presented in Section 5.

2. Related Work
2.1. Cross-Domain Facial Expression Recognition

Due to variations in subjective annotation and data collection methods, different facial
expression recognition datasets inherently exhibit distribution disparities. The primary
challenge is addressing the divergence in data distributions between the source and tar-
get domains. Zheng et al. [25] combined labeled samples from the source domain with
unlabeled auxiliary data from the target domain to jointly learn discriminative subspace
unsupervised. Similarly, [26] introduced the DR framework, which focuses on learning
a domain regenerator capable of regenerating micro-expression samples from the source
and target databases. This ensures that the generated source and target domains exhibit
similar feature distribution. In [27], Li et al. observed different conditional probability
distributions between the source and target domains and developed a deep Emotion-
Conditioned Adaptation Network (ECAN) to address the data inconsistency. In [28,29],
an attention mechanism was employed to achieve fine-grained feature alignment. Similarly,
Tsai et al. [30] used discriminators to enforce similar semantic outputs between the two
domains, emphasizing alignment and the acquisition of shared knowledge. In contrast,
Zhang et al. [31] generated decision boundaries for each category by maximizing the di-
vergence of classifiers and then trained a feature generator to deceive these two classifiers,
thereby aligning the domain distribution between the existing source subject and the new
subject. Compared with the existing methods described above, our proposed approach

https://github.com/chttyte//GLRLDLW
https://github.com/chttyte//GLRLDLW
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introduces a global–local representation learning and dynamic label weighting method to
tackle the domain shift problem in CD-FER.

2.2. Pseudo-Label Learning

Pseudo-label learning involves incorporating unlabeled data into model training to
enhance the performance of supervised processes by utilizing model-predicted transformed
hard labels [32–35]. Occasionally, certain samples may exhibit uncertainty regarding their
categorization across multiple classes. In response to this challenge, Rizve et al. [36]
introduced uncertainty into the framework and selected pseudo-labels based on uncertainty,
thereby incorporating unlabeled data to enhance model robustness and performance.
Zheng et al. [35] employed a progressive soft pseudo-label refinement mechanism, starting
from coarse labels and refining them progressively. This approach aims to generate more
robust and refined soft pseudo-labels, allowing the model to learn more discriminative
features tailored for challenging samples. The "Noisy Student" approach [37] has been
utilized when generating pseudo-labels to prevent the model from overfitting to known
data as well as to enhance its generalization. Recently, the confidence-based threshold
strategy has been considered to select appropriate pseudo-label data for the target domain.
In [38], FixMatch was introduced; this approach utilizes high-confidence predictions from
the weak augmentation branch to generate pseudo-labels, then trains the model by aligning
predictions from the strong augmentation branch with the pseudo-labels using the standard
cross-entropy loss. Unlike the previous work, Xie et al. [39] guided model training using the
consistency loss in order to ensure similar data representation from different perspectives.
Another recent study [40] applied adversarial training to enhance the confidence of pseudo-
labels and improve the adversarial training process using these pseudo-labels. These two
processes complement each other, strengthening the transfer effectiveness from the source
domain to the target domain. However, reliance on a large amount of unlabeled data in
generating pseudo-labels can lead to models classifying unlabeled data with excessive
confidence, introducing erroneous pseudo-labels and misleading information. Furthermore,
previous models have not considered the difference in class distributions between the source
and target domains, a key factor influencing the ultimate transfer performance. In this
work, we propose a novel approach that combines pseudo-complementary label generation
with a dynamic label weight matching strategy to mitigate the impact of class imbalance.

3. Methodology
3.1. Overview

Our objective is to tackle the CD-FER task for a given source domain dataset
Ds =

{
xS

i , yS
i
}NS

i=1 and target domain dataset Dt =
{

xt
i
}Nt

i=1. Each sample xs
i is associ-

ated with a corresponding label ys
i in the source domain, while the target domain dataset

