
Citation: Khan, I.; Raza, S.; Khan, R.;

Rehman, W.u.; Rahman, G.M.S.; Tao,

X. Distributed Multi-Agent Approach

for Achieving Energy Efficiency and

Computational Offloading in MECNs

Using Asynchronous Advantage

Actor-Critic. Electronics 2023, 12, 4605.

https://doi.org/10.3390/

electronics12224605

Academic Editors: Bahman Javadi

and Giovanni Crupi

Received: 9 July 2023

Revised: 5 September 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Distributed Multi-Agent Approach for Achieving Energy
Efficiency and Computational Offloading in MECNs Using
Asynchronous Advantage Actor-Critic
Israr Khan 1 , Salman Raza 2 , Razaullah Khan 3, Waheed ur Rehman 4 , G. M. Shafiqur Rahman 5

and Xiaofeng Tao 1,*

1 National Engineering Research Center for Mobile Network Technologies, Beijing University of Posts and
Telecommunications, Beijing 100876, China; israr@bupt.edu.cn

2 Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan;
salmanraza@ntu.edu.pk

3 Department of Computer Science, University of Engineering and Technology, Mardan 23200, Pakistan;
razaullah@uetmardan.edu.pk

4 Department of Computer Science, University of Peshawar, Peshawar 25120, Pakistan;
wahrehman@uop.edu.pk

5 Key Laboratory of Universal Wireless Communications (Ministry of Education), Beijing University of Posts
and Telecommunications, Beijing 100876, China; shafiq.it@hotmail.com

* Correspondence: taoxf@bupt.edu.cn

Abstract: Mobile edge computing networks (MECNs) based on hierarchical cloud computing have the
ability to provide abundant resources to support the next-generation internet of things (IoT) network,
which relies on artificial intelligence (AI). To address the instantaneous service and computation
demands of IoT entities, AI-based solutions, particularly the deep reinforcement learning (DRL)
strategy, have been intensively studied in both the academic and industrial fields. However, there are
still many open challenges, namely, the lengthening convergence phenomena of the agent, network
dynamics, resource diversity, and mode selection, which need to be tackled. A mixed integer non-
linear fractional programming (MINLFP) problem is formulated to maximize computing and radio
resources while maintaining quality of service (QoS) for every user’s equipment. We adopt the
advanced asynchronous advantage actor-critic (A3C) approach to take full advantage of distributed
multi-agent-based solutions for achieving energy efficiency in MECNs. The proposed approach,
which employs A3C for computing offloading and resource allocation, is shown through numerical
results to significantly reduce energy consumption and improve energy efficiency. This method’s
effectiveness is further shown by comparing it to other benchmarks.

Keywords: deep reinforcement learning; advanced asynchronous advantage actor-critic (A3C); multi-
agent system; mobile edge computing; cloud computing; computational offloading; energy efficiency

1. Introduction

The utilization of computation-intensive applications, such as augmented reality (AR),
virtual reality (VR), gaming on the internet, smart transportation, industrial and residential
automation, developed social networking, and facial recognition, has experienced a surge
in popularity due to the widespread adoption of the internet of things (IoT) [1,2]. It is
anticipated that this pattern will persist, given the predicted increase in the quantity of
internet of things (IoT) devices, which is estimated to reach 24 billion by the year 2020 [3],
and the projected surpassing of 30.6 exabytes per month in worldwide mobile network
traffic. These numerous IoT entities, such as mobile users and sensors, will generate
an unparalleled amount of data that need processing and analysis for the purpose of
delivering the service. Undoubtedly, this massive amount of data represents enormous
business opportunities. However, to process these unprecedented amounts of data and

Electronics 2023, 12, 4605. https://doi.org/10.3390/electronics12224605 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224605
https://doi.org/10.3390/electronics12224605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9632-797X
https://orcid.org/0000-0003-4895-9512
https://orcid.org/0000-0002-6380-6787
https://doi.org/10.3390/electronics12224605
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224605?type=check_update&version=2

Electronics 2023, 12, 4605 2 of 20

to satisfy the computation-intensive applications, the system will consume a tremendous
amount of computational energy resources and delays will be generated [1,3]. Therefore, to
tackle computationally costly applications and minimize energy, mobile edge computing
(MEC) has been introduced as a groundbreaking architecture embedded with cache and
processing capacity in the vicinity of the user equipment (UE) [4–6].

Edge computing is considered a compliment to cloud computing technologies. It
provides significant storage, computing, communication, and management capabilities at
the edge. Multi-access edge computing has a remarkable capability to perform collaborative
radio signal processing (CRSP) and collaborative radio resource management (CRRM) in
real time for user equipment (UE) that is located nearby. On the other hand, C-RAN utilizes
centralized signal processing and resource allocation to meet user demand efficiently [5].
Therefore, the MEC network concept has great potential in meeting diverse demands,
especially in artificial intelligence (AI)-based future wireless networks [7]. Offloading
efficient computations is a promising strategy to reduce network energy consumption and
latency. In the context of computation offloading demand of IoT devices in MEC networks,
edge computing can play a significant role by executing the computing tasks at the edge
instead of sending the data to the remotely located cloud computing tier [8]. However, the
computation offloading becomes immensely challenging due to the limitation of embedded
computing resources of the edge access point (E-AP). Moreover, the computation offloading
problem becomes intractable due to its stochastic nature. It is infeasible to tackle this
problem with the old-fashioned algorithm, which takes a long time, unavoidably generates
a delay, and consumes more energy [9].

In the past few years, the DRL (deep reinforcement learning) algorithm, a form of
single-agent artificial intelligence, has garnered significant interest from the academic and
industrial sectors. This is primarily due to its exceptional ability to control and solve
highly complex problems [10,11]. In addition, the DRL method has been widely used for
intelligent decisions on computational offloading and allocating resources in IoT networks.
However, next-generation IoT networks are more decentralized, and the controller can
make the decision in a decentralized manner to enhance the throughput while minimizing
energy in these future wireless communication networks [12,13].

In this article, we investigate a computational offloading and resource allocation
technique based on the asynchronous advantage actor-critic (A3C) algorithm. Each E-AP
decides the suitable location for offloading the computational tasks in a distributed manner
without the knowledge of global information of the network other than the surrounding
E-APs. The A3C in DRL is a state-of-the-art technique that was developed based on the
idea of multiple agents learning the task in a distributed manner and then being able to
update the global policy asynchronously for performing the best action [11,14]. In A3C,
the agent learns the stochastic policy rather than the deterministic policy (Q-Table), which
makes it more robust than other asynchronous algorithms. Owing to the advantages of the
MECNs and motivated by the parallel computing notion of A3C, in this article, we examine
a multi-agent-based multi-layer computational offloading and resource allocation strategy
for attaining energy efficiency in mobile edge computing networks (MECNs).

1.1. Related Work

Recently, researchers have focused on reducing delay and energy consumption through
computational offloading and resource allocation techniques. In [11], the authors specifi-
cally examined how fog and cloud computing can work together to minimize service delay
for IoT devices. To accomplish this, they optimized computational offloading, computing
resource allocation, radio bandwidth allocation, and transmit power assignment, in a
cloud/fog computing system. The objective was to reduce the weighted total of delay and
energy consumption, and the task was described as a mixed-integer non-linear program-
ming problem. The researchers used a sub-optimal approach with minimal complexity to
address this problem, as described in [11,15]. To accelerate the performance of offloading,
the learning-based offloading strategy goes one step ahead. A reinforcement learning-based

Electronics 2023, 12, 4605 3 of 20

computing offloading strategy was investigated in [1,2], and [16] achieved a significant
performance gain in IoT applications. In [17], the author analyzed a multi-user, multi-edge
node computational offloading issue constrained by the availability of computing resources.
Subsequently, a model-free reinforcement learning offloading method was applied to the
time-varying channel information and CPU cycles to learn the long-term offloading ap-
proaches and enhance their utility. Due to the dimensionality curse and the limitations
of Q-learning, the DRL method has been increasingly applied to huge state-space-based
complex control issues.

