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Abstract: Keyword extraction is the task of identifying essential words in a lengthy document.
This process is primarily executed through supervised keyword extraction. In instances where the
dataset is limited in size, a classification-based approach is typically employed. Therefore, this paper
introduces a novel keyword extractor based on a classification approach. The proposed keyword
extractor comprises three key components: RoBERTa, a keyword estimator, and a decision rule.
RoBERTa encodes an input document, the keyword estimator calculates the probability of each token
in the document becoming a keyword, and the decision rule ultimately determines whether each
token is a keyword based on these probabilities. However, training the proposed model with a small
dataset presents two challenges. One problem is the case that all tokens in the documents are not
a keyword, and the other problem is that a single word can be composed of keyword tokens and
non-keyword tokens. Two novel heuristics are thus proposed to tackle these problems. To address
these issues, two novel heuristics are proposed. These heuristics have been extensively tested through
experiments, demonstrating that the proposed keyword extractor surpasses both the generation-
based approach and the vanilla RoBERTa in environments with limited data. The efficacy of the
heuristics is further validated through an ablation study. In summary, the proposed heuristics have
proven to be effective in developing a supervised keyword extractor with a small dataset.

Keywords: keyword extraction; sequence labeling; post-processing; RoBERTa; learning with
small dataset

1. Introduction

Keyword extraction is a task of identifying keywords in a lengthy document, and it
is considered one of the essential tasks in data analysis, data mining, and information re-
trieval [1–4]. In the current environment, where countless documents are published through
various media [5,6], it becomes time-consuming for humans to process all documents and
identify their keywords. Consequently, the demand for automatic keyword extraction has
increased [7–9].

Automatic keyword extraction has been addressed using unsupervised and super-
vised methods [10]. Two representative examples of unsupervised keyword extraction are
Tf-idf [11] and PageRank [12,13]. Tf-idf detects keywords based on word frequency [14–16],
while PageRank utilizes graph-based features [17–19]. However, these methods, lacking
an understanding of the overall semantic information of a document, generally achieve
relatively low accuracy. To address this issue, supervised keyword extraction has been intro-
duced, reporting high performance [20]. Nevertheless, these methods typically necessitate
a large amount of training data, posing a challenge when only limited data are available.

Supervised keyword extraction has been studied through two approaches: the classifi-
cation-based approach and the generation-based approach. The classification-based ap-
proach involves extracting keywords from a document by evaluating every token in the
document to determine if it is a keyword or not [21–23]. In contrast, the generation-based
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approach uses a generative language model to abstractively generate keywords for an
input document [24,25]. According to numerous studies [25], generative language models
like BART [26] outperform classification-based methods in extraction accuracy, making the
generation-based approach more commonly adopted for keyword extraction. However, a
drawback of generative language models is their requirement of a large amount of training
data, surpassing that needed by classification-based methods in general.

This paper proposes a novel keyword extractor designed to be trained with a small
number of Korean documents. The extractor addresses three problems that are challenging
for generative language models. Firstly, due to the unavailability of large-scale keyword-
spotting documents for minor languages such as Korean, the extractor must be trained
with a limited amount of data. Consequently, the proposed keyword extractor adopts
the classification-based approach [27] instead of the generation-based approach, utilizing
RoBERTa [28], a BERT-based classifier, as a base model due to its outstanding performance
among classification-based methods.

The second problem arises from RoBERTa determining whether every token in a
document is a keyword or not. Consequently, it is highly possible that RoBERTa may not
produce any keywords for a document since it is a token-level classifier. To address this, a
heuristic is employed to identify the word to which the token with the highest probability
belongs as a keyword. Additionally, since every word is expressed as a sequence of tokens
in RoBERTa, owing to its BPE tokenizer, even a single word can be composed of multiple
tokens with varying keyword predictions. The third problem is to unify the keyword
predictions of multiple tokens for a single word. To address this issue, a heuristic is applied,
considering a word as a keyword only when all its tokens are predicted as keywords,
leveraging RoBERTa’s reliability in keyword extraction.

