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Abstract: This paper proposes a medium voltage direct current (MVDC) sensor power supply method
based on inductive power transfer (IPT). Given that MVDC distribution networks transmit power at
high voltages (several tens of kV), control through sensors is necessary to prevent exacerbating MVDC
distribution network accidents. Moreover, these high voltages in MVDC distribution networks mean
that high voltage insulation is required between the sensor and the distribution line and for any
power supply device electrically connected to the sensor. Therefore, this paper proposes a safe and
reliable power supply method using the principle of IPT to maintain a suitable insulation distance
between the distribution network and the current sensor supply line. After proposing and designing
a transmitter/receiver pad and IPT system by considering the current sensor specifications, a 50-W
experimental prototype is developed. The experiments demonstrated that the proposed IPT system
can resolve concerns about the breakdown of insulation between distribution networks and power
supply lines.

Keywords: medium voltage direct current (MVDC); inductive power transfer (IPT); application; safety

1. Introduction

Medium voltage direct current (MVDC) technology is a transmission and conversion
technology with a voltage level of 1.5–100 kV and a high-power transmission capacity
for intermediate connections between high voltage DC (HVDC) and low voltage DC
(LVDC) technologies applied to DC power transmission systems [1–3]. MVDC has been
regarded as an effective solution to the problem of unstable power supplies caused by the
expansion of renewable energy sources, DC demand for data centers, ESSs, and electric
vehicles [4,5]. Accordingly, extensive research has been conducted on transmitting and
distributing high voltages and power, as displayed in Figure 1. Furthermore, research on
the commercialization of MVDC is proceeding, mainly due to recent technological advances
in power semiconductor devices and real-time controllers [6–8].

Protective devices and accident detection circuits are required to prevent any increase
in the severity of grid accidents when operating MVDC distribution networks. Currently,
smart sensors and intelligent electronics (IEDs) detect and respond to power device failures by
measuring and analyzing voltage and current signals on the MVDC distribution lines [9–11].
However, when attaching a control sensor to a distribution line, a high voltage insulation
level is required to prevent any breakdown of the distribution line insulation. Moreover, any
auxiliary power for the control circuit should also have a high voltage insulation level.

This paper proposes the concept of introducing wireless power transfer (WPT) meth-
ods for supplying high-voltage insulated auxiliary power supply to MVDC current/voltage
instruments. The WPT system solves the problems of dust and leakage current due to cable
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aging and has the advantage of electrical insulation because there is an air gap in the path
that transmits power from the supply source to the load (instead of copper wires) [12,13].
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The remainder of this paper is structured as follows: Section 2 presents the basic
operating principles of the proposed wireless power supply and the specifications of the
power supply, after which the most suitable wireless charging method is selected. Section 3
presents the design process after selecting the wireless charging method, while the simula-
tion and experimental results are provided and analyzed in Section 4. Section 5 presents
the conclusions.

2. Basic Analysis of Wireless Power Transfer System
2.1. Description of Wireless Power Transfer System Type and Selection of Transmission Method

There are four types of WPT systems: inductive power transfer (IPT), which trans-
mits power from the transmitter coil to the receiver coil via electromagnetic induction;
microwave power transfer (MPT), which uses microwaves; laser power transfer (LPT),
which uses lasers; and capacitive power transfer (CPT) systems, which use the principle
of a capacitor. Descriptions of the characteristics of each WPT method are presented in
Table 1.

Table 1. Wireless power transfer (WPT) classification and characteristics.

Method IPT MPT LPT CPT

Figure
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The IPT system can transmit power over distances from several to tens of centimeters,
can supply power (MW) at a high efficiency of more than 90%, and can operate at frequen-
cies of tens to hundreds of kHz. Hence, the performance of power semiconductors required
by other WPT platforms is relatively low [14–16]. MPT has the advantage of being able
to transmit power over distances of up to several kilometers. However, the transmission
and reception antennas are very large, inefficient, present human hazards, and require
high-performance power semiconductors due to the high GHz operating frequencies [17].
LPT also has the advantage of being able to transmit power up to several kilometers. How-
ever, the efficiency and transmission power are low, and the charging efficiency decreases
rapidly when there is a separation distance to the receiving pad [18–21]. CPT is similar
to the IPT system by using an aluminum plate as a single capacitor. However, unlike
magnetic induction, which can increase inductance values when manufactured in flat plate
form, CPT requires high-frequency operation (hundreds of kHz to several MHz) [22–24].
Therefore, considering the specifications in Table 1 and the preceding discussion, the IPT
method was selected for the proposed power supply.

