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Abstract: Due to its abundant reserves, tight oil has emerged as a significant substitute for conven-
tional petroleum resources. It has become one of the focal points of exploration and research, and
a new hot spot in global unconventional oil and gas exploration and development. This has led to
a significant increase in the demand for forecasting the production capacity of tight oil horizontal
wells. The deep neural network (DNN), as a mature model, has demonstrated significant advantages
in many fields. However, due to the confidentiality and uniqueness of oilfield data, acquiring large
datasets has become a challenge. Traditional methods using small datasets for training DNN models
result in low accuracy and overfitting issues, which hinders the development of neural networks
in the petroleum industry. This study aims to predict the initial production capacity of tight oil
horizontal wells by using a small dataset of 650 data points through a DNN model. The research
results indicate that pre-trained and fine-tuned DNNs outperform shallow neural networks, support-
ing vector machines, and DNN trained with traditional methods in terms of better generalization
performance. Their accuracy reached 91.3%, demonstrating that it is reasonable to use a small dataset
with pre-trained and fine-tuned DNN models.

Keywords: small datasets; DNN; tight oil prediction; initial production capacity; horizontal wells

1. Introduction
1.1. Traditional Methods

In recent decades, tight oil has become a major focus of research in the global petroleum
geology field. Due to the fact that the accumulation conditions and mechanisms of tight
oil are significantly different from conventional reservoirs, and that various factors, such
as geology, development, and engineering, contribute to challenges in tight oil horizontal
well development, including rapid production decline, low individual well productivity,
and low recovery rates [1,2]. Therefore, forecasting the production capacity of tight oil
horizontal wells has become a crucial basis for planning and deploying unconventional oil
and gas field development. As a result, researchers worldwide have conducted extensive
studies on the prediction of production capacity for tight oil horizontal wells, considering a
combination of geological, development, and engineering factors. Quantitative characteri-
zation methods have been widely applied in analyzing production capacity prediction, and
have achieved good results. The researchers conducted sensitivity analysis, uncertainty
analysis and history matching, and predicted gas production to assess the impact of in-
jecting carbon dioxide (CO2) on well productivity [3]. By incorporating the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm and introducing four new feature
parameters, a quantitative characterization model for shale oil vertical and horizontal wells
was developed, which enables the fitting, prediction, and parameter inversion of dynamic
production curves throughout the entire life cycle [4]. However, due to the simplicity
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and intuitiveness of the quantitative characterization model, it only analyzes the primary
reservoir characteristics that affect production capacity, while neglecting the secondary
factors. Therefore, some researchers have opted to use numerical simulation methods
to establish complex models as an alternative to quantitative characterization methods.
By establishing an equivalent aperture numerical model, the spatial variation in fracture
aperture caused by fracture deformation can be evaluated to assess its impact on well pro-
ductivity. This approach enables the prediction of production capacity by considering the
influence of spatial changes in fracture aperture [5]. The grey correlation analysis method
is employed to analyze the geological and engineering factors. An evaluation model is
established to predict the production for the first three years [6]. Numerical simulation
methods can be used to assess the impact of various reservoir characteristics, such as
reservoir geological shape, fluid properties, and reservoir heterogeneity, on production
capacity prediction [7]. This approach addresses the limitations of simple and intuitive
quantitative characterization models, which often overlook comprehensive consideration
of reservoir characteristics. Indeed, the establishment of numerical simulation requires
a significant amount of reservoir data, which can make the modeling process complex.
Additionally, the computation time can be relatively long due to the detailed calculations
involved. To address this issue, semi-analytical models have been used as an alternative.
While these models overcome the complexity of numerical simulation in terms of modeling
and solving difficulties, they may still have limitations in their application [8–10].