Deep reinforcement learning (DRL) is investigated in [18] as a potential solution for
tackling network dynamics, resource diversity, and the integration of managing resources
with mode selection in mobile edge computing networks (MECNs). In [19], the authors
presented a joint optimization challenge, where they addressed mode selection, channel
assignment, power allocation, and discrete phase shift selection to optimize the average
sum data rate of device-to-device pairs. In [12], the authors explore using a DRL approach to
managing computation offloading and multi-user scheduling in internet of things (IoT) edge
computing systems. The aim of this research was to reduce the overall delay and power
consumption, taking into account the unpredictable arrival of data traffic, by optimizing
the weighted sum of these two factors over an extended period of time. Similarly, in [20]
employs an actor-critic DRL strategy to handle content caching, compute offloading, and
radio resource allocation difficulties in edge-enabled IoT systems. They offer a combined
optimization method for the edge-enabled IoT network to decrease energy usage and
end-to-end delay. Moreover, in [21], the authors proposed a deep Q-network-based power
allocation method for NOMA-enabled network devices to improve energy efficiency and
reduce power consumption. They examined wireless network delays and dynamic energy-
efficient resource allocation, optimizing the system’s energy efficiency while meeting
delay constraints.

The authors proposed a strategy in [11,22] for offloading computation tasks in mobile
edge computing (MEC) networks by utilizing a double deep Q-network-based approach
that considers the time-varying network dynamics. Their approach describes the computa-
tional offloading policy as a Markov chain of decisions with the objective of maximizing
long-term utility. Another approach, i.e., deep reinforcement learning-based online of-
floading (DROO), is studied in [23] for precise offloading decisions and wireless resource
allocations under the time-varying conditions of a wireless channel. DROO uses a deep
neural network as a scalable method for advanced learning. "Several studies have explored
deep reinforcement learning for intelligent resource allocation and management, such as
in [23], where a DRL-based communication link scheduling algorithm is explored for a
cache-enabled opportunistic interference alignment wireless network. A DNN with multi-
ple convolutional layers is utilized to represent the state, and features are extracted from a
high-dimensional input containing CSI and cache states."

The challenge lies in finding the optimal offloading and resource allocation decisions,
often formulated as a mixed-integer non-linear programming (MINLP) problem, which is
NP-hard, in general [24]. Different approaches have been proposed to solve this problem,
such as differentiable optimization techniques, metaheuristic algorithms, and DRL methods.
Differentiable optimization techniques use gradient-based methods to find the optimal
solution. However, they require the objective function and constraints to be differentiable,
which may not be the case for some MEC scenarios [25]. Metaheuristic algorithms are
stochastic optimization methods that explore the search space using various operators, such
as mutation, crossover, and selection. They can handle complex and non-linear problems
but may suffer from slow convergence and high computational complexity [26,27].

Most existing works mainly focus on dual-layer computation offloading. However,
the demand for computation offloading is rapidly increasing in the connected IoT domain.
Therefore, this paper evaluated the multi-layer computation offloading scheme in MECNs
to fill the gap. Furthermore, to suppress the energy and delay, a state-of-the-art DRL-A3C
multi-agent-based learning approach was exploited in this work. The A3C algorithm

Electronics 2023, 12, 4605 4 of 20

leverages a collaborative setup involving a global network and multiple agents, making
it an advanced tool for real-time learning and complex problem-solving. Particularly in
scenarios involving the non-convex MINLFP problem in dynamic and dense wireless
environments, the A3C algorithm demonstrates its suitability and practicality [28].

1.2. Contribution and Organization

The following is a summary of the principal contributions of this study:

• MECNs are currently exploring a problem related to energy optimization using DRL,
which involves selecting the appropriate mode and allocating radio resources. This
optimization problem considers various constraints, such as limited computing and
radio resources, and quality-of-service requirements for individual user equipment
(UE) in a constantly changing wireless environment;

• In order to minimize energy consumption in MECNs, a joint optimization method
for mode selection, radio resource allocation, and distributed computing resource
allocation is proposed. We modeled the mode selection and resource allocation
problem under the Markov decision process (MDP) problem. Due to a large amount of
system states and activities in our problem, we used the DRL approach, which employs
a DNN as a function approximator to predict value functions. We implemented the
fixed target network and experience replay technique to ensure a stable training
process. In order to allocate the optimal number of computing resources, we utilized
the greedy algorithm;

• Extensive simulation results demonstrate that the proposed DRL-based offloading
and radio resource allocation mechanism can achieve a stable state very quickly and
performs well in terms of energy efficiency in MECNs, while computing resource
allocation is handled separately with a greedy algorithm. The proposed approach
demonstrates better performance when compared to Q-learning, fixed and random
approaches, and partial resource allocation schemes.

The article is organized as follows. The system model is described in Section 2, while
Section 3 presents the analytical formulation of the energy optimization problem. Section 4
offers the DRL-based computing offloading policy. The simulation results are presented
in Section 5, which validates the performance improvement of the proposed DRL-based
computing offloading strategy. Finally, the paper is concluded in Section 6.

2. System Model

The suggested system architecture for resource allocation and compute offloading
in uplink E-APs is shown in Figure 1. The network comprises a collection of E-APs
L = {1, 2, . . . , L} and the number pieces of UE K = {1, 2, . . . , K}. We assume that each
E-AP has the storage capacity Sl , which can store the maximum amount of data, including
libraries and databases [14]. All the notations used in the system model are listed in Table 1.

We consider there to be three shared environments, each encompassing a maximum of
three E-APs. The E-AP is allocated with the best channel capacity and maximum resources
and performs as an agent of its environment; the other two E-APs work as assistive E-APs.
In the proposed model, three scenarios are considered based on the user’s demand. Shared
environment 1 illustrates that if the assistive E-APs are capable of satisfying the users’
demand within the tolerable delay δmax, UE will be served by the assistive E-APs where
the agent E-AP is responsible for allocating the optimal resources and selecting the suitable
E-AP based on user demand. According to shared environment 2, all the E-APs participate
in executing the computation tasks where the agent distributes the UE among them. In
shared environment 3, the agent E-AP is preferred to accomplish the computation since
it has superior computing resources and channel capacity than the assistive E-AP. The
proposed model considers two types of IoT devices. UE that has processing and cache
capacities is considered to be smart user equipment (SUE), i.e., smartphones or laptops.

Electronics 2023, 12, 4605 5 of 20

Content Servers

BBU

CP

Fronthaul

...

E-AP-Agent

...

BBU

Policy NN

Shared Env-1

Core Network

Assistive-E-AP

GUE

SUE

GUE

SUE
SUE

Shared Env-2Shared Env-3

Figure 1. MECNs with deep reinforcement learning (DRL) for computation offloading.

Table 1. List of Notations.