2.2. Analysis of Electrical and Environmental Conditions of Auxiliary Power Supply

Before designing the IPT system, the specification of the power supply device applied
to the MVDC current sensor was analyzed. Both electrical and environmental conditions
should be considered prior to designing an auxiliary power supply using the WPT system.
First, the electrical isolation distance between the MVDC and the auxiliary power supply
should be determined. Generally, when insulating through air, a separation distance of
3 [kV/mm] must be set based on DC [25]. In addition, the separation distance should be
selected in consideration of the decrease in air insulation voltage and the separation of
distribution lines due to natural disasters. In this paper, the MVDC voltage level required
for insulation could be up to 69 kV and should have a minimum separation distance of
23 mm. Moreover, considering that the insulation voltage of air can vary depending on a
range of factors (such as the weather, humidity, and vibrations), the minimum separation
distance was assumed to be 30 mm.

After selecting the separation distance range for air insulation, the geometric spec-
ifications of the wireless pad were considered. Figure 2 presents the basic specification
of an MVDC class voltage/current sensor. The side and bottom surfaces of the sensor
drawing can be used, and a large floor surface was used in this study. With respect to
the sensor enclosure, the maximum available volume for the receiver pad is 94 mm wide,
141.5 mm long, and 15–20 mm inner height. The proposed IPT system was configured in
consideration of these conditions.
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Finally, the range of output characteristics should be considered, which can fluctuate
according to the separation distance. Since a regulator is attached to the output stage of the
IPT converter to supply a certain rated voltage, the variable input voltage range required
by the regulator should be satisfied. The input voltage required by the regulator is 15–50 V
and the rated power is 50 W, and the output voltage/current should be achieved even when
the separation distance fluctuates. The basic conditions required for supplying auxiliary
power in an IPT system are specified in Table 2.

Table 2. IPT system design requirements.

Symbols Parameters Values [Unit]

UDC DC input voltage 110 [V]
110 [V] Vertical distance range 30–90 [mm]

x x-axis distance range 0–20 [mm]
y y-axis distance range 0–10 [mm]

UL IPT output voltage range 15–50 [V]
Po,max Maximum output power 50 [W]

2.3. Basic Analysis of Inductive Power Transfer System

Figure 3 displays the configuration of an IPT converter. The entire system consists of
an inverter that converts DC power to AC, a transmitter/receiver pad that transmits power
using electromagnetic induction, a transmitter/receiver resonance circuit that compensates
for pad reactance to achieve high-frequency operation, a rectifier that rectifies AC power to
DC, and voltage regulator that converts an input variable voltage into constant output. A
typical IPT converter creates an AC voltage with the operating frequency required by the
IPT system using a half-bridge consisting of two MOSFETs of a full-bridge inverter (which
contains four MOSFETs). The input AC voltage is a square wave voltage configured with
a fixed duty of 0.5. This square wave includes various harmonics in the basic switching
frequency waveform. However, since the resonance circuits that constitute the IPT converter
act as harmonic filters, only the basic frequency waveform is transmitted to the output side
and the harmonics can be neglected. Accordingly, the inverter output voltage waveform can
be approximated by Equation (1) including only the fundamental frequency. In the case of a
half-bridge inverter, m = 1 is used, whereas m = 2 is used in the case of a full-bridge inverter.