1.2. Machine Learning Methods

With the advancement of machine learning theory, various artificial intelligence algo-
rithms have been applied in the field of petroleum engineering. By utilizing a Deep Neural
Network (DNN) model, the cumulative oil production of the Bakken shale oil reservoir
can be predicted [11]. Similarly, the Long Short-Term Memory (LSTM) structure can be
employed to forecast the production of a carbonate reservoir in the Middle East [12]. For
more sophisticated predictions, a Deep Long Short-Term Memory (DLSTM) framework
has been established to enhance the accuracy of oil production forecasts [13].

Conducting researches on predicting oil well production capacity through machine
learning has become a trend in the field, but rather limited contributions to the study
of initial production capacity prediction for oil wells were made [14]. Estimating initial
production capacity accurately in oilfield development provides vital insights for reservoir
reserve assessment and resource availability. It serves as a crucial reference point for
planning and executing effective oilfield development strategies [15]. Additionally, the
test results of initial production capacity can aid in determining appropriate production
strategies, including production rates and duration. Well-designed production strategies
can maximize output while mitigating issues like reservoir pressure decline and decreased
production capacity that may result from overproduction. It plays a critical role in the
oilfield development process [16].

The researches of the previous scholars have shown that, in comparison to traditional
numerical simulation and semi-analytical methods, machine learning has demonstrated its
advantages of simplicity and higher accuracy in many fields. This trend is not only evident
in theoretical studies but has also been validated in practical applications. This article aims
to explore how to leverage machine learning for predicting initial production capacity in a
simpler and more accurate manner.

1.3. Potential for Applying DNN with Small Dataset

While machine learning has been introduced to the field of petroleum geology in recent
years, the application of DNN in petroleum geology remains limited. This is because the
uniqueness of geological conditions in each oil field region prevents the use of all domestic
oil field data for training. Therefore, we can only use well data from specific regions for
training. However, the number of wells in a particular region is not sufficient to construct
a large dataset, which means that using machine learning methods with large datasets
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to predict initial production capacity for tight oil horizontal wells will pose a significant
challenge to the researchers. At present time, advances in machine learning have made
DNN more easily trainable and have provided some useful tools, such as pre-training with
restricted Boltzmann machines (RBM) and sparse autoencoders (SAE), to handle small
datasets [17,18].

In the field of petroleum geology research, the potential of using DNN with small
datasets is evident. Regression and classification problems that were previously addressed
using traditional machine learning methods such as Shallow Neural Network (SNN),
random forests, support vector machines (SVM), and others can now be tackled with DNN,
leading to higher accuracy and improved generalization performance.

In this study, we employed a DNN pre-trained with SAE. There are multiple reasons
for choosing this approach. Firstly, SAE, as a deep learning technique, is capable of au-
tomatically learning essential features from the data while reducing data dimensionality,
which enhances the performance of predictive models. Secondly, SAE pre-training can
be used to initialize the neural network’s weights, optimizing them through layer-wise
training for better data fitting. Additionally, with the capability to effectively handle data
sparsity and noise, SAE can improve the model’s robustness. This research focused on
analyzing data related to tight oil horizontal wells to identify which factors influence initial
production capacity. We used a DNN model pre-trained with SAE for initial production
capacity prediction [17,18]. Through experimental results, we demonstrated the significant
advantages of this method over traditional approaches: it showed higher prediction accu-
racy and better generalization performance. This not only contributes to improving the
accuracy of initial production capacity prediction, but also opens up new directions for
similar research in exploring the potential of machine learning in resource extraction and
production forecasting.

2. Method and Workflow

The application of deep learning in the field of oil will contribute to reducing develop-
ment risks and improving resource utilization efficiency in the petroleum industry. In this
chapter, we introduce a model algorithm for predicting the initial production capacity of
tight oil horizontal wells.