Dt consists of unlabeled samples. As illustrated in Figure 1, during the training phase,
the feature extractor is responsible for extracting seven local and global feature vectors
from each input image in the source domain. These feature vectors are then input to
their respective classifiers for learning. The global and global–local feature vectors are
extracted for the unlabeled target domain data. Subsequently, the Pseudo-Complementary
Label Generation (PCLG) module is utilized to generate pseudo-labels and complementary
labels. The PCLG module aims to provide label-like information for the unlabeled target
data. Next, we employ the Label Dynamic Weight Matching (LDWM) module to assign
appropriate weights to these generated labels. The LDWM module assesses the learning
difficulty associated with each category and adapts label weights accordingly. Specifically,
suppose that a category is predicted by the model with a lower frequency, indicating a
higher level of learning difficulty. In this case, a higher label weight is assigned to encourage
the model to prioritize learning that category. Conversely, the label weight is reduced if
the category is predicted more frequently. Additionally, the LDWM module updates the
number of pseudo-labels generated for each class. Finally, the source and target domains



Electronics 2023, 12, 4553 4 of 14

are aligned using the loss function L, facilitating knowledge transfer from the source to the
target domain.
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Figure 1. An overall depiction of our proposed method. Supervised learning is applied to train the
labeled source data in the source domain, establishing a robust foundation for subsequent training on
the target data. In the target domain, both strong and weak augmentations are performed to enhance
the quality of the training data. The PCLG module generates corresponding pseudo-complementary
label pairs and filters reliable pseudo-labels using a specified threshold. Simultaneously, the LDWM
module calculates weights for each class and assigns the appropriate label weighting based on the
model’s prediction frequencies. This dynamic weighting scheme ensures that the model focuses on
challenging categories and optimizes its learning process.

3.2. Pseudo-Complementary Label Generation
3.2.1. Pseudo-Label Generation

When generating pseudo-labels for the target domain, we consider samples with label
confidence above a certain threshold as reliable samples. Setting an appropriate threshold
is essential; thus, for our experiments with ResNet50 as the backbone network and RAF-DB
as the source domain, we set the fixed threshold to 0.99. In the PCLG module (see Figure 1),
samples were selected only if the class with the highest predicted probability scored above
this threshold, with the rest being filtered out. During the second stage of training, we fine-
tuned the model on both the source and target domains using the following pseudo-label
training objective:

Lpos =
1

Ntrust
t

Ntrust
t

∑
i=1

wt
yt

i
· LCE

(
G
(

f t
i
)
, yt

i
)

(1)

f t
i = F

(
xt

i + ξ2
)

(2)

yt
i = G

(
F
(
xt

i + ξ1
))

(3)

where wt
yt

i
represents the value of the label re-weighting (explained in Section 3.3), f t

i is the

feature vector obtained using the weak augmentation strategy ξ2, and yt
i is the pseudo-label

generated using ξ1. It is important to note that pseudo-labels Dtrust
t = {xi}

Ntrust
t

i=1 , xi ∈ Dt,
max G(F(xi)) > threshold are only generated for samples with confidence above a certain
threshold. Here, F represents the feature extractor, ξ1 represents the weak augmentation
strategy, and ξ2 represents the strong augmentation strategy.
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3.2.2. Complementary Label Learning

In complementary label learning, unlabeled data are treated as both positive and
negative. Positive instances are those labels the classifier correctly assigns, while negative
instances are those that the classifier fails to assign correctly. Complementary labels are
generated for negative instances to indicate which class the unlabeled data least belong
to, aiming to compensate for the performance degradation caused by erroneous pseudo-
labels. Complementary labels corresponding to low-confidence predictions are obtained
as follows:

ȳi = argmin
(
G
(

f t
i
))

. (4)

Introducing complementary label learning, the learning objective is as follows:

Lneg = − 1
Nt

Nt

∑
i=1

wt
yt

i
·
(

c

∑
j=1

ȳij log
(

1− G
(

f t
i
)

j

))
(5)

where yt
i orȳi is a given pseudo-label or complementary label. Adaptive sample weights wt

yt
i

are assigned to the artificial labels, with ȳij denoting the j-th element of the corresponding
one-hot vector.

3.3. Label Dynamic Weight Matching

We introduce a learnable class weighting parameter to explore the predicted class
distribution in the target domain. Specifically, following the approach described in [41],
the learning difficulty of a class is determined by the number of samples predicted to
belong to that class and surpass the threshold. The formula for the learning difficulty of a
class is as follows:

λj =
σj

maxc σt
(6)

where σj denotes the number of pseudo-labels generated by classifier G for a particular class
j, c is the total number of classes, and maxc σt is the maximum number of pseudo-labels
generated by G across all classes. The values of λj range from 0 to 1, with the best-learned
class having λj equal to 1. To introduce a warm-up process, we modify the denominator in
the equation as follows:

λj =
σj

max
(
maxc σt, N − ΣC

c=1σt
) (7)

where N − ∑C
c=1 σt can be considered the number of unlabeled samples not used in the

target domain. This ensures that at the beginning of training, all estimated learning effects
start from 0 and gradually increase until the unlabeled target domain samples no longer
dominate. The goal is to increase the weight of difficult samples while decreasing the
weight of easy samples. To achieve this, we assign adaptive sample weights to pseudo-
labels as follows:

wt
j = 1−

λ2
j

τ
(8)

where wt
j represents the adaptive weight for class j in the target domain. In the later stages

of training, the best-learned class has a weight of 1− 1/τ, while τ is a hyperparameter
that determines the strength of the weight-matching mechanism. As training progresses,
the weights for those classes with better learning effects decrease; however, it is important
to note that the weights may not always decrease. Suppose that unlabeled target domain
data are classified into different classes in subsequent iterations; in this case, a deterioration
in the learning effect is indicated for that class, increasing its weight.
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3.4. Loss Function

In the first stage of training, we trained seven classifiers by minimizing the cross-
entropy between the predicted labels G

(
f s
i
)

and the true labels. This strategy established
an initial condition for learning the target domain task. The loss function for this stage is
defined as

Lsup =
1

NS

Ns

∑
i=1

ws · LCE

(
G
(

f S
i

)
, yS

i

)
(9)

where w is the weight array assigned to the seven sets of features. We set the weights for
global and global–local features to 7, while the weights for the five sets of local features
were set to 1. The overall training objective combines the supervised loss Lsup from the first
stage with the positive learning objective Lpos and negative learning objective Lneg from
the second stage:

L = Lsup + Lpos + Lneg (10)

The above loss function guides the training process, effectively ensuring that the model
learns from the source and target domain. For a clearer understanding of the main flow of
the proposed framework, please refer to the pseudocode provided in Algorithm 1.

Algorithm 1 Global–Local Representation Learning and Dynamic Label Weighting framework

Input: Xs: source domain dataset; Xt: target domain dataset; C: total number of categories
τ: fixed threshold; wt

j : the label weight for category j; σj: the number of generated pseudo-
labels for category j; ζ1: weak augmentation strategy;

1: while not reach the maximun iteration do
2: for c = 1 to C do
3: Calculate λj using Equation (7)
4: Calculate wt

j using Equation (8)
5: end for
6: Sample mini-batch of size B from Xs : Xs

B
7: Sample mini-batch of size B from Xt : Xt

B
8: for b = 1 to B do
9: if max

(
G
(

F
(
xt

i + ζ1
)))

> τ then
10: Pseudo labels yt

i ← Equation (3) on xt
i

11: Complementary labels ← Equation (4) on xt
i

12: Update σj;
13: end if
14: end for
15: Compute the loss via Equations (9), (1), (5) and (10)
16: end while
Output: Model parameters.

3.5. Evaluation Metrics

In evaluating the performance of our model for CD-FER, we employed a set of essential
metrics to gauge its effectiveness in classifying facial expressions across different domains.

Accuracy is a fundamental classification model evaluation metric that quantifies a
model’s correctness in predicting labels. It represents the proportion of samples correctly
classified by the model, typically expressed as a percentage. This metric is suitable for
datasets with a relatively balanced distribution of classes.

Recall is a crucial metric used to assess a model’s ability to correctly identify positive
samples, especially in applications where it is essential to ensure that positive instances are
not missed. The recall calculates the proportion of true positive samples among all actual
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positive samples, and is particularly valuable in scenarios where false negatives are costly.
The recall formula is as follows:

Recall =
TP

TP + FN
(11)

where TP represents the number of correctly predicted positive samples and FN represents
the number of incorrectly predicted negative samples.

Precision is another critical metric for evaluating classification performance. It mea-
sures the proportion of true positive samples among those predicted as positive by the
model. The precision formula is as follows:

Precision =
TP

TP + FP
(12)

where TP represents the number of correctly predicted positive samples and FP represents
the number of incorrectly predicted positive samples.