Symbol Definition

A3C Advanced Asynchronous Advantage Actor-Critic
AI Artificial Intelligence
DRL Deep Reinforcement Learning
MECNs Mobile Edge Computing Networks
CP Cloud Processor
CRRM Collaborative Radio Resource Management
CRSP Collaborative Radio Signal Processing
E-AP Edge Access Point
SUE Smart User Equipment
CSI Channel State Information
GUE General User Equipment
sk transmitted signal vector
pk,l the transmitting power from user k to E-AP l
hH

k,l the channel gain between user k to E-AP l
sm

k available mode for user k
γmin the lower bound of QoS for user k
Rk maximum achievable transmission rate
tmax
k tolerable maximum latency for the task completion

Mk task of user k
Rk,l transmission rate between user k to E-AP l
Rk,j transmission rate between user k to RRH j
fl,k the allocated computing resources of E-AP l to user k
ωl energy consumption for per CPU cycle at E-AP l
s state in the environment
a the agent action
ξ the discount factor
r reward obtained from appropriate action
(s, a)t action-state pair for every time t cycle
Q∗(st, at) optimal Q-function at time t
r(s, a) the reward obtained from the current action state pair
α the learning rate of Q-learning
Li(ωi) The loss function in which ω represents the parameter of the neural network
E Expected outcome

On the other hand, UE without processing and cache capacities is regarded as general
user equipment (GUE), which includes sensors and industrial monitoring devices. In the
context of computation offloading, UE sends the offloading request to the closest E-AP.

Electronics 2023, 12, 4605 6 of 20

After receiving a service request from the SUE, the agent rigorously analyzes the task
to take the best possible action. If the task is suitable for execution by the SUE with its
embedded local resources, it will be responsible for executing it. In contrast, if the task is
beyond the SUE’s processing capacity, the task will be completed at the edge through an
individual or group of E-APs. Despite the joint processing of E-APs, if the request cannot
be finished, then the cloud computing zone will be accountable for tackling it by default.
On the other hand, the GUE directly offloads its computation tasks in the edge or cloud
computing zone based on the controller’s decision. We assume that each piece of UE and
E-AP has a single antenna. We consider that the global actor-critic network is located in the
cloud tier, and each internal agent (worker) is located at the edge with the same parameter
of the global network. The proposed system architecture rigorously considers the path loss,
shadowing, and fast-fading model.

2.1. Task Model

We assume that each piece of UE k has the computation task at time slot
t as φt

k = {C
t
k, Mt

k, tmax
k }, which can be executed on the smart UE (SUE) by employing

local computing resources or offloading either to the E-AP or cloud computing tier to
accomplish the computation. Ct

k denotes the required computing resources (total number
of CPU cycles) to accomplish the computations task φt

k, Mt
k is the size of input data for

computing φt
k including the input parameters and program codes, and tmax

k represents the
tolerable maximum latency for the task completion. Furthermore, we assume that the task
of each UE k will be intact and impossible to break into partitions. As a result, each request
will be executed on only one layer. Hereafter, the task execution decision can be described
as Sm

k ∈ {0, 1} where Sm
k = 1 shows how the task will either be carried out locally by the

SUE, at the edge using the E-AP, or on the cloud computing tier.

2.2. Cache Model

The primary objective of this work was to serve the rigorous computation demand in
the vicinity of the UE by caching the computation-intensive services. The service is consid-
ered as the abstraction of applications, namely, video streaming, social gaming, navigation,
and AR and VR, hosted by the E-APs or cloud and requested by the UE. To run a specific
service, it is necessary to cache the related data, which includes required libraries and
databases, on the service provider (smart devices, E-APs, or cloud computing). We consider
each E-AP l to have the storage capacity Sl , which can be utilized to store the maximum
number of services [14]. We will assume that a set is denoted as Q, which encompasses
various computing services. These services are indexed using the set Q = 1, 2, . . . , Q. At
the time slot t, the controller E-AP l, which decides whether the service q ∈ Q should cache
or not, can be represented as the binary variable Ct

q,l ∈ {0, 1}. However, insufficient cache
storage capability limits the number of services at each E-AP l, which can be described as

∑
q∈Q

Ct
q,lsq ≤ Sl , ∀l, ∀t, (1)

where sq denotes the occupied storage space in E-AP l for caching the service q and the
maximum storage capacity of E-APl is represented by Sl . Since the services considered are
stored distributively among the E-APs in the shared environment, we strictly follow the
non-duplication policy as follows:

∑
l∈n

∑
q∈Q

Ct
q,lsq ≤ 1, ∀q, ∀l, (2)

Electronics 2023, 12, 4605 7 of 20

where Ct
q,lsq ≤ 1 shows that only one service q can be cached in one E-AP l in the E-APs

group n.

c f ,l =

{
1 if the file f cached in E-AP l
0 otherwise

(3)

2.3. Communication Model

Let us assume the SUE k cannot accomplish the computation task φk with the limited
embedded resources, or the GUE needs to offload the tasks for computation. In this context,
the UE must offload their tasks to either the E-AP or CP tier. Subsequently, the UE denoted
as k transmits its service request to the closest E-AP, identified as l. The signal originating
from the UE k when received at the E-AP l can be mathematically represented as follows:

yk,l = hH
k,l pk,lsk + ∑

i 6=k,i∈K
hH

k,l pi,lsi + nl , ∀k, l, (4)

Here, the hH
k,l represents the channel gain between UE k and E-AP l, where the path

loss, shadowing, and fast fading are considered. The transmission power for the uplink of
the users i and k can be represented by pi,l and pk,l , respectively. The received Gaussian
noise at the E-AP l is represented by nl , and it follows a distribution of (0, σ2

i). Moreover,
the transmitted signal vector is represented by sk, which essentially refers to the message
from the user k [29].

The proposed model for computation offloading and resource allocation, which utilizes
the A3C approach, dramatically relies on the signal-to-interference-plus-noise ratio (SINR).
This metric plays a vital role in assessing the channel capacity and ensuring the quality of
services (QoS). Specifically, the SINR for the E-AP l originating from the user k is calculated
using the following formula:

SINRk,l =
|hH

k,l |2 pk,l

∑i 6=k |hH
i,l |

2
pi,l + σ2

l

, ∀k, l, (5)

where pk,l stands for the transmission power employed between the user k and E-AP l.
It is worth highlighting that the transmit power pk,l might not remain uniform across
all users, as variations can occur based on factors such as channel conditions and the
power constraints imposed by the E-APs. We define γmin as the target SINR to ensure
seamless communication in our model. Consequently, for choosing the channel edge,
the threshold γmin must be satisfied. The appropriate transmission rate also propels the
system to guarantee the QoS and reduce the transmission or communication delay. Taking
this into consideration and following the Shannon channel capacity theory, the attainable
transmission rate in the edge can be characterized as:

Rk,l = W log2(1 + γmin), (6)

2.4. Computation Model

In the proposed system architecture, two sorts of delays are rigorously considered:
computation and transmission delays. The processing of UE’s tasks k in several tiers, such
as the SUE, the E-AP, and the cloud computing zone, causes the computation delay. On
the other hand, the fronthaul-based uploading of jobs Mk from the UE to the cloud or
from the UE to the edge results in transmission latency. For downloading the computed
data, the system also produces a delay. The following sub-sections offer a comprehensive
breakdown of the delays incurred.

2.4.1. Local Execution

Based on the decision (slocal
k = 1) of the agent l, the SUE k performs the computation

locally, where the computation time depends on the implanted resources of the SUE. As-

Electronics 2023, 12, 4605 8 of 20

sume for the moment that f local
k represents the SUE’s computing power, which is evaluated

regarding the count of CPU cycles executed per second [1,2]. 0 ≤ δk ≤ tmax
k is the maximum

allowable computation time. Therefore, the local computation delay can be expressed
as follows:

Dlocal
k =

Ck

f local
k

, (7)

where Dlocal
k is the processing delay for accomplishing the computing tasks φk and Ck

represents the total required CPU cycle.