Uin =
2mUDC

π
√

2
(m = 1, 2). (1)
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The AC power is transmitted through the wireless pad. The transmitter and receiver
pads comprise pad inductance (Li) and parasitic resistance components Ri (where i = p, s)
that are dependent on the skin effect. The total wireless pad resistance is determined
by the sum of the DC resistance, the skin effect, and the proximity effect. M is the mu-
tual inductance between the transceiver coils, and the coupling coefficient (k) is defined
as follows:

k =
M√
LpLs

. (2)
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The AC power transmitted through the wireless pad is converted to DC through
a rectifier and a filter capacitor. The rectifier typically uses a single-phase full bridge
rectifier consisting of four power diodes. The load-side voltage (UL) and current (IL) can be
expressed as an AC equivalent circuit:

UL =
π
√

2
4

Uo,ac, IL =
π

2
√

2
io,ac. (3)

From Equation (3), the AC equivalent resistance is as follows:

Ro,ac =
π2

8
RL. (4)

Through Equations (1), (3), and (4), the inverter and the full bridge rectifier can be re-
placed by a sinusoidal voltage source and an AC equivalent resistance. Figure 4 presents the
IPT converter AC equivalent circuit based on the network current method. Equation (5) ex-
presses the network current method as a matrix equation, and Equation (7) is an impedance
equation composed of mutual inductances.[

Uin
Uo,ac

]
=

[
Z11 Z12
Z21 Z22

][
iin

io,ac

]
. (5)

Z12 = Z21 = −jωM. (6)
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Since the calculation formula changes according to the resonant network configured,
the details of the detailed formula can be confirmed during the subsequent compensation
topology selection process.

3. Design Steps of Inductive Power Transfer System and Design Conditions for
Auxiliary Power for MVDC Class Current and Voltage Sensors

This section presents a description of the process of fabricating an IPT system based
on the analysis results provided in Section 2. The IPT system is established by selecting the
pad design, compensation topology, and operating frequency.

3.1. Design of Wireless Pad

The change in the value of k between the transmitter and receiver pad results in a
change in M. Therefore, it is important to minimize the variation in k due to fluctuations in
the separation distance. Depending on the coil winding method, the types of wireless pads
include a circular pad (CP), a rectangular pad (RP), a double-D pad (DDP), a bipolar pad
(BPP), and a double-D quadrature pad (DDQP). The CP and RP have unipolar magnetic
flux paths, while the DDP, BPP, and DDQP have bipolar magnetic flux paths. Figure 5
presents the magnetic flux paths for the CP and DDP. Wireless pads with unidirectional
magnetic flux paths (such as CPs) have a constant decrease in k in all directions when
the separation distance fluctuates. Wireless pads with bidirectional magnetic flux paths
(such as DDPs) have different k fluctuations (even with separation distance fluctuations),
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depending on the formation of magnetic flux paths. Terms φp and φs are the transmitter
and receiver magnetic fluxes, respectively, while φp-al and φs-al are the leakage magnetic
fluxes, and φM is the mutual magnetic flux. Figure 6 presents a finite element method
(FEM) simulation configuration of a CP with a single magnetic flux path and a DDP with
a bidirectional magnetic flux path. The coil consists of 20 turns for the transmitter and
13 turns for the receiver.
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After configuring the wireless pad for the simulation, the results of k according to
the separation distance were compared. Figure 7 displays the results of k according to
separation distance using the FEM simulation. The vertical separation distance was tested
from 30–120 mm, and the misalignment state was tested for variations in vertical separation
distance at 20 mm on the x-axis and 10 mm on the y-axis. At the minimum vertical
separation distance, k was approximately 1.8 times higher in the DDP than in the CP.
However, as the separation distance increased, the difference in k values between the CP
and DDP decreased. This k trend was the same when there was a horizontal separation
distance. Since k had a direct effect on the output characteristics, a CP with a small
fluctuation in k was selected to maintain output stability from any fluctuations in k caused
by external impacts.
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After deciding on the design of the wireless coil, the internal diameter, external diame-
ter, number of layers, and number of turns were considered. In the case of a planar pad,
the wireless pad inductance was determined using complex calculations according to the
volume, the permeability of the magnetics, the total length of the coil, the interval between
the turns, the number of turns, and the number of layers. The characteristics of wireless
pads are difficult to derive mathematically. Therefore, an iterative three-dimensional FEM
simulation should be performed to derive the Lp, Ls, and k required by the IPT system.
Since the outer diameter of the transmitter coil was fixed, the inner diameter decreased
according to the number of turns, and the higher the number of coil turns, the higher the
inductance. Moreover, the greater the increase or decrease in k according to separation
distance, the wider the range of output characteristics. Therefore, the coil winding was
configured in multiple layers to increase the inductance while maintaining the internal
diameter to a specified measurement.