2.1. DNN Pre-Training

Pre-training involves initializing the weights and biases of the DNN with values close
to the global optimum solution, which assists in bypassing the traps of local optima during
subsequent fine-tuning steps [19]. Figure 1 illustrates the pre-training process, which
involves initializing the DNN using SAE. The upper section displays the structure of the
DNN, while the lower section depicts the structures of six autoencoders. brittleness, sand
ratio, sanding intensity, fracturing fluid intensity, flowback time, flowback rate, fracture
density, horizontal section length, well spacing, permeability, energy-storage coefficient,
pressure difference, and total volume are used as 13 input variables for the model. Initial
production capacity is the output variable of the DNN. Wj(0) represents the initial weight
matrix layer of the j-th layer in the DNN. Arrows indicate the direction of data transmission.
An autoencoder is a special type of shallow neural network with a single hidden layer
that shares the same input and output layers. Taking a DNN with 5 hidden layers as
an example, structured as 13-(7-6-5-4-3)-1, the structures of the 6 autoencoders would be
as follows: 13-(7)-13, 7-(6)-7, 6-(5)-6, 5-(4)-5, 4-(3)-4, 3-(1)-3. Each autoencoder has the
same number of neurons as the corresponding layer in the DNN. The hidden layer of the
previous autoencoder serves as the input and output layer for the next autoencoder. Each
trained autoencoder provides initial weights and biases for the corresponding layer of the
DNN after SAE initialization. Following SAE initialization, the DNN is trained by using
the Adam algorithm, as utilized in the SNN.
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2.2. Improving the L2 Regularization Expression

The performance function for a neural network, Mean Squared Error (MSE), is formu-
lated as follows:

MSE =

n
∑
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The L2 regularization expression [20] is:
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We improved the L2 regularization expression, and the formula is as follows:

J(ŷ, w) = λMSE +
(1− λ)

2n
||w||2 (3)

where n represents the number of training samples, ||w||2 represents the squared norm,

||w||2 =
n[l−1]

∑
i=1

n[l]

∑
j=1

(W [l]
ij )

2

represents the sum of squares of all weights in the matrix, b

represents the bias, λ is a hyperparameter, yn is the actual value, and ŷn is the model’s
output value, i.e., the predicted value.

The purpose of L2 regularization is to increase the model adaptability and reduce the
likelihood of overfitting. Due to the inherent limitations of small datasets, over-fitting may
not be avoided while using a L2 regularization expression. Therefore, hyperparameters are



Electronics 2023, 12, 4570 5 of 14

applied to combine the Mean-Squared Error (MSE) and ||w||2 to strengthen the relationship
between the MSE and ||w||2. Subsequently, random initialization is used to train the
SNN, while optimized values are employed to initialize and fine-tune the DNN model.
Training the SNN and fine-tuning the DNN involves adjusting weights and biases along
the negative gradient of an improved L2 expression using the Adam algorithm to minimize
the expression, simultaneously, to determine the optimal value of α, which is based on
the Bayesian regularization method proposed by MacKay, in relation to reducing local
minima [21]. The experimental section in the next part will demonstrate the effectiveness
of this improved L2 regularization expression for small datasets.

2.3. Workflow

The workflow for the prediction of initial production capacity in tight oil horizontal
wells is depicted in Figure 2. It includes the following steps: data collection, data analy-
sis, data pre-processing, partitioning into training/testing/prediction datasets, training
SVM/SNN/DNN models, testing the machine learning models, comparing the accuracy of
DNN, SNN, and SVM models, selecting the model with the highest accuracy, and using the
best model to predict the prediction dataset.
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3. Experiment

We first analyzed the data related to the factors affecting the initial production ca-
pacity of tight oil horizontal wells, then designed an experimental model, and provided a
description of the experimental equipment.
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3.1. Collecting Data

This study focuses on the z183 Chang 7 oil reservoir, primarily a tight oil reservoir,
which is located in the southern part of the Ordos Basin [22]. This reservoir is predomi-
nantly a tight oil reservoir, consisting of seven layers. The depositional environment is
characterized by deep lake to semi-deep lake sedimentation. The average porosity is only
6.68%, mainly concentrated in the range of 2% to 10%. The permeability is concentrated
between 0.05 mD and 0.2 mD [23,24]. The reservoir mainly comprises lithic feldspathic
sandstone and feldspathic lithic sandstone. Overall, the z region exhibits a high quartz
content and low feldspar content. Production in the z183 oil reservoir began in 2013, and
up to the present time, 97 horizontal wells have been developed, resulting in a cumulative
oil production of 57.8 tons. The primary development technique employed is hydraulic
fracturing in horizontal wells, which has become the main approach for developing the
tight oil reservoir in this region.