F1 score is a comprehensive performance metric for classification models. It provides
a balanced assessment of a model’s precision and recall, making it particularly useful in
cases involving class imbalance. The F1 Score is calculated as follows:

Fl score =
2× Recall × Precision

Recall + Precision
. (13)

3.6. Implementation Details
3.6.1. Network Architecture

In our implementation, we built upon the work of Chen et al. [22] and adopted
the ResNet50 variant and MobileNet-v2 as the backbone networks for feature extraction.
Both of these networks consist of four block layers. Starting with an input image size
of 112× 112, a feature map is obtained from the second layer of the network, which is
denoted as m1 and has dimensions of 28× 28× 128. Similarly, another feature map is
acquired from the fourth layer, which is denoted m2 and has a size of 7 × 7 × 512. A
convolutional operation is initiated to transform m2 into a 7× 7× 64 feature map to capture
the global features. Subsequently, an average pooling layer is applied to process the feature
map, resulting in a 64-dimensional feature vector. We leveraged the MT-CNN to crop
five regions of size 7× 7× 128 centered around the corresponding facial landmarks in
m1 to extract local features. These regions undergo similar convolutional and average
pooling operations, yielding five 64-dimensional local vectors. To integrate global and local
information, the global feature vector is concatenated with the five local feature vectors,
producing a combined 384-dimensional feature vector. The feature vector is then formed
into a set, denoted as f, comprising seven feature vectors. We constructed seven classifiers
using fully-connected layers for classification.

3.6.2. Training Details

In the two-stage training process, we initialized our backbone network with models
pretrained on the MS-Celeb-1M dataset [42]. The parameters of the additional layers were
initialized using the Xavier algorithm. The training specifics for each stage were as follows:
first, we used the Stochastic Gradient Descent (SGD) optimizer to train the feature extractor
and classifier on the source domain. We conducted training for fifteen epochs, for which we
employed the cross-entropy loss. The learning rate was set to 0.0001, the momentum to 0.9,
and the weight decay to 0.0005. In the second stage, we fine-tuned the feature extractor and
classifier by optimizing the target loss function in Equation (10). We maintained the same
momentum and weight decay values as in the first stage; however, we adjusted the learning
rate to 0.00001. After thirty epochs, the learning rate was halved to facilitate convergence
and improve training stability.
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4. Experiments and Analyses
4.1. Datasets

In our experiments, we utilized several diverse datasets for CD-FER. Each dataset
presents unique challenges and characteristics, allowing us to evaluate the performance of
our proposed model comprehensively. Below, we provide an overview of the datasets used:

RAF-DB [7] comprises 29,672 images of human faces featuring multiple human
species. The dataset is gender-balanced, has a large age span, and has various poses.
In all, 15,339 images are labeled with seven basic expressions, divided into 12,271 training
samples and 3068 test samples for evaluation.

FER2013 [8] is a large uncontrolled dataset collected using the Google image search
engine. It contains 35,887 images, including 4953 angry samples, 547 disgusted samples,
5121 worried samples, 8989 happy samples, 6077 sad samples, 4002 surprised samples,
and 6198 neutral samples. Among these images, 28,709 samples were used for training,
3589 for verification, and 3589 for testing.

CK+ [9] is a lab-controlled dataset often used to measure the performance of algo-
rithms on facial expression recognition tasks. It comprises 593 video data sequences from
123 subjects, including 309 sequences labeled using the Facial Action Coding System
(FACS). We constructed a dataset of 1236 images using the same method for extracting
expression data.

JAFFE [10] is a lab-controlled facial expression dataset featuring 213 images collected
from ten Japanese women. Due to its Asian origin, this dataset is particularly suitable for
evaluating cross-domain facial expression recognition tasks.

SFEW2.0 [11] is a static in-the-wild expression dataset encompassing unconstrained
facial expressions. It includes various head poses, a wide age range, occlusions, varied
focus, and different face resolutions. The dataset is divided into training, validation,
and test datasets that contain 958, 436, and 372 samples, respectively.

ExpW [12] is another in-the-wild dataset, featuring 91,793 face images collected from
the Google Image Search API. Each image is manually labeled with one of the seven basic
emotion categories.

The class quantity distribution across these datasets is illustrated in Figure 2. These
diverse datasets enable us to assess our proposed CD-FER model’s robustness and general-
ization capabilities across multiple domains and real-world scenarios.