Intensive experiments are conducted using a dataset of Korean Power Plant Outage
Reports. Although the dataset is small, the experiments demonstrate that RoBERTa achieves
high performance compared to BART, a generative language model. Moreover, it is evident
that vanilla RoBERTa faces the second and third problems, which the proposed heuristics
effectively solve. Particularly, the proposed keyword extractor achieves an average 6.4 and
12.8 higher BLEU and accuracy, respectively, compared to vanilla RoBERTa. Furthermore,
it outperforms vanilla RoBERTa even in human evaluation, affirming the efficacy of the
proposed keyword extractor for datasets with a limited number of training instances.

The main contributions of this work are

• This paper analyzes problems that may occur when a supervised classification-based
keyword extractor is trained with a small number of data.

• This paper proposes two heuristics for sophisticated keyword extraction to solve
problems of classification-based keyword extractors trained with a small number
of data.

• The proposed keyword extractor outperforms not only the generation-based keyword
extractor but also the classification-based keyword extractor in the environment of a
small number of data.

The rest of this paper is organized as follows. Section 2 introduces the previous studies
on automatic keyword extraction. Section 3 describes two problems in learning a RoBERTa-
based keyword extractor with a small number of documents and addresses how to tackle
these problems, and Section 4 provides the experimental results. Finally, Section 5 indicates
the conclusions and future work.

2. Related Work

Traditionally, keyword extraction has been studied in an unsupervised way. Tf-idf [11,29]
is a representative unsupervised method, where it detects keywords statistically based on
the frequency of the tokens in a document. The methods of extracting keywords using
term frequency like tf-idf require a large corpus to improve their performance. Thus, efforts
to use not only term frequency but also some other features have been undertaken in
order to solve this problem. KP-Miner utilized word length and positional information in
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addition to term frequency [30], RAKE considered the frequency of other tokens that a term
co-occurs with [31], and YAKE calculated a keyword score with the term frequency and
some hand-crafted features [8].

Graph-based keyword extraction is another way to extract keywords unsupervisedly
with purely statistical information. TextRank [12,32] is a representative graph-based ap-
proach, where it builds an undirected, unweighted word graph representation and then
finds out the keywords using the PageRank algorithm. On the other hand, SGRank [33] uses
some manually crafted features in addition to TextRank, where the features are designed to
complement TextRank since some critical information for keyword extraction cannot be
captured by a graph-based method. KeyphraseDS [34] filters out non-keywords from the
keyword candidates before TextRank using the similarity of a candidate to a document topic
to keep stopwords from becoming keywords. These unsupervised methods have an advan-
tage of requiring small data and faster inference, but their accuracy is relatively low because
they extract keywords without a semantic understanding of a document. For this reason,
supervised-based methods that extract keywords grasping the semantics of a document
have begun to attract the attention of the keyword extraction research community.

Supervised keyword extraction is further divided into a classification-based approach
and a generation-based approach. The classification-based approach is also called a se-
quence labeling approach. That is, it aims to determine whether each input token in a
document is a keyword or not. For instance, Luan et al. [35] determined keywords with
part-of-speech embeddings and the combinatorial features of words and characters. On
the other hand, Chun et al. [36] proposed a novel embedding for sequence labeling, which
integrates character-level embedding and word-level embedding to find the most intuitive
character or word in a document. However, such classification-based methods always have
a possibility that all tokens in a document are determined to be non-keywords.

Many studies have attempted to solve the problems of the classification-based ap-
proach by adopting a generative model based on a sequence-to-sequence architecture. This
is because the generation-based approach generates keywords abstractly from a document
and thus it outputs some keywords anyway. In the early studies, RNN [37] was used as
a dominant keyword generator. However, many attempts have been made to improve
keyword extraction performance recently by adopting a generative language model. For ex-
ample, BART [26], a transformer-based language model, showed a higher performance than
RNN [25]. Recently, there have also been efforts to generate keywords using prompts [38].
However, the main drawback of this generation-based approach is that it requires a great
volume of data for its training. As a result, this paper takes the classification-based approach
to solve keyword extraction for a dataset with a small number of documents.