In the field of petroleum geology, the quantitative assessment of reservoirs is primarily
analyzed through geological, developmental, and engineering factors. The evaluation and
analysis of low-permeability tight oil reservoirs are conducted through fifteen geological
factors, such as permeability, porosity, pore throat radius, movable fluid saturation, clay
mineral content, and others [25]. The analysis and assessment of tight oil horizontal
wells are made according to ten development and engineering factors, including reservoir
properties, horizontal segment length, heterogeneity, fracture density, fracture connectivity,
etc. [26]. Therefore, we collected data from 50 wells in the z183 oil reservoir for our
experiment, and identified 13 factors that may influence the initial production capacity
of tight oil horizontal wells. These 13 factors can be categorized into three major groups.
Firstly, the geological factors include the energy-storage coefficient, permeability, and
brittleness. Secondly, the development factors include well spacing, horizontal section
length, fracture density, flowback rate, flowback time, and pressure difference. Thirdly,
the engineering factors include fracturing fluid intensity, sanding intensity, sand ratio, and
total capacity.

3.2. Analyzing Data

Figure 3 displays histograms of the minimum, maximum, mean, and standard devia-
tion of the 13 variables in the dataset. Except for the flow back time, the other 12 variables
have well-distributed data and are suitable for modeling.

3.3. Data Pre-Processing

As is well known, the Pearson algorithm uses correlation coefficients to assess the
degree of association between variables and the target variable, as well as the strength and
direction of the relationship between two variables, in order to select the most relevant
features. In this study, to avoid negative impacts of certain factors on production capacity
prediction, which may lead to reduced model accuracy, the correlation between each factor
and initial production capacity is visualized by creating a heatmap. This allows for the
selection of influencing factors that have a positive correlation with initial production
capacity, aiding in the establishment of an optimal solution for the model (Figure 4).

From the chart, it is evident that the energy-storage coefficient, brittleness, well spacing,
horizontal section length, fracture density, fracturing fluid intensity, sanding intensity, and
total capacity have strong correlations with initial production capacity. Horizontal segment
length has the closest relationship with initial production capacity, with a linear correlation
of 0.4. Therefore, we selected factors with a linear relationship greater than 0 and factors
with a linear relationship greater than 0.2 (taking the average of the highest linear correlation
coefficients) as the dataset for model training. These two preprocessed datasets, along
with the original dataset, were used as inputs for training and testing the SVM, SNN,
and DNN models.
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3.4. Dataset Dividing

To make effective use of the small dataset, it was divided into three groups. The first
group used factors with linear relationships > 0 as input data for the model, the second
group used factors with linear relationships ≥ 0.2 as input data for the model, and the third
group used all 13 influencing factors as input data for the model. Then, data were randomly
selected in a 3:1:1 ratio for training, validation, and testing the model’s generalization ability.
This means that three-fifths of the dataset (390 data points) was used for training, one-fifth
(130 data points) for validating the model’s accuracy, and the remaining one-fifth (130 data
points) was used to further test the model’s ability to generalize to unseen data. Holdout
cross-validation was applied to reserve enough data for validating the model’s performance,
and an independent test set was provided for the final evaluation of the model. This test
set helps ensure the generalization performance of the machine learning model, in other
words, how well the model performs on new data. The reason for separating validation
data and test data is to prevent the model from overfitting to the validation set, thereby
providing a more accurate assessment.