Elocal
k = ζkCk (8)

The coefficient ζk represents the energy consumption per CPU cycle and depends on
the UE’s chip architecture. In this study, we set ζk equal to 10−27 times the square of the
local frequency, based on the research presented in [30].

2.4.2. Edge Execution

We assume that, due to the limited resources, the SUE k is not able to accomplish
the computing task within the time frame of tmax

k , whereas the GUE needs to offload the
tasks for computation. In both cases, the agent l rigorously analyzes the task and takes
the initiative to execute the task at the edge (sedge

k = 1) aiming to achieve extremely low
latency. Besides the mode selection, the agent l is also accountable for choosing the optimal
E-AP based on the UE demand. In the case of offloading the task to the edge, the total
delay specifically involves the computation delay and uplink transmission delay [1]. The
cumulative latency experienced at the edge is expressed as follows:

Dedge
k =

Mk
Rk,l

+
Ck

f edge
l,k

, (9)

where f edge
l,k is the amount of computation resources that the E-AP l assigns to UE k and

Rk,l stands for the attainable transmission rate of UE k for accessing the E-AP l. The
corresponding energy consumption due to transmission is expressed as:

Eedge
k = pk,l

Mk
Rk,l

(10)

2.4.3. Cloud Execution

Since the edge node operates within the constraints of limited resources within the
E-RAN [5,7]. In some cases, the computational requirements of UE k goes beyond the
computation resources (f edge

l,k) of E-AP l. Therefore, to tackle the computation demand, the
agent l selects the cloud tier (scloud

k = 1), and the UE k offloads its task through C-RAN
mode. Generally, the delay associated with offloading to the cloud tier encompasses both
an uploading delay and a processing delay. This can be formulated as follows:

Dcloud
k =

Mk

∑j∈J Rk,j
+

Mk

∑j∈J Rj,CP
+

Ck

f cloud
CP,k

, (11)

where Rk,j signifies the achievable transmission rate from the UE k to RRH j and Rj,CP

represents the transmission rate from RRH j to the cloud processor CP. f cloud
CP,k illustrates

that the CP allocates f amount of computing resources to the UE k. It is important to note
that in our work, the volume of data uploaded is notably larger than that of processed
data. Since the RRH is near the UE, the downloading delay from edge nodes to the UE is
negligible. However, given that the cloud server is positioned at a considerable distance
and is connected through fiber with the core networks [1], the downloading delay from the

Electronics 2023, 12, 4605 9 of 20

CP to RRH is significantly non-negligible in this E-RAN system. The total offloading delay
for the cloud tier can be expressed as:

Dcloud
k =

Mk

∑j∈J Rk,j
+

Mk

∑j∈J Rj,CP
+

Ck

f cloud
CP,k

+
Mprocessed

k
∑j∈J RCP,j

, (12)

where Mprocessed
k is the output data after processing at the cloud servers. The corresponding

energy consumption due to transmission is expressed as:

ECloud
k = pk,j

(
Mk

∑j∈J Rk,j
+

Mk

∑j∈J Rj,CP

)
(13)

It is worth mentioning that each piece of UE k can choose a single mode to accomplish
their computation demand. In this condition, the computation will be performed at the local
computation tier (SUE), cloud, or edge computing tier. The overall energy consumption
conditions can be represented as follows:

Eservice
k = slocal

k Elocal
k + sedge

k Eedge
k + scloud

k Ecloud
k , (14)

where slocal
k + sedge

k + scloud
k = 1 and slocal

k , sedge
k , scloud

k ∈ {0, 1}; if slocal
k = 1 the task will be

executed by the SUE by itself. If sedge
k = 1, the computation process will be accomplished at

the edge tier. On the other hand, if scloud
k = 1, the computation tasks will be executed at the

cloud computing zone. Furthermore, condition slocal
k + sedge

k + scloud
k = 1 strictly denotes

that the user k can opt for only one mode based on the computation demand.

3. Problem Statement

In this section, we formulate the optimization problem for computation offloading
and resource allocation in mobile edge computing networks. The primary objective of this
problem is to minimize the total energy consumption across the system while simultane-
ously achieving extremely low latency. This is achieved by optimizing the computation
offloading strategy for each user sm

k , determining the computation resource allocation at the
edge fl,k, and managing the radio resource allocation pk while adhering to the maximum
delay tolerance set for each task of the IoT device tmax

k . The problem statement is outlined
as follows:

min
{sm

k , fl,k ,pk}
Eservice

k

s.t. C1 :sm
k ∈ {0, 1}, k ∈ K, m ∈ {local, edge, cloud},

C2 :slocal
k + sedge

k + scloud
k ≤ 1, k ∈ K,

C3 :∑K
k=1sedge

k fl,k ≤ f max
l , ∀k ∈ K,

C4 :sedge
k SINRk,l ≥ γmin, ∀k ∈ K,

C5 :scloud
k SINRk,j ≥ γmin, ∀k ∈ K,

C6 : ∑k sedge
k pk,l ≤ Pmax, k ∈ K,

C7 : ∑k scloud
k pk,j ≤ Pmax, k ∈ K,

C8 :Dservice
k ≤ tmax

k , k ∈ K (15)

where the constraint (15) implies that the user k is allowed to choose only one mode
at a time. C3 denotes that the frequency of each E-AP fl is constrained by maximum
frequency f max

l , which is the number of users that can be scheduled to each E-AP l. C4
ensures the QoS requirements for better system performance by satisfying γmin, which is
considered as a lower bound. The computing power consumption at the edge cannot go

Electronics 2023, 12, 4605 10 of 20

beyond the allocated power Ptotal , which is reflected by C6. Similarly, the C7 shows the
upper bound of uplink transmission to be Pmax allocated power. The objective variables
of the optimization problem shown in (15) consist of pk, fl,k, and sm

k , which are power
allocation, computing resource allocation, and mode selection, respectively. The traditional
approaches are incapable of solving the non-convex mixed-integer non-linear fractional
programming problem (MINLFP) as presented in (15). It is especially challenging regarding
the dynamic and dense environment of wireless networks. Due to the non-trivial nature
of the problem due to the high demand for energy minimization, a distributed learning-
based A3C scheme is advocated to resolve (15). A3C is a cutting-edge scheme based on
distributed learning with multiple independent agents with their weights. They interact
in a complex environment with multiple copies of the environment in parallel toward
achieving a common goal [31].

4. Distributed Computation Offloading and Resource Allocation

Due to the continuous performance of single-agent-based centralized deep reinforce-
ment learning, a large community has been focusing on extending the single-agent-based
solution to a multi-agent-based fully distributed learning framework to make the system
more robust [32]. Consequently, Mnih et al. proposed an A3C algorithm, which is sim-
pler, faster, more robust, and able to achieve much better scores under the light of DRL
tasks [33]. Unlike the single agent DQN, A3C distributes the learning tasks to several
agents, where each agent asynchronously updates a deep neural network (DNN) based
on its independent learning experience. The most significant reason behind the extraordi-
nary performance of A3C is the incorporation of multiple agents that experience diverse
situations and share their experience with a global network (global model) connected to
all the agents. The global model updates using a gradient, which is collected from each
agent, and then shares its most recent global weights with all agents [34]. Furthermore,
the A3C exploits the standard actor-critic learning asynchronously. In the proposed study,
we developed the computation offloading and resource allocation scheme where each
agent E-AP distributively selects precise offloading and allocates an optimal amount of
computation and radio resources.