3. Keyword Extraction with Small Number of Documents
3.1. Supervised Keyword Extraction

Keyword extraction is a task to extract the most relevant words from a document
W = [w1, . . . , wm], a sequence of word wi’s. This task can be solved in various ways. One
way is the generation-based approach in which the keywords for an input document W are
generated by a generative language model. That is, a generative language model generates
Y = [ŷ1, . . . , ŷo], where o is the targeted number of keywords. One benefit of this approach
is that it can generate even the words that do not appear in W as keywords. However, it has
a disadvantage of requiring a large amount of data to train the generative language model.

The other way to keyword extraction is the classification-based approach. This ap-
proach is usually formulated as sequence labeling. That is, keyword extraction in this
approach can be considered as a series of word-level classifications. Under this approach,
the keywords for W are extracted by determining whether every wi ∈ W is a keyword or
not. In order to train a word-level classifier, a sequence of golden labels Y = [y1, . . . , ym]
for each W should be given where |X| = |Y|. In addition, all yi’s are boolean so that yi is
keyword if the corresponding wi is a keyword and non-keyword otherwise. Formally, let
f (·) be a word-level classifier trained with a dataset D = {(Wi, Yi)}N

i=1. Then, when a new
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document W̄ = [w̄1, . . . , w̄m] is given, its label Ȳ = [ȳ1, . . . , ȳm] is determined by applying
f (·) to every w̄i ∈ W̄. That is, ȳi is obtained by

ȳi = f (w̄i; W̄). (1)

Here, W̄ is used as a context for this classification.
This paper adopts a RoBERTa-based model as the classifier f (·) in Equation (1) since

RoBERTa achieves good performances in many sequence labeling tasks [39,40]. The struc-
ture of the proposed classifier is depicted in Figure 1. It consists of three components of
RoBERTa, a keyword estimator, and a decision rule. The input document W is first encoded
as vectors by RoBERTa. Since RoBERTa is a BERT-based model, every word in W is further
divided into a few tokens by the byte-level BPE, a standard RoBERTa tokenizer. Thus, the
document W = [w1, . . . , wm] is represented as a sequence of tokens X = [x1, . . . , xn] where
n > m. Then, the task of keyword extraction becomes predicting Y = [y1, . . . , yn] from X.
Following the standard RoBERTa application, the [cls] token is assumed to be in X and is
regarded as x0.

Figure 1. Overall architecture of sequence-labeling-based keyword extraction using RoBERTa. The
example sentence is “GT (Gas Turbine) trip caused by stuck parts. . . ” in Korean, and the “##” in
some tokens implies that it is a token that is connected to a previous token without a white space. In
this example, ‘GT’ is a keyword because the keyword extraction domain is about finding the objects
causing an outage or a failure.

For every xi ∈ X, a corresponding vector representation hi is obtained by

hi = RoBERTa(xi; X) ∈ RE,
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where E is the embedding size. Note that RoBERTa is encoder-centric since it is based on
BERT. Thus, an additional keyword estimator is required to adopt RoBERTa in an end-to-
end style [22,23]. This paper uses a linear projection with softmax as the keyword estimator
c(·) where it takes hi as an input and calculates the probability of hi’s being a keyword.
That is,

c(hi) = softmax(hiW + B), (2)

where W ∈ RE×C and B ∈ Rn×C are learnable parameters and C is the number of class
labels. Since ȳi in Equation (1) can have only two values of keyword and non-keyword, C is
two in this paper. This implies that the number of nodes in the softmax of c(·) is also two.
Thus, c(hi) in Equation (2) returns pi =

〈
pT

i , pF
i
〉
, a vector of two probabilities. pT

i is the
probability that xi becomes a keyword and pF

i is the probability that xi is not a keyword.
As a result, pF

i = 1− pT
i holds. In a word,

pi = c(hi) (3)

= c(RoBERTa(xi; X)).

The final keyword prediction is then made from pi by a simple rule

R(pi) =

{
keyword if pT

i ≥ pF
i ,

non-keyword otherwise.
(4)

Therefore, yi is determined by

yi = f (xi; X)

= R(c(RoBERTa(xi; X))). (5)

The parameters of W and B of the keyword estimator c(·) in Equation (2) are optimized
with the training dataset D. RoBERTa is also fine-tuned with D.