3.5. Training Model

The SNN and DNN structures used in this study are similar to those shown in Figure 5.
Both the SNN and DNN consist of 13 input neurons, a varying number of neurons (DNN
model includes different layers of hidden neurons), and 1 output neuron for initial produc-
tion capacity. The activation function for the hidden layers is tanh (x). The optimizer for the
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models is Adam. The SNN model has two structures: 13-(X1)-1 and 13-(X1)-(X2)-1. For the
training of SNN, we specifically focused on the impact of the number of neurons in a single
hidden layer on model accuracy. The number of neurons in a single hidden layer (X1) varies
from 1 to 30, and for the dual hidden layers, the number of neurons in X1 ranges from 2 to
30, and the number of neurons in X2 ranges from 4 to 30. The structure of the DNN model
is as follows: 13-(4-3-2)-1, 13-(9-6-3)-1, 13-(10-8-6-4)-1, 13-(5-4-3-3)-1, 13-(9-6-3-2-2)-1 and
13-(11-9-7-5-3-3)-1. For the training of DNN, our primary focus was on the impact of the
number of hidden layers on model accuracy. In this experiment, we trained the model by
using the six specified numbers of hidden layers (ranging from 3 layers to 6 layers), and
determined the model with the highest accuracy based on the number of hidden layers. All
SNN and DNN models were trained using random initialization. We also trained the DNN
models using pretraining and fine-tuning, and compared their accuracy with DNN models
that were not pretrained.
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Figure 5. SNN with one hidden layer and DNN with j hidden layers.

SVM, SNN, and DNN are trained using the same learning rate. The maximum training
epochs were set to 1000. The best model was selected for comparison. The DNN model with
SAE pretraining was trained, tested, and predicted using the Machine Learning Toolbox
in MATLAB 2023a. SVM, SNN, and non-pretrained DNN models were trained, tested,
and predicted using the PyTorch framework with GPU support. All models were trained,
tested, and predicted on a personal computer equipped with an i7-12700h CPU, 16 GB
RAM, and an RTX 3080ti GPU.

4. Results and Discussion
4.1. Comparison of Model Accuracy

After training the DNN, SNN, and SVM models, the accuracies of these three models
were compared. The results in Table 1 indicate that negatively correlated factors have an
adverse impact on training accuracy, while the highest accuracy is achieved when factors
with a linear correlation > 0 are used as input neurons. This suggests that factors with
a linear correlation > 0 have a positive impact on the model’s accuracy. The subsequent
research will use the dataset with eight influencing factors (linear correlation > 0) for
the model.

Figure 6a illustrates the impact of the number of neurons on the accuracy of SNN when
there is only one hidden layer. As the number of neurons increases from 1 to 10, the training
accuracy of the SNN rises from 0.67 to 0.955, and the validation accuracy improves from
0.45 to 0.854. However, beyond 10 neurons, accuracy begins to decline, with fluctuations
observed between 11 and 30 neurons. The highest training and validation accuracies was
achieved with 19 neurons, reaching 0.99 for training and 0.876 for validation (with only
two decimal places in the graph). Nevertheless, the model exhibits overfitting, primarily
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due to the limited dataset, which is one of the key challenges in this experiment when
dealing with small data. Consequently, for subsequent experiments, an SNN structure of
8-(19)-1 was selected for comparison.

Table 1. Model accuracy comparison between the original dataset and preprocessed datasets.