Figure 2. Bar plot illustrating the category distribution in the training set across six datasets: CK+,
JAFFE, SFEW2.0, FER2013, RAF-DB, and ExpW.
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4.2. Comparisons with State-of-the-Art Methods

Our experimental evaluation compared our proposed model with state-of-the-art CD-
FER methods. We chose ResNet50 and MobileNet-v2 as our backbone network, each having
distinct hierarchical structures and feature extraction capabilities. This choice was taken for
two main reasons: first, these networks can leverage pretrained weights from large-scale
datasets, accelerating convergence and enhancing performance; second, we aimed to assess
the robustness of our algorithm across different backbones. Taking data from Table 1(i) as an
example for further data analysis, when using RAF-DB as the source domain and ResNet50 as
the backbone network, our algorithm demonstrates significant performance improvements on
the Ck+, JAFFE, SFEW2.0, FER2013, and ExpW datasets, with respective accuracy increases
of 3.1%, 7.04%, 0%, 1.8%, and 2.23% compared to the state-of-the-art algorithms. These
results indicate that our method is positioned competitively compared to existing approaches.
However, when replacing the source domain with FER2013 while keeping ResNet50 as the
backbone, the performance of almost all algorithms exhibited varying degrees of decline on all
datasets. This underscores that the similarity between the source and target domains has an
important effect on accuracy. It can be seen from Table 1 that when we maintained the same
source domain and replaced ResNet50 with MobileNet-v2 as the backbone, the performance
of most algorithms showed varying degrees of decline on all datasets. This could be attributed
to MobileNet-v2’s adoption of deeply separable convolution in its architecture, resulting in
relatively weaker feature extraction capabilities than ResNet50.

Table 1. Accuracy of our proposed method (Ours) and the existing leading methods on CK+, JAFFE,
SFEW2.0, FER2013, RAF-DB, and ExpW when using different source datasets and different backbone
networks. The best results are highlighted in bold.

Method
(i) Source=RAF-DB, Backbone=ResNet50

CK+ JAFEE SFEW2.0 FER2013 ExpW Mean

CADA [43] 72.09 52.11 53.44 57.61 63.15 59.68
SAFN [44] 75.97 61.03 52.98 55.64 64.91 62.11
SWD [45] 75.19 54.93 52.06 55.84 68.35 61.27
ECAN [27] 79.77 57.28 52.29 56.46 47.37 58.63
AGRA [22] 85.27 61.50 56.43 58.95 68.50 66.13
CGLRL [24] 82.95 59.62 56.88 59.30 70.02 65.75

Ours 88.37 68.54 56.88 61.10 73.25 69.63

Method
(ii) Source=FER2013, Backbone=ResNet50

CK+ JAFEE SFEW2.0 RAF-DB ExpW Mean

CADA [43] 81.40 45.07 46.33 65.96 54.84 58.72
SAFN [44] 68.99 45.07 38.07 62.80 53.91 53.77
SWD [45] 65.89 49.30 45.64 65.28 56.05 56.43
ECAN [27] 60.47 41.76 46.01 53.41 48.88 50.11
AGRA [22] 85.69 52.74 49.31 67.62 60.23 63.12
CGLRL [24] 79.84 53.52 52.29 71.84 61.94 63.87

Ours 82.95 60.09 49.08 75.68 54.68 64.50

Method
(iii) Source=RAF-DB, Backbone=MobileNet-v2
CK+ JAFEE SFEW2.0 FER2013 ExpW Mean

CADA [43] 62.79 53.05 43.12 49.34 59.40 53.54
SAFN [44] 66.67 45.07 40.14 49.90 61.40 52.64
SWD [45] 68.22 55.40 43.58 50.30 60.04 55.51
ECAN [27] 53.49 43.08 35.09 45.77 45.09 44.50
AGRA [22] 72.87 55.40 45.64 51.05 63.94 57.78
CGLRL [24] 69.77 52.58 49.77 52.46 64.87 57.89

Ours 75.97 49.77 47.25 52.97 64.89 58.17
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Table 1. Cont.

Method
(iv) Source=FER2013, Backbone=MobileNet-v2
CK+ JAFEE SFEW2.0 RAF-DB ExpW Mean

CADA [43] 66.67 50.23 41.28 53.15 51.84 52.63
SAFN [44] 66.67 37.56 35.78 38.73 45.56 44.86
SWD [45] 53.49 48.36 35.78 47.44 50.02 47.02
ECAN [27] 55.65 44.12 28.46 42.31 41.53 42.41
AGRA [22] 67.44 47.89 41.74 52.27 59.41 53.75
CGLRL [24] 68.22 46.95 46.79 59.15 54.30 55.08

Ours 76.74 47.72 46.79 64.79 54.70 58.13

4.3. Ablation Studies

Next, we conducted ablation studies to assess the individual contributions of different
components within our proposed algorithm framework. Our framework comprises several
components: Pseudo-Label Generation (PLG), Label Dynamic Weight Matching (LDWM),
and Complementary Label Generation (CLG). To evaluate the performance contributions
of each component to the CD-FER task, we conducted experiments using a variant of
ResNet50 as the backbone network, RAF-DB as the source domain, and the CK+, JAFFE,
SFEW2.0, FER2013, and ExpW datasets as the target domains.