3.2. Sequence Labeling for Small Number of Documents

Note that the size of the training data D should be large to obtain a good performance
with the proposed keyword extractor in Equation (5). However, minor languages such as
Korean usually do not have a large dataset labeled for keyword extraction. If the size of D
is very small, the keyword extractor can suffer from two kinds of problems. One problem
is that the keyword extractor is underfitted to the training data D and shows a deteriorated
performance. One possible phenomenon by the underfitted keyword extractor is that all
words in a document are predicted to be non-keywords since there are usually many more
non-keywords than keywords in a document. The other problem is that a single word
can be predicted to be both a keyword and a non-keyword. This is because the keyword
extractor is based on RoBERTa in which a word is tokenized into multiple tokens. As a
result, there could be a case that some tokens of a single word are classified as a keyword
while other tokens are determined as a non-keyword.

The first problem is solved by adopting a simple heuristic, which is to consider the
token with the highest probability as a keyword if all tokens are predicted as non-keywords.
That is, if all yi’s are non-keywords, i.e., pT

i < pF
i for 1 ≤ i ≤ n, then yq is forced to be a

keyword where q is chosen by

q = arg max
i∈{1, ..., n}

pT
i .

As a result, at least one token survives as a keyword.
This paper proposes two post-processings of reinforcement and exclusion as a solution

to the second problem. Assume that a word wi is composed of k tokens of ti1, . . . , tik and
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the keyword label for wi is provided as [yi1, . . . , yik], where yij = f (tij; X). Some yij’s are
keyword and the remaining are non-keyword since the classifications for tij’s are performed
independently. The reinforcement post-processing enforces wi to be a keyword even when
some yij’s in wi are non-keyword. Algorithm 1 and Figure 2a show how this post-processing
works in detail. If there is at least one token of which label is keyword, the word wi is forced
to be keyword. Thus, in lines 3 and 4, the algorithm checks if there is any token tij satisfying
f (tij; X) = keyword. On the other hand, the exclusion post-processing enforces wi to be
a keyword only when all yij’s are keyword. Algorithm 2 and Figure 2b show the flow of
the exclusion post-processing. Similar to Algorithm 1, this algorithm checks if there is any
token tij satisfying f (tij; X) = non-keyword in lines 3 and 4. Thus, if there is at least one
non-keyword token, wi also becomes non-keyword.

Algorithm 1 The algorithm of reinforcement post-processing
input: a word wi = [ti1, . . . , tik]
output: keyword or non-keyword

1: is_keyword← non-keyword
2: for 1 ≤ j ≤ k do
3: if f (tij; X) = keyword then
4: is_keyword← keyword
5: end if
6: end for
7: return is_keyword

(a) Reinforcement post-processing

(b) Exclusive post-processing

Figure 2. The examples of two types of post-processing. The example in (a) is “Trip estimation due to
vibration sensor malfunction”, and the example in (b) is “Damage of air supply pipe for blow-off
V/V operation”. If the label is 1, it is classified as a keyword, and, if the label is 0, it is classified as a
non-keyword. Words are separated through wide spacing.

Algorithm 2 The algorithm of exclusion post-processing
input: a word wi = [ti1, . . . , tik]
output: keyword or non-keyword

1: is_keyword← keyword
2: for 1 ≤ j ≤ k do
3: if f (tij; X) = non-keyword then
4: is_keyword← non-keyword
5: end if
6: end for
7: return is_keyword
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4. Experiments
4.1. Dataset

To prove that the proposed keyword extractor solves the problems that easily occur
in keyword extraction supervised with small number of documents, a corpus named as
Korean Power Plant Outage Reports is adopted. Every report in the corpus has three sections
of ‘Failure Detail’, ‘Cause’, and ‘Measurement’. One dataset is made from one section. As a
result, three datasets of failure detail, cause, and measurement are finally prepared from the
corpus. Table 1 shows an example of the data.

Table 1. An example of Korean Power Plant Outage Reports dataset.