Original Dataset Linear Correlation > 0 Linear Correlation ≥ 0.2

Model Training/Validation with input of 13
Influencing Factors

Training/Validation with input of
eight Influencing Factors

Training/Validation with six
Influencing Factors as Input

SVM 0.903/0.835 0.951/0.862 0.912/0.856
SNN 0.854/0.77 0.99/0.876 0.936/0.878
DNN 0.933/0.852 0.986/0.913 0.954/0.90
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Figure 6b illustrates the training and validation accuracy of the SVM, SNN, and DNN
models. When the number of hidden layers in DNN ranges from three to six, both training
and validation accuracies of DNN are lower than those of SNN and SVM. However, the
pre-trained and fine-tuned DNN model achieves higher training and validation accuracy
compared with SNN, SVM, and non-pretrained DNN models. The 8-(7-5-4-3-3)-1 structure
with five hidden layers, pre-trained and fine-tuned using SAE, exhibits the best accuracy.
It achieved a training accuracy of 0.99 and a validation accuracy of 0.913, which was
0.051 higher than SVM’s validation accuracy, 0.063 higher than SNN’s validation accuracy,
and 0.07 higher than the non-pretrained DNN’s validation accuracy.

Figure 6c demonstrates the impact of using L2 regularization expression and the
improved expression as the model loss function on model accuracy. It is evident that when
using the L2 regularization expression as the model loss function, overfitting occurs due to
the limitations of the small dataset, and the accuracy on the validation set is consistently
below 90%. In contrast, when using the improved loss function, overfitting is mitigated,
and the validation accuracy significantly surpasses that of the DNN models using the L2
regularization expression. This indicates that the improved L2 expression is suitable for
models with small datasets.

4.2. Validation

To further validate the suitability of the pre-trained and fine-tuned DNN model for
small datasets, predictions are made using the testing dataset across all models.

Figure 7 displays linear regression results for each model on the prediction dataset.
The DNN model pre-trained and fine-tuned with SAE (correlation coefficient R = 0.95)
outperformed the SNN model (R = 0.91) by 4% and the SVM model (R = 0.88) by 8%.
This further confirms that the SAE pre-trained and fine-tuned DNN model has superior
generalization compared with SNN and SVM.
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4.3. Discussion

The factors influencing the production capacity of tight oil horizontal wells, ranked
by their importance, are horizontal section length, sanding intensity, fracture density,
brittleness, fracturing fluid intensity, total capacity, well spacing, and the energy-storage
coefficient. This indicates that the factors influencing the production capacity of tight oil
horizontal wells primarily lie in the development and engineering aspects, followed by
geological factors. It suggests that in the same region, under similar geological conditions,
development and engineering factors play a crucial role in determining the production
capacity of tight oil horizontal wells. Based on these findings, these factors can be used as
guidelines for the development of tight oil horizontal wells in the Z reservoir, with the aim
of achieving higher production capacity.

The experiments conducted above reveal that it is possible to predict the initial pro-
duction level of horizontal wells through development factors, engineering factors, and
geological factors. Furthermore, it validates that using SAE pre-training and fine-tuning for
the DNN model can yield good results, even with limited data. In comparison with other
methods that rely on dynamic production data to forecast capacity, this approach is more
convenient, requires less data, and, most importantly, can be applied to newly developed
wells for prediction.

While the research model has shown promising results in predicting the initial produc-
tion capacity of tight oil horizontal wells, it is evident from the heat map that the influence
of the 13 factors listed in the table is somewhat limited. To further enhance the model’s
accuracy, it is essential to incorporate a more comprehensive set of influencing factors into
the training process.

5. Conclusions

In this research, a specialized deep neural network was designed to predict the initial
production capacity of tight oil horizontal wells. Initially, 13 influencing factors, includ-
ing development, engineering, and geological factors, were considered as input parame-
ters for the model. Through preliminary data preprocessing, it was validated that these
13 influencing factors could serve as input neurons for the model. Subsequently, a heat
map analysis revealed that the primary factors influencing the initial production capacity
of tight oil horizontal wells in the Z region were engineering and development factors.
As a result, eight and six positively correlated numerical features were selected as input
parameters for the model. During the training and testing processes, 520 data points were
utilized. Statistical and graphical analysis of the developed model, as well as its predictions
on the testing dataset, demonstrated that the DNN model, trained with SAE pre-training
and fine-tuning, exhibited robustness, and could accurately predict the initial production
capacity of tight oil horizontal wells (as is shown in Figure 8). Additionally, we chose
the optimal model by comparing the number of hidden layers in the DNN. The results
indicated that when the number of hidden layers was set to 5, the model achieved the
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highest accuracy in predicting the initial production capacity of tight oil horizontal wells,
with an accuracy rate of 91.13%.