3.2. Selecting Compensation Topology

After determining the wireless pad design, a compensation topology design suitable
for the input/output characteristics was conducted. The compensation topologies mainly
used in IPT systems include Series-Series (S-S), LCC-S, and DS-LCC topologies with high-
dimensional topologies that resonate in series with both the transmitter and receiver pads.
Table 3 provides brief descriptions of the characteristics of S-S, LCC-S, and DS-LCC.

Table 3. IPT system design requirements.

Topology S-S LCC-S DS-LCC

Figure
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The S-S compensation topology requires two additional capacitors (for resonance),
one transmitter, and one receiver. The S-S topology has the advantages of a small number
of resonance elements and a constant current (CC) output characteristic. However, the S-S
topology has an overvoltage application problem due to increased output characteristics
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when k decreases due to separation distance fluctuations. In addition, it is sensitive to pad
inductance fluctuations, meaning there is a risk of switch faults.

The LCC-S compensation topology is a high-order topology in which resonance
inductors (Lin) and resonance capacitors (Cp, Cf, Cs) are added to solve the bifurcation
problem caused by load and separation distances in the basic compensation topology
configuration. Furthermore, this higher-order topology achieves higher AC equivalent
circuit accuracy because there are more resonant filter elements compared to the basic
compensation topology. Since the LCC-S has a constant voltage (CV) characteristic, this
provides the advantage of not exacerbating an open circuit accident.

The DS-LCC is designed with a high-dimensional compensation topology for both
the transmitter and receiver and has CC characteristics. The DS-LCC topology also has
the advantage that the bifurcation problem due to separation distance can be solved and
the output characteristics can be designed flexibly by the manufacturer. However, the DS-
LCC has many resonant elements (two resonant inductors and four resonant capacitors),
which is disadvantageous in terms of cost and volume. MVDC class voltage/current
sensors should supply stable power, even when the separation distance fluctuates. The
S-S compensation topology has the problem that the output current increases when the
mutual inductance decreases as the separation distance occurs [26]. Therefore, using a
high-dimensional compensation topology is suitable. Considering the volume limit inside
the receiver, the LCC-S topology with CV characteristics was selected. The IPT converter
configured with the LCC-S topology is displayed in Figure 8.
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After selecting the compensation topology, the maximum allowable current flowing
through the wireless pad should be considered. Since the output characteristics vary
according to the separation distance, the coil should operate stably under maximum
current stress conditions. A graph of the output voltage and input phase according to
separation distance is presented in Figure 9. This graph demonstrates that zero voltage
switching was maintained, even when the position of the wireless pad was changed. The
maximum current of the voltage/current sensor to be supplied was less than 4 A. Since the
average allowable current of the employed litz wire was 2.5 [A/mm2], a 1 mm diameter
litz wire consisting of 0.10mm 150 strands was used for the receiving pad. The impedance
condition at the resonant frequency (fr) when operating the LCC-S topology is as follows:

Zs = jωrLs +
1

jωrCs
+ Ro,ac ∼= Ro,ac, (7)

jωrLin +
1

jωrCp
= 0, jωrLp +

1
jωrCp

+
1

jωrC f
= 0. (8)
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The reflected impedance, which is converted from the secondary side to the primary
side, is deduced as

Zr =
(ωM)2

Zs
. (9)

The total input impedance of the LCC-S topology can be derived as follows:

Zin = jωLin +
1

jωCp +
1

jωLp + 1
jωC f

+ Zr

. (10)

Based on Kirchhoff’s current law, the current flowing through the transmitter and
receiver pads and the output voltage of the LCC-S are as follows [23]:

ip =
Uin

jωLin
, (11)

is =
jωMIp

Ro,ac
=

MUin
LinRo,ac

, (12)

Uo,ac ≈
MUin

Lin
(13)

Equation (11) demonstrates that the current flowing through the transmitter pad is
affected by the operating frequency (fo), Uin, and Lin. Moreover, a constant current flows
regardless of any changes in separation distance. Equation (13) indicates that the output
voltage is determined by the M value of the pad, the DC input voltage, and Lin. Therefore,
to meet the output voltage characteristic requirements of the MVDC sensor, the transmitter
pad, receiver pad, and resonant inductor should be designed, and the resonance frequency
and coil diameter should be selected, by considering the coil losses due to the wireless pad.
The specifications of the wireless pad and the selection of the resonant network values are
presented in Section 4.