4.1. Computation Offloading is Modeled as a DRL Problem

In DRL, an agent engages with the environment and performs actions to optimize
the reward [35]. To achieve this, the state, action space, and reward function are defined
as follows:

4.1.1. State Space

The system state constitutes the factors such as the available offloading mode user k,
the maximum transmission rate, and the available distributed computing resources at an
edge. Therefore, the system state is represented as st = {sm

k , f k
1 , f k

2 , . . . , f k
L, Rk}, where sm

k
represents the cloud and edge computing mode for the user k. The maximum achievable
transmission rate, Rk, is dominated by the E-AP and cloud modes’ power resources. Dis-
tributed computing resources ∑l∈L fl,k can be aggregated to meet the computation demand
for the user k [36].

4.1.2. Action Space

Each agent performs a sequential action in the given environment based on the
condition. The A3C is suitable for both the continuous and discrete state space and action
space [33,37] . Furthermore, since each agent learns from its piece of the environment, we
assume that the system will be faster.

Theoretically, the agent is capable of performing numerous actions. However, for
performing a significant number of actions, the system requires enormous computation,
which produces a tremendous amount of delay with high usage of energy, decreasing the
system’s performance. Therefore, to avoid the computation complexity, it was considered

Electronics 2023, 12, 4605 11 of 20

that, based on the current state st, the agent performs the action at including the mode
selection and power allocation for each time slot t ∈ T. The action space is represented
as at = {sm

k , pk}. Based on the offloading decision, the controller allocates the power for
the E-AP pk,l . Furthermore, in each decision epoch t, the controller rigorously considers
the computing resources ∑l∈L fl,k at the edge, which are allocated through the greedy
algorithm. In each action, the controller needs to satisfy the constraints.

4.1.3. Reward Function

The goal of a reward is to provide feedback to an RL model regarding the performance
of a previous action. Therefore, it is essential to define the reward appropriately for the
proper learning process. The reward function defined precisely and effectively helps to
find the best action policy [35]. Efficient computation offloading can help address the
energy optimization problem, which is closely related to the proposed reward function.
The immediate reward is considered as the negative sum cost of energy. Precise mode
selection, optimal computing resource allocation, and power allocation are crucial factors
that significantly influence the immediate reward rt. As a result, the immediate reward can
be expressed as:

rt = −
(

Eservice
k

)
(16)

We consider the long-term accumulative reward as energy minimizing at a more
extended period of time T. The controller performs the best actions using exploration and
exploiting all possibilities to maximize future accumulative rewards. Assuming a discount
factor of ξ ∈ [0, 1], the long-term cumulative reward Rt can be defined as Rt = ∑T

t=0 ξtrt.
The ξ is the indicator of future reward, which will influence the future reward based on
the current mode selection; when the ξ value is lower, it will provide the priority for
accumulating the immediate reward. Since our ultimate object is to minimize the energy,
the reward is correlated with the negative value of the energy. Afterward, we endeavor to
maximize the reward in order to minimize the energy.

4.2. Distributed Computing Resource Allocation

To overcome the resource limitation of E-APs, we analyzed the distributed computing
scheme, where the available E-APs participate in executing the computing tasks and tackle
the immense computation demand. In the dynamic computation offloading process, we
exploited the greedy algorithm to allocate computing resources at the edge to avoid the
rigorous time consumption of DRL training. The distributed computing resource allocation
problem is considered a binary problem where the number of computing resources can
overcome this challenge. Therefore, the simplified form of the original computing resource
allocation problem can be stated as

min
{ fl,k}

pl,k
Ck

∑L
l=1 fl,k

,

s.t. (15),

Ei,j ≤ δE,

Eedge
k ≤ ϕE (17)

where the constraint (17) illustrates that the energy between the assistive E-AP and primary
E-AP must be less than δE and the computation energy at the edge cannot go beyond
the threshold delay of ϕE, as depicted by (17). In Algorithm 1, we further elaborate on
our concept of maximizing the processing capacity at the edge and how to lessen the
intervention of cloud computing in serving the computing demand. At steps 8 and 9, we
calculate the requested computing task of users K and available computing resources at the
edge, respectively. Hereafter, the computation energy is calculated according to (9), where
the available computing resources are distributed to satisfy the computing demand. At
steps 11 to 20, we allocate the computing resources and evaluate the energy at the edge

Electronics 2023, 12, 4605 12 of 20

based on Ei,j ≤ δE and Eedge
k ≤ ϕE [38]. We accept the result and consider the edge to be a

suitable mode for offloading the task of the user k. Finally, the algorithm sends the edge
status to the DQN for evaluation and future decisions.

Algorithm 1 A3C Algorithm for Distributed Computation

1: Input:
2: Set of users: K = {1, 2, 3, . . . , K}
3: Set of E-APs: L = {1, 2, 3, . . . , L}
4: Generated task for each user: Mk
5: Computing capacity of each E-AP: fl
6: Tolerable computing energy is set to ϕE
7: Tolerable transmission energy from primary E-AP i to assistive E-AP j is set to δE;
8: Determine the total number of tasks requested by user K as ∑K

k=1 Mk;
9: Calculate the total available computing resources at the edge as ∑L

l=1 fl
10: Output:
11: The selected offloading mode for each user’s tasks that meet the specified energy and

resource constraints
12: Iteration:
13: for user k: K do
14: while fl ≤ ∑L

l=1 fl do
15: if Ei,j ≤ δE then
16: Select the E-AP j as the suitable assistive E-AP for offloading the task of k
17: Calculate computing energy at the edge according to (10)
18: if Eedge

k ≤ ϕE then
19: break
20: Select edge is the suitable mode for offloading the task of k
21: end if
22: end if
23: fl = fl + 1
24: end while
25: end for
26: Return result

4.3. DRL-Based Offloading

Hence, we provide the offloading technique based on the DRL to improve computing
performance, where the DRL functions as an agent, known as a deep Q-network, which
combines the traditional RL and DNN to speed up the learning process [4]. For each
action in DRL, we have a separate output. State representation is used as the only input
to the neural network. DRL is renowned for its ability to reduce the complexity of a
system by calculating the Q-values for all conceivable actions for a given state with a
single forward pass [3,4]. In addition, better implementation is achieved by utilizing the
replay memory and intrinsic generalization capabilities introduced by NN DRL to the
minimum interaction with the complex environment. Q-learning in RL often results in
an impractical situation. An approximator is used in DRL to estimate the action-value
function Q(s, a; ω) ≈ Q∗(s, a)), which notably enhances the system’s performance [4]. In
Algorithm 2, the training procedure and offloading mechanism are displayed.