Electronics 2023, 10, x FOR PEER REVIEW 13 of 15 
 

 

influence of the 13 factors listed in the table is somewhat limited. To further enhance the 
model’s accuracy, it is essential to incorporate a more comprehensive set of influencing 
factors into the training process. 

5. Conclusions 
In this research, a specialized deep neural network was designed to predict the initial 

production capacity of tight oil horizontal wells. Initially, 13 influencing factors, including 
development, engineering, and geological factors, were considered as input parameters 
for the model. Through preliminary data preprocessing, it was validated that these 13 in-
fluencing factors could serve as input neurons for the model. Subsequently, a heat map 
analysis revealed that the primary factors influencing the initial production capacity of 
tight oil horizontal wells in the Z region were engineering and development factors. As a 
result, eight and six positively correlated numerical features were selected as input pa-
rameters for the model. During the training and testing processes, 520 data points were 
utilized. Statistical and graphical analysis of the developed model, as well as its predic-
tions on the testing dataset, demonstrated that the DNN model, trained with SAE pre-
training and fine-tuning, exhibited robustness, and could accurately predict the initial 
production capacity of tight oil horizontal wells (as is shown in Figure 8). Additionally, 
we chose the optimal model by comparing the number of hidden layers in the DNN. The 
results indicated that when the number of hidden layers was set to 5, the model achieved 
the highest accuracy in predicting the initial production capacity of tight oil horizontal 
wells, with an accuracy rate of 91.13%. 

 
Figure 8. Indices for the training, validation, and testing datasets for initial production capacity. 

Although using a large dataset with a DNN model can improve accuracy, when ac-
cess to a large dataset is limited, employing a DNN model with a small dataset and spe-
cialized methods may be a reasonable choice. Due to the confidentiality and scarcity of 
oilfield data, small datasets are quite common in the field of petroleum engineering. For 
instance, in the case of initial production capacity prediction for tight oil horizontal wells 
in this study, the DNN model with SAE pre-training and fine-tuning proved effective. 

Figure 8. Indices for the training, validation, and testing datasets for initial production capacity.

Although using a large dataset with a DNN model can improve accuracy, when access
to a large dataset is limited, employing a DNN model with a small dataset and specialized
methods may be a reasonable choice. Due to the confidentiality and scarcity of oilfield data,
small datasets are quite common in the field of petroleum engineering. For instance, in the
case of initial production capacity prediction for tight oil horizontal wells in this study, the
DNN model with SAE pre-training and fine-tuning proved effective.

In conclusion, the results of this study provide strong support and new insights
in the field of petroleum production capacity research. By delving into such factors as
development, engineering, and geology, we have successfully established a viable method
for predicting the initial production capacity of horizontal wells. On the one hand, this
method demonstrates not only a high level of accuracy but also practical applicability, as
it requires relatively small amounts of data, making it suitable for various types of wells.
On the other hand, by validating the deep neural network model by using a small dataset
and specialized training methods, this method has showcased its enormous potential in
petroleum production capacity research, providing a powerful tool for future research and
applications.

The achievements of this study are significant not only for predicting the production
capacity of existing wells but also for providing strong support for the development of new
wells. It has the potential to expedite decision-making and resource optimization in the
petroleum industry, reduce development risks, and improve resource utilization efficiency.
Studies in the future are expected to focus on further expansion of the application scope
of this method, and refining the model for enhanced accuracy to better meet the needs of
oilfield development.

Hopefully, these research findings will have a positive impact on the sustainable
development of the petroleum industry, providing robust support for future researches
and practices.
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