We established a baseline where only labeled source domain data was used for sepa-
rate classification learning. The results are shown in the baseline row in Table 2. Then, we
introduced the CLG and LDWM modules separately, building upon the PLG component.
The final row represents the accuracy of the complete framework implementation. By com-
paring the second and third rows, it is evident that both CLG and LDWM contribute to the
performance improvement of CD-FER. In particular, a noticeable decline in performance
was observed across all datasets when LDWM was removed, resulting in a drop in average
accuracy of 0.82.

Table 2. Ablation study for each module.The best results are highlighted in bold.

Module CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
Baseline 73.64 59.15 52.29 56.88 68.93 62.18
PLG + CLG 88.37 66.67 55.73 60.56 72.72 68.81
PLG + LDWM 88.37 67.13 56.65 60.93 73.04 69.22
Ours 88.37 68.54 56.88 61.10 73.25 69.63

Recognizing the presence of class imbalance, we introduced the F1 score as a perfor-
mance metric to account for this imbalance. Figure 3 shows the F1 scores on various datasets,
demonstrating the robustness and effectiveness of our model across different domains.

Additionally, we assessed the contribution of local features by conducting an ex-
periment in which only global features were used for training. The results in Table 3
highlight the importance of incorporating local information in enhancing cross-domain
recognition performance.

Table 3. Accuracy of our approach using holistic features (HFs) and ours for adaptation on the CK+,
JAFFE, SFEW2.0, FER2013, and ExpW datasets. The best results are shown in bold.

Method CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
Ours HFs 88.37 68.08 55.96 60.08 72.65 69.03
Ours 88.37 68.54 56.88 61.10 73.25 69.63
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Figure 3. F1 scores on various datasets.

4.4. Parameter Analysis

The hyperparameter τ (temperature) plays a crucial role in the feature learning process
for the target domain. Initially, we set τ to 1.0 as the initial value, equivalent to not introduc-
ing any hyperparameter. Subsequently, we increased τ in increments of 0.1 while observing
the impact on the experimental results for each dataset. Notably, we observed that these
fluctuations in the hyperparameter significantly affected the CK+ and FER2013 datasets.
Hence, we selected these two datasets for experimentation to determine the optimal range
of the hyperparameter τ. The temperature parameter τ serves as a balancing factor between
learning the characteristics of challenging samples and preserving the features that have
already been learned. Specifically, CK+ exhibited a decline in performance when τ dropped
below a certain threshold, while FER2013 performed better with τ values closer to 1.0.
We conducted experiments with different τ values on the CK+ and FER2013 datasets to
investigate this phenomenon, as illustrated in Figure 4. We found that when τ exceeded or
equaled 1.5, the CK+ dataset achieved its best performance. In contrast, the performance of
FER2013 fluctuated while remaining at a relatively high level with τ values close to 1.0.
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Figure 4. Performance with respect to τ on CK+ and FER2013.
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5. Conclusions

In this paper, we have introduced a robust global–local feature learning approach
coupled with dynamic label weighting to enhance the performance of unsupervised cross-
domain facial expression recognition. Our method comprises the PCLG module, which
generates high-quality labels for learning domain-invariant features, and the LDWM
module, which adjusts label weights to mitigate class distribution disparities between
the source and target domains. We have demonstrated the efficacy of these proposed
components through extensive experiments and ablation studies, consistently achieving
superior performance on publicly available datasets compared to state-of-the-art methods.

While this work represents a significant advancement in cross-domain facial expression
recognition, it may not show the best performance in certain scenarios. For example, when
changing the backbone network in conjunction with the source domain, the performance
of the proposed model is not as robust as previously observed. Moreover, introducing
hyperparameters necessitates additional computational resources in order to explore suit-
able ranges for these hyperparameters. Future research should explore more sophisticated
data augmentation techniques, robust label prediction methods, and appropriate weight
calculation formulas without introducing hyperparameters.
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