Electronics 2023, 12, 4605 13 of 20

Algorithm 2 DRL Algorithm for Computing Offloading in E-RAN

1: Input:
2: set random weights ω for the Q-network Q(s, a) initialization
3: build a weighted ω̂ target Q-network Q̂(s, a)
4: Assign a capacity of ND to the replay memory D
5: Determine the mini-batch size M for training network
6: Establish the maximal training session Emax
7: Output:
8: Trained Q-network (Q(s, a))
9: Begin Iteration:

10: for each episode within Emax do
11: Establishing the standard parameters of simulation for the computational offloading

environment
12: assign the starting state s0 = [smode

k , f k
l , Rk, Mk]

13: for each decision step t = 1 : T − 1 do
14: Establish a random value xx between 0 and 1
15: if x ≤ ε then
16: Randomly select action at for mode selection and power allocation as [sm

k , pk]
17: if sm

k == edge then
18: Run algorithm (1) and allocate optimal computing resources to the user k
19: else if sm

k == cloud then
20: Run algorithm (1) and allocate optimal computing resources to the user k
21: else
22: Execute the task with local resources
23: end if
24: else:
25: Take the best possible action at
26: at = arg max

at∈A
Q(st, at; ω) for selecting mode and allocating power as [sm

k , pk]

27: end if
28: Offload the task Mk of k-th user
29: Perform action at and assess the system’s energy
30: Examine the reward rt based on the formulated problem described in (16).
31: Put the reward rt along with st, st+1, and at as an interaction sample

(st, at, rt, st+1) in the replay memory D.
32: From the replay memory D, randomly sample the mini-batch with the transitions

(st, at, rt, st+1) of size M.
33: By using mini-batch descent gradient on (rt + ξ max

a′∈A
Q̂(st+1, a′; ω̂) −Q(st+1, at; ω))2

with ω, to train the Q-network.
34: Update the target Q-network with parameters ω to ω̂ periodically.
35: end for
36: end for

The input for the deep neural network (DNN) comprises various parameters related
to the current state of the user k, including available communication modes, radio and
computing resources at the edge, and the size of the offloading work [sm

k , f k
l , Rk, Mk]. This

information is depicted in both Figure 2 and Algorithm 2. The output formulates the
Q(s, a, ω) with the weight of ω to achieve a more precise estimation based on all possible
actions. To establish a balance between exploitation and investigation, the deployed IoT
devices choose the offloading policy at ∈ A based on the DNN result, which was received
via a ε-greedy policy. Finally, the agent takes action to select the offloading mode sm

k and
assigns the adequate amount of power pk, and offloads the task Mk. When the agent selects
the edge mode sedge

k , the system goes through Algorithm 1 and allocates an optimal number
of computational resources to meet the computing requirements. If not, the request is
processed using C-RAN mode at the cloud computing layer. The system transitions to a

Electronics 2023, 12, 4605 14 of 20

new state st+1 upon completion of an action at. In the meantime, the agent computes the
reward rt according to (16) for delay reduction based on the chosen modes. This transition
(st, at, rt, st + 1) is stored as an experience in the replay memory D. The DQN will be
updated at each iteration using a randomly picked batch of M = 32 elements. The DQN
will undergo extensive training to achieve the target value, which will involve performing
gradient descent and minimizing the loss. The following equation can be used to describe
the loss function [39]:

L(ω) = Es,a,r,s′

[
(rt + ξ max

a′∈A
Q̂(st+1, a′; ω̂)−Q(st+1, at; ω))2

]
(18)

The target network [39] is denoted by (rt + ξ max
a′∈A

Q̂(st+1, a′; ω̂) in the above equation.

The agent will periodically update the network by adjusting the weights of the DQN to
match those of the target DQN.

=- Energy consumption

Figure 2. DRL-based learning process of individual agent.

5. Simulations Results and Discussion

This section aims to assess the effectiveness of the suggested DRL approach for si-
multaneous computation offloading along with resource allocation in IoT devices, as it
was designed to minimize energy consumption in E-RAN. Furthermore, the greedy al-
gorithm was also evaluated as a precursor for computing resource allocation through
numerical upshots.

For the simulation platform, TensorFlow 1.11.0 and Python 3.6 were utilized, with an
8 CPU core i5 @ 1.6 GHz along with Intel UHD graphics 620. The system under evaluation
assumes a maximum transmission power of 23dBm for each piece of user equipment
(UE) and a deployment area of 400 × 400 m, and the system performance was assessed
using 10 E-APs and 10 IoT devices. It was assumed that the path loss model is given by
128 + 37 ∗ log10(d) [40], where d is the distance between nodes. Additionally, the noise
power was −174 dBm and the system bandwidth was set to 20 MHz. The QoS demand for
both edge and cloud mode was regarded as min. Our computational model utilizes a fully
connected deep neural network (DNN) architecture. The (DNN) consists of four discrete
layers, namely, two hidden layers, an input layer, and a single output layer. This design
allows the network to process and transform input data through these layers to generate
the desired output. The first hidden layer consists of 64 neurons, while the second hidden
layer has 32 neurons. The ReLU is used as the activation function in the hidden layers. All
the necessary parameters of the simulation are listed in Table 2.

Electronics 2023, 12, 4605 15 of 20

Table 2. Experimental parameters.

Number of E-APs 10

Number of users (K) 10

Power noise (σ2) −174 dBm

Maximum transmit power 23 dBm

Bandwidth (W) of channel 20 MHz

Pathloss model 128 + 37 ∗ log10(distance) [40]

Experience replay buffer size ND 2000

Learning rate α 0.01

ε-greedy 0.9

Reward decay ξ 0.9 [29]

Mini-batch size M 32

The proposed scheme was evaluated against the following baseline schemes:

1. Random scheme: the random algorithm involves making choices or decisions without
considering any specific criteria;

2. Fixed scheme: The fixed algorithm follows pre-determined rules or fixed strategies
for decision-making. It was designed based on pre-defined guidelines and does not
adapt to changes in the environment or task requirements;

3. Q-learning scheme: The Q-learning allows dynamic cloud-edge selection. The sys-
tem learns via interactions, updating the Q-table to estimate rewards for actions in
different states;

4. DRL-based computation offloading and resource allocation scheme (DRL-CORA) [36]:
The DRL-CORA scheme employs a DQN scheme that enables the system to choose be-
tween cloud and edge computing modes dynamically. Through iterative interactions
with the environment, the system refines its neural network’s Q-values to approximate
anticipated rewards associated with diverse actions across varying states.

Figure 3 illustrates the correlation between the variation in offloading energy consump-
tion and the number of tasks in different modes. The jointly offloading mode dominated the
performance gain since the local, edge, and cloud modes execute the tasks simultaneously.
It can be observed from Figure 3 that, when compared to C-RAN and edge mode, the
jointly offloading mode minimized the energy consumption by approximately 39% and
42%, respectively. Moreover, the jointly offloading mode converged when the number
of tasks was 90, with much less energy consumption than the other modes. Due to the
controlled resources of E-RAN nodes, the energy was linearly increased at the edge. C-RAN
mode also showed poor performance because of long-distance and constrained fronthaul.

Figure 4 illustrates the comparison between the average energy consumption of our
suggested scheme and the benchmark scheme, as it relates to the varying number of
computation tasks. However, it is evident from Figure 4 that, as the number of computation
tasks increased, the energy consumption of all the schemes also increased. In addition, the
proposed strategy takes into account the advantages of local, edge, and cloud computing
in order to mitigate energy consumption. Additionally, it is worth noting that the proposed
technique had the lowest energy use across all computational activities. Moreover, the
proposed scheme started convergence when the number of tasks exceeded 90.

Electronics 2023, 12, 4605 16 of 20

0 20 40 60 80 100

Number of Tasks

0

1000

2000

3000

4000

5000

6000

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Jointly Offloaded

Edge Mode

C-RAN Mode

Figure 3. Evaluation of offloading energy consumption under different modes.

0 20 40 60 80 100

Number of Computation Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Proposed scheme

DRL-CORA

Fixed approach

Q-learning scheme

Random approach

Figure 4. The evaluation of computing energy versus number of computational tasks.

Figure 5 depicts the performance of the number of computing resources with the
offloading energy consumption. This analysis considers a scenario with 20 E-Aps with a
processing capacity of 1.5 GHz each. The proposed approach achieved the lowest energy
consumption from the schemes examined because of the DRL’s remarkable controlling
capabilities. Moreover, the DRL-CORA scheme exhibited superior performance compared
to both the Q-learning and fixed approaches. In addition, the Q-learning and fixed approach
saved nearly the same energy and showed almost the same trend in Figure 5. On the
other hand, the random approach acquired more energy due to its random decision and
exploitation behavior.