Dataset Document Object Phenomenon

failure detail

ST복수기냉각수(해수)펌프고장으로인한
ST Trip
ST Trip due to ST condenser coolant (sea water)
pump failure

ST
ST

Trip
Trip

cause

m ST복수기냉각수(해수)펌프고장에의한
냉각수공급중단으로복수기진공도하락후

ST진동상승하여 Trip
m ST condenser vacuum level drops due to
cooling water supply interruption due to failure
of the ST condenser coolant (seawater) pump,
then ST vibration increases and trips

ST복수기
냉각수(해수)
펌프

ST condenser
coolant
(seawater)
pump

고장

failure

measurement

냉각수(해수)공급펌프 Shaft등신품설치
추진

Promotion of installing new products such as
cooling water (sea water) supply pump shaft

냉각수(해수)
공급펌프

Shaft등
신품설치추진

cooling water
(sea water)
supply pump

신품설치

installing new
products

The keywords in a data instance are tagged from two points of view. One point of
view is about failure object and the other is about failure phenomenon. Thus, every data
instance has two types of keywords: object and phenomenon. In the dataset of failure detail, all
instances have only one object keyword and one phenomenon keyword. On the other hand,
in cause and measurement, the instances have three or fewer keywords for both object and
phenomenon types.

The number of data instances in each dataset is 300, and the average input lengths of
failure detail, cause, and measurement are 50.05, 129.59, and 87.56, respectively. The average
numbers of the keywords in the datasets are 1.00, 1.10, and 1.23. Since the number of
data instances is not large, the five-fold cross-validation is used to validate the proposed
keyword extractor.

4.2. Implementation Details

The hyper-parameters for RoBERTa follow the settings of klue/bert-base
(https://huggingface.co/klue/bert-base, accessed on 18 October 2023). The embedding
size of hidden state is 768, the number of attention heads and the number of layers are
twelve, and the size of vocabulary is 32,000. The cross-entropy is adopted for loss function to
train the proposed keyword extractor, and AdamW is adopted as an optimizer with a learn-
ing rate of 2× 10−8 β1, β2, and ε for AdamW are set as 0.9, 0.999, and 1× 10−8, respectively.

In order to implement the proposed keyword extractor, Python 3.9.17, PyTorch 2.0,
and Transformers 4.33.1 are used. The environment for training the keyword extractor is a
PC with an RTX 3090-Ti GPU, an Intel i9-10980XE CPU, and 256GB RAM. The maximum
sequence length of an input is 256, and the size of mini-batch is 16.

https://huggingface.co/klue/bert-base
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4.3. Evaluation Metrics

The performance of the proposed keyword extractor is measured with well-known
automatic metrics: F1-Score, Micro (micro-accuracy), and Macro (macro-accuracy). F1-Score
calculates the harmonic mean of the precision and the recall, while Micro calculates the
token-level accuracy and Macro calculates the instance-level accuracy.

4.4. Baselines

The proposed keyword extractor is compared with the following baselines:

• VR: a vanilla RoBERTa model with a basic sequence labeling.
• BIO: a sequence labeling RoBERTa model with the BIO-tags.
• SQUAD: a RoBERTa model with SQuAD tags used in SQuAD dataset [41].
• TNT-KID: a modified transformer-based keyword extractor that additionally incorpo-

rates part-of-speech information [10].
• BART: a transformer-based generative language model.

VR, BIO, and SQUAD are all RoBERTa models, while BART is a standard BART [26].
However, VR, BIO, and SQUAD are differently trained because the instances are labeled in
different schemes. In VR, all token labels are assumed to be independent from one another.
Thus, no word-level information is used by VR. On the other hand, the keywords are
labeled with the BIO-tags as in NER-tasks in BIO, and they are labeled with a starting index
and an ending index as in the SQuAD dataset in SQUAD. Thus, both BIO and SQUAD are
trained with some word-level information.

4.5. Experimental Results

Table 2 shows how the post-processing affects the performance of keyword extraction
in the object keyword type of the failure detail dataset. In this table, REIN implies the
reinforcement post-processing and EXC is the exclusion post-processing. For all metrics,
EXC achieves higher performance than REIN consistently. This is because the keyword
extraction performance of RoBERTa is sufficiently excellent, and thus predicting a few
tokens of a word as keyword can be considered as noise. Therefore, exclusion post-processing
is used for all the experiments below.