4. Verification of Inductive Power Transfer System through Simulations and
Experimental Prototype

In this section, based on the analysis in Section 3, the wireless pad prototype is
designed, and the wireless pad characteristics are analyzed to select the operating frequency
and resonance network element values. After the IPT system is built, the variable output
characteristics are verified through experiments.

4.1. Selecting Parameter and Frequency

Based on the 3D FEM simulation results, prototype wireless pads were designed and
manufactured. Figure 10 displays the fabricated transmitter and receiver pads, which were
manufactured by considering the output voltage, current stress, and operating frequency.
The transmitter coil consisted of 15 turns on the 1st layer and 5 turns on the outer diameter
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side of the 2 layers, totaling 20 turns. The receiver coil consisted of 13 turns on one layer.
The k range was calculated by measuring the self-inductance and leakage inductance
with an LCR meter. As the number of turns of the wireless pad increased, M increased.
However, the diameter of the wireless pad coil had to be reduced due to the increase in
volume caused by the increase in the number of wireless pad coil winding turns. Based on
Equations (7)–(13), the design of an appropriate value range between the pad inductance
and Lin was selected. The load voltage range was designed to be 15–50 V, which was
the voltage range required by the regulator. Considering the output voltage range, Lin
was designed as 34.36 [uH]. After manufacturing the wireless pad and Lin, the operating
frequency range to build an IPT system was selected. Because of the limited performance of
the MOSFETs in the laboratory, the maximum operating frequency was selected as 100 kHz.
Substituting this value into Equation (13), the transmitter pad current was confirmed as
approximately 5.2 A, as displayed in Figure 11.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 22 
 

 

In this section, based on the analysis in Section 3, the wireless pad prototype is de-
signed, and the wireless pad characteristics are analyzed to select the operating frequency 
and resonance network element values. After the IPT system is built, the variable output 
characteristics are verified through experiments. 

4.1. Selecting Parameter and Frequency 
Based on the 3D FEM simulation results, prototype wireless pads were designed and 

manufactured. Figure 10 displays the fabricated transmitter and receiver pads, which 
were manufactured by considering the output voltage, current stress, and operating fre-
quency. The transmitter coil consisted of 15 turns on the 1st layer and 5 turns on the outer 
diameter side of the 2 layers, totaling 20 turns. The receiver coil consisted of 13 turns on 
one layer. The k range was calculated by measuring the self-inductance and leakage in-
ductance with an LCR meter. As the number of turns of the wireless pad increased, M 
increased. However, the diameter of the wireless pad coil had to be reduced due to the 
increase in volume caused by the increase in the number of wireless pad coil winding 
turns. Based on Equations (7)–(13), the design of an appropriate value range between the 
pad inductance and Lin was selected. The load voltage range was designed to be 15–50 V, 
which was the voltage range required by the regulator. Considering the output voltage 
range, Lin was designed as 34.36 [uH]. After manufacturing the wireless pad and Lin, the 
operating frequency range to build an IPT system was selected. Because of the limited 
performance of the MOSFETs in the laboratory, the maximum operating frequency was 
selected as 100 kHz. Substituting this value into Equation (13), the transmitter pad current 
was confirmed as approximately 5.2 A, as displayed in Figure 11. 

  
(a) (b) 

Figure 10. Wireless pad: (a) transmitter pad and (b) receiver pad. 

  

Figure 10. Wireless pad: (a) transmitter pad and (b) receiver pad.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 22 
 

 

 

   
Figure 11. Transmitter pad current graph according to operating frequency. 

Based on fo, Lin, Cp, Cf, and Cs were selected based on Equations (8) and (9). For the 
resonance capacitor, a multi-layer ceramic capacitor (MLCC) was employed, as these have 
robust high-frequency characteristics. Figure 12 presents the experimental prototype for 
verifying IPT system operation. The input voltage was fixed at 110 V, and the range of k 
was 0.06–0.20 because the wireless pad design was required to derive an appropriate pad 
inductance value. Table 4 shows the prototype IPT converter prototype measured param-
eters. 
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Based on fo, Lin, Cp