The energy consumption associated with tasks with varying completion time con-
straints in the application request is illustrated in Figure 6. As depicted in Figure 6, tasks
with more lenient completion time constraints resulted in lower energy consumption. The
graph indicates that, after a certain threshold, the time constraint results we extended
for a similar offloading energy consumption for all methods. This phenomenon can be
attributed to the less stringent task requirements and sufficient availability of resources,
resulting in similar task assignments across all methods. Therefore, the energy consump-
tion across different methods was highly similar. It is imperative to highlight that our
proposed scheme consistently outperformed the other methods, particularly across the
entirety of task completion time constraints. This superiority is particularly evident when
the completion deadline surpassed 20 ms, confirming our algorithm’s rapid convergence.
This further underscores the robustness and effectiveness of our proposed approach in
optimizing energy consumption.

Electronics 2023, 12, 4605 17 of 20

2 6 10 14 18 20

Number of E-APs *(f=1.5 GHz)

500

1000

1500

2000

2500

3000

3500

4000

4500

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Proposed scheme

DRL-CORA

Fixed approach

Q-learning scheme

Random approach

Figure 5. The evaluation of computing energy versus number of E-APs.

10 15 20 25 30

Task Completion deadline (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10,000

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Proposed scheme

DRL-CORA

Fixed approach

Q-learning scheme

Random approach

Figure 6. The evaluation of computing energy versus task completion deadline.

As illustrated in Figure 7, interference can also influence the offloading decision and
may be influenced by the decisions of other users. Figure 7 highlights the significance
of the active user count within the network. As the quantity of users inside the network
expanded, there was a corresponding increase in interference, leading to a reduction in
the signal-to-interference-plus-noise ratio (SINR) and subsequently a decline in the data
rate. This led to higher latency and energy consumption. Therefore, the proportion of local
users (not necessarily the exact quantity) also increased. Figure 7 depicts the comparison
conducted to examine the influence of interference. For a small number of users, the level of
interference was insignificant due to the lower level of interference imposed by others and,
therefore, it had no effect on the overall solution. As the quantity of users escalated, the
impact of interference became increasingly substantial and could not be ignored. Therefore,
considering an interference-free scenario can lead to incorrect decisions.Thus, our proposed
solution outperformed the other approaches for all numbers of users.

Electronics 2023, 12, 4605 18 of 20

5 15 25 35 45 50

Number of UEs

3000

4000

5000

6000

7000

8000

9000

10,000

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Proposed scheme

DRL-CORA

Fixed approach

Q-learning scheme

Random approach

Figure 7. Energy consumption over different numbers of UE.

6. Conclusions

This article presents an analysis of a technique that involves power allocation and
cache placement in order to achieve energy efficiency in mobile edge computing networks
(MECNs). The minimization of energy consumption is achieved by formulating the energy
optimization problem as a MINLFP (mixed integer non-linear fractional programming)
problem and subsequently representing it from the standpoint of a Markov decision process
(MDP). In order to address the issue at hand, we developed an advanced asynchronous
advantage actor-critic (A3C) approach that utilizes multiple agents. This strategy is em-
ployed for power allocation and content placement, with the objective of enabling a group
of mobile edge computing (MEC) nodes to collaboratively provide the required content at
the network edge. By doing so, the need for retrieving content from the faraway cloud is
reduced. More specifically, rather than retaining the content from a single e-NB, a cluster of
e-NB nodes distribute their content via high-speed connectivity to meet users’ demanding
content requirements. Through the comprehensive simulation results, we showed our
proposed method’s significance and performance efficiency. According to the results, the
proposed technique achieves an optimum solution and reduces energy usage by roughly
9%, 7%, and 14% compared to the Q-learning, fixed, and random techniques, respectively.

Author Contributions: Conceptualization: I.K., S.R., G.M.S.R., and X.T.; Methodology: I.K., S.R.,
R.K., and G.M.S.R.; Formal analysis: S.R., R.K., W.u.R., and G.M.S.R.; Investigation: I.K. and G.M.S.R.;
Writing—original draft: I.K.; Writing—review and editing: R.K. and W.u.R.; Visualization: I.K.;
Supervision: X.T.; Project administration: X.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61932005 and in part by the 111 Project of China under Grant B16006.

Data Availability Statement: The data is an integral part of an ongoing project, and, therefore, it
cannot be provided.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation offloading and resource allocation for cloud assisted mobile edge computing in

vehicular networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]
2. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-based computation offloading for IoT devices with energy

harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]
3. Zhu, H.; Cao, Y.; Wei, X.; Wang, W.; Jiang, T.; Jin, S. Caching transient data for Internet of Things: A deep reinforcement learning

approach. IEEE Internet Things J. 2018, 6, 2074–2083. [CrossRef]
4. Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 2016,

30, 46–53. [CrossRef]

http://doi.org/10.1109/TVT.2019.2917890
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1109/JIOT.2018.2882583
http://dx.doi.org/10.1109/MNET.2016.7513863

Electronics 2023, 12, 4605 19 of 20

5. Peng, M.; Zhang, K. Recent advances in fog radio access networks: Performance analysis and radio resource allocation. IEEE
Access 2016, 4, 5003–5009. [CrossRef]

6. Ceselli, A.; Premoli, M.; Secci, S. Mobile edge cloud network design optimization. IEEE/ACM Trans. Netw. 2017, 25, 1818–1831.
[CrossRef]

7. Zhao, Z.; Bu, S.; Zhao, T.; Yin, Z.; Peng, M.; Ding, Z.; Quek, T.Q. On the design of computation offloading in fog radio access
networks. IEEE Trans. Veh. Technol. 2019, 68, 7136–7149. [CrossRef]

8. Azizi, S.; Othman, M.; Khamfroush, H. DECO: A Deadline-Aware and Energy-Efficient Algorithm for Task Offloading in Mobile
Edge Computing. IEEE Syst. J. 2022, 17, 952–963. [CrossRef]

9. Mao, S.; Wu, J.; Liu, L.; Lan, D.; Taherkordi, A. Energy-efficient cooperative communication and computation for wireless
powered mobile-edge computing. IEEE Syst. J. 2020, 16, 287–298. [CrossRef]

10. Huang, J.; Wan, J.; Lv, B.; Ye, Q.; Chen, Y. Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in
Internet of Vehicles via Deep Reinforcement Learning. IEEE Syst. J. 2023, 17, 2500–2511. [CrossRef]

11. Sartoretti, G.; Paivine, W.; Shi, Y.; Wu, Y.; Choset, H. Distributed learning of decentralized control policies for articulated mobile
robots. IEEE Trans. Robot. 2019, 35, 1109–1122. [CrossRef]

12. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

13. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials
2017, 19, 1628–1656. [CrossRef]

14. Taya, A.; Nishio, T.; Morikura, M.; Yamamoto, K. Deep-reinforcement-learning-based distributed vehicle position controls for
coverage expansion in mmWave V2X. IEICE Trans. Commun. 2019, 102, 2054–2065 [CrossRef]

15. Wang, Z.; Li, M.; Zhao, L.; Zhou, H.; Wang, N. A3C-based Computation Offloading and Service Caching in Cloud-Edge
Computing Networks. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), New York, NY, USA, 2–5 May 2022; pp. 1–2.