Table 2. Comparison of two post-processing methods of reinforcement (REIN) and exclusion (EXC).
Scores in bold stand for the leadership among the metrics.

Metric F1-Score Micro Macro

REIN 0.62 87.21 70.00
EXC 0.65 90.36 73.33

As explained above, the keywords are tagged for a single data instance from two
different points of view. Thus, every instance has two types of keywords. As a result, there
can be two ways to determine the keywords of a data instance. One way is to train one
model to determine both types, and the other way is to train two distinct models for the
two types. For the former, the keywords from both types are all regarded as keywords
for a data instance. Table 3 compares these two ways. The failure detail dataset is used to
measure the performances in this table. According to this table, ‘Object-Model’ trained only
for object type achieves higher performance in object-type keyword extraction than ‘Both-
Model’ trained to extract both types of keywords. Similarly, ‘Phen.-Model’ trained only
for phenomenon type outperforms ‘Both-Model’ in phenomenon-type keyword extraction.
Therefore, it can be inferred that the use of two distinct models is more effective.
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Table 3. Comparison of two methods for extracting two types of keywords. ‘Both-Model’ implies a
single model trained to extract both types of keywords, while ‘Object-Model’ is a model trained to
extract the object-type keywords, and ‘Phen.-Model’ is that to extract the phenomenon-type keywords.
Scores in bold stand for the leadership among the keyword types.

Keyword Type Object Phenomenon

Metric F1-Score Micro Macro F1-Score Micro Macro

Both-Model 0.56 85.25 68.33 0.75 87.59 71.67

Object-Model 0.65 90.36 73.33 - - -

Phen.-Model - - - 0.83 94.57 78.33

Table 4 reports how superior the proposed keyword extractor is to the baselines. The
proposed keyword extractor outperforms all baselines in all datasets. The performance
differences are all statistically significant with p-value < 0.05. In particular, TNT-KID and
BART show extremely low performances. This is because the number of instances in the
datasets is insufficient to newly train the modified transformer or fine-tune BART. That
is, BART is ineffective when only small datasets are available. VR, BIO, and SQUAD are
differentiated by the label-tagging scheme. SQUAD and BIO have to learn the order of
B-tags and I-tags or the keyword positions. Since there are not many data instances to train,
learning such information is more difficult than independent keyword prediction. This is
why VR is better than both SQUAD and BIO in this table.

Table 4. The empirical comparison of the proposed keyword extractor with its baselines. Scores in
bold stand for the leadership among the models.

Keyword Type Object Phenomenon

Metric F1-Score Micro Macro F1-Score Micro Macro

failure detail

VR 0.64 85.23 61.67 0.77 88.65 61.67
BIO 0.53 80.67 45.00 0.72 83.98 53.33

SQUAD 0.59 81.36 51.67 0.75 85.25 51.67
TNT-KID 0.13 23.58 11.35 0.11 20.09 10.13

BART 0.09 - - 0.08 - -

Proposed 0.65 90.36 73.33 0.83 94.57 78.33

cause

VR 0.56 83.17 45.00 0.47 87.08 41.67
BIO 0.53 81.15 43.33 0.41 85.77 36.67

SQUAD 0.50 80.25 41.67 0.35 84.15 31.67
TNT-KID 0.08 18.25 09.15 0.07 16.21 08.79

BART 0.05 - - 0.04 - -

Proposed 0.62 93.84 53.33 0.58 97.74 61.67

measurement

VR 0.36 83.15 33.33 0.38 87.20 33.33
BIO 0.34 82.51 33.33 0.37 82.77 35.00

SQUAD 0.33 80.16 25.00 0.36 82.15 23.33
TNT-KID 0.07 16.97 08.46 0.07 15.28 08.63

BART 0.03 - - 0.04 - -

Proposed 0.42 92.85 43.33 0.43 97.04 45.00

The proposed keyword extractor achieves the best performance in all datasets, but
Macro-accuracy in failure detail is higher than in cause and measurement. This is because there
is only one golden keyword in failure detail, but up to three keywords appear in cause and
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measurement. Thus, keyword extraction for failure detail is easier than that for other datasets.
In addition, SQuAD-tagged classification is intrinsically more difficult than BIO-tagged
classification since a classifier has to predict both the starting and ending positions in a
SQuAD-tagged dataset, but it determines only whether each word is a keyword or not
in a BIO-tagged dataset. Thus, when multiple keywords should be found as in cause and
measurement datasets, Macro-accuracy of SQUAD is lower than that of BIO.

4.6. Ablation Study

In Section 3.2, we have discussed the heuristics for two problems of learning with a
small number of data instances. Let ‘ONE’ denote the first heuristic that remains at least
one keyword. Then, Table 5 shows how effective each heuristic is as an ablation study
in failure detail. According to Table 2, ‘EXC’ is superior to ‘REIN’. Thus, only ‘EXC’ is
considered for the second heuristic. Whenever each heuristic is removed, the performances
keep going down. When ‘EXC’ is excluded, Micro- and Macro-Accuracy drop by 1.5 and
6.66, respectively. Moreover, when ‘ONE’ is removed, even F1-Score decreases. In a word,
both ‘ONE’ and ‘EXC’ are effective in learning a keyword extractor with a small number of
data instances.

Table 5. Ablation study on the post-processing methods. Scores in bold stand for the leadership
among the metrics.

Metric F1-Score Micro Macro

Proposed 0.65 90.36 73.33
– EXC 0.65 88.86 66.67
– ONE 0.64 85.23 61.67

5. Conclusions

This paper has proposed a novel keyword extractor trained with an extremely small
dataset. Supervised keyword extraction can be divided into classification-based approaches
and generation-based approaches. The classification-based approach is formulated as
sequence labeling and finds out the keywords of a document by classifying whether
each token in the document is a keyword. In contrast, the generation-based approach
abstractly generates keywords. Therefore, it is able to generate meaningful keywords that
do not appear in the document, but it is based on generative language models, and the
generative language models usually require a large amount of data. If a generative language
model is trained with a small dataset, it is easy to underfit to the dataset, which leads to
poor performance.

The proposed keyword extractor takes the classification-based approach due to the
small size of available data. It consists of three components of RoBERTa, a keyword esti-
mator, and a decision rule. The proposed keyword extractor suffers from two problems
since it is a token-level classifier based on RoBERTa. The first problem occurs when all
tokens in a document are classified as non-keywords, and the second problem is that a
single word composed of plural tokens can be determined to be both a keyword and a
non-keyword since the token-level classifications are made independently. Therefore, this
paper has proposed two kinds of heuristics to solve them. The first heuristic to solve the
first problem is to determine the word to which the token with the highest probability
belongs as a keyword for the document. The second problem is solved by adopting two
post-processing methods: reinforcement and exclusion. The reinforcement post-processing
considers a word as a keyword when some tokens of the word are classified as keywords,
while the exclusion post-processing determines a word as a keyword only when all tokens
of the word are classified as keywords.

The effectiveness of the proposed keyword extractor has been shown through the
experiments on Korean Power Plant Outage Reports data. According to the experimental
results, the proposed keyword extractor outperforms significantly its baselines in Micro-
Accuracy and Macro-Accuracy as well as F1-Score. These results prove that the proposed
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keyword extractor reduces the problems of a RoBERTa-based keyword extractor trained
with a small dataset. In addition, it has also been shown empirically that the exclusion
post-processing is superior to the reinforcement post-processing.

One thing to note in the experiments is that BART showed a very low F1-Score. This
is because the number of data was so small that BART could not be sufficiently trained.
The small data size is also the reason why other RoBERTa-based baselines achieve lower
performances than the vanilla RoBERTa. Through an ablation study, it was proven that
both the two heuristics are helpful in training the keyword extractor with a small dataset.

Great attention has been paid recently to the generation-based approach in keyword ex-
traction because it enables natural keywords to be generated compared to the classification-
based approach [42,43]. As aforementioned above, this approach is difficult to use when
the size of available data is small. However, some studies on few-shot learning with
a pre-trained language model [44,45] and learning a pre-trained language model for a
low-resource language [46,47] are in progress. Thus, it is our future work to combine the
proposed keyword extractor with such few-shot learnings.
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