16. Meng, F.; Chen, P.; Wu, L.; Cheng, J. Power allocation in multi-user cellular networks: Deep reinforcement learning approaches.
IEEE Trans. Wirel. Commun. 2020, 19, 6255–6267. [CrossRef]

17. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
18. Sun, Y.; Peng, M.; Mao, S. Deep reinforcement learning-based mode selection and resource management for green fog radio

access networks. IEEE Internet Things J. 2018, 6, 1960–1971. [CrossRef]
19. Guo, L.; Jia, J.; Chen, J.; Du, A.; Wang, X. Deep reinforcement learning empowered joint mode selection and resource allocation

for RIS-aided D2D communications. Neural Comput. Appl. 2023, 35, 18231–18249. [CrossRef]
20. Wang, Y.; Wang, K.; Huang, H.; Miyazaki, T.; Guo, S. Traffic and computation co-offloading with reinforcement learning in fog

computing for industrial applications. IEEE Trans. Ind. Inform. 2018, 15, 976–986. [CrossRef]
21. Chandra, K.R.; Borugadda, S. Multi Agent Deep Reinforcement learning with Deep Q-Network based energy efficiency and

resource allocation in NOMA wireless Systems. In Proceedings of the 2023 Second International Conference on Electrical,
Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India, 5–7 April 2023; pp. 1–8.

22. Babaeizadeh, M.; Frosio, I.; Tyree, S.; Clemons, J.; Kautz, J. Reinforcement learning through asynchronous advantage actor-critic
on a gpu. arXiv 2016, arXiv:1611.06256.

23. Zhang, J.; Hu, X.; Ning, Z.; Ngai, E.C.H.; Zhou, L.; Wei, J.; Cheng, J.; Hu, B. Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks. IEEE Internet Things J. 2017, 5, 2633–2645. [CrossRef]

24. Huynh, L.N.; Pham, Q.V.; Nguyen, T.D.; Hossain, M.D.; Park, J.H.; Huh, E.N. A study on computation offloading in mec systems
using whale optimization algorithm. In Proceedings of the 2020 14th International Conference on Ubiquitous Information
Management and Communication (IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–4.

25. Waqar, N.; Hassan, S.A.; Mahmood, A.; Dev, K.; Do, D.T.; Gidlund, M. Computation offloading and resource allocation in
MEC-enabled integrated aerial-terrestrial vehicular networks: A reinforcement learning approach. IEEE Trans. Intell. Transp. Syst.
2022, 23, 21478–21491. [CrossRef]

26. Zaman, S.K.u.; Jehangiri, A.I.; Maqsood, T.; Ahmad, Z.; Umar, A.I.; Shuja, J.; Alanazi, E.; Alasmary, W. Mobility-aware
computational offloading in mobile edge networks: A survey. Clust. Comput. 2021, 24, 2735–2756. [CrossRef]

27. He, W.; Wu, S.; Sun, J. An Effective Metaheuristic for Partial Offloading and Resource Allocation in Multi-Device Mobile Edge
Computing. In Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf
on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021; pp. 1419–1426.

28. Yuan, X.; Zhu, Y.; Zhao, Z.; Zheng, Y.; Pan, J.; Liu, D. An A3C-based joint optimization offloading and migration algorithm for
SD-WBANs. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

29. Rahman, G.S.; Peng, M.; Yan, S.; Dang, T. Learning based joint cache and power allocation in fog radio access networks. IEEE
Trans. Veh. Technol. 2020, 69, 4401–4411. [CrossRef]

30. Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud
clones. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2716–2720.

31. Tuli, S.; Ilager, S.; Ramamohanarao, K.; Buyya, R. Dynamic scheduling for stochastic edge-cloud computing environments using
a3c learning and residual recurrent neural networks. IEEE Trans. Mobile Comput. 2020, 21, 940–954. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2016.2603996
http://dx.doi.org/10.1109/TNET.2017.2652850
http://dx.doi.org/10.1109/TVT.2019.2919915
http://dx.doi.org/10.1109/JSYST.2022.3185011
http://dx.doi.org/10.1109/JSYST.2020.3020474
http://dx.doi.org/10.1109/JSYST.2023.3249217
http://dx.doi.org/10.1109/TRO.2019.2922493
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1587/transcom.2018EBP3299
http://dx.doi.org/10.1109/TWC.2020.3001736
http://dx.doi.org/10.1109/JIOT.2018.2871020
http://dx.doi.org/10.1007/s00521-023-08745-0
http://dx.doi.org/10.1109/TII.2018.2883991
http://dx.doi.org/10.1109/JIOT.2017.2786343
http://dx.doi.org/10.1109/TITS.2022.3179987
http://dx.doi.org/10.1007/s10586-021-03268-6
http://dx.doi.org/10.1109/TVT.2020.2975849
http://dx.doi.org/10.1109/TMC.2020.3017079

Electronics 2023, 12, 4605 20 of 20

32. Li, Y.; Qi, F.; Wang, Z.; Yu, X.; Shao, S. Distributed edge computing offloading algorithm based on deep reinforcement learning.
IEEE Access 2020, 8, 85204–85215. [CrossRef]

33. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24
June 2016; pp. 1928–1937.

34. Thar, K.; Oo, T.Z.; Tun, Y.K.; Kim, K.T.; Hong, C.S. A deep learning model generation framework for virtualized multi-access
edge cache management. IEEE Access 2019, 7, 62734–62749. [CrossRef]

35. Li, C.; Zhang, Y.; Gao, X.; Luo, Y. Energy-latency tradeoffs for edge caching and dynamic service migration based on DQN in
mobile edge computing. J. Parallel Distrib. Comput. 2022, 166, 15–31. [CrossRef]

36. Rahman, G.S.; Dang, T.; Ahmed, M. Deep reinforcement learning based computation offloading and resource allocation for
low-latency fog radio access networks. Intell. Converg. Netw. 2020, 1, 243–257. [CrossRef]

37. Fan, Z.; Xu, Y.; Kang, Y.; Luo, D. Air Combat Maneuver Decision Method Based on A3C Deep Reinforcement Learning. Machines
2022, 10, 1033. [CrossRef]

38. Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Khan, W.U. Task offloading and resource allocation for IoV using 5G
NR-V2X communication. IEEE Internet Things J. 2021, 9, 10397–10410. [CrossRef]

39. Khan, I.; Tao, X.; Rahman, G.S.; Rehman, W.U.; Salam, T. Advanced energy-efficient computation offloading using deep
reinforcement learning in MTC edge computing. IEEE Access 2020, 8, 82867–82875. [CrossRef]

40. Chen, Z.; Su, X. Computation offloading and resource allocation based on cell-free radio access network. In Proceedings of the
2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022;
Volume 6, pp. 1498–1502.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/ACCESS.2019.2916080
http://dx.doi.org/10.1016/j.jpdc.2022.03.001
http://dx.doi.org/10.23919/ICN.2020.0020
http://dx.doi.org/10.3390/machines10111033
http://dx.doi.org/10.1109/JIOT.2021.3121796
http://dx.doi.org/10.1109/ACCESS.2020.2991057

	Introduction
	Related Work
	Contribution and Organization

	System Model
	Task Model
	Cache Model
	Communication Model
	Computation Model
	Local Execution
	Edge Execution
	Cloud Execution

	Problem Statement
	Distributed Computation Offloading and Resource Allocation
	Computation Offloading is Modeled as a DRL Problem
	State Space
	Action Space
	Reward Function

	Distributed Computing Resource Allocation
	DRL-Based Offloading

	Simulations Results and Discussion
	Conclusions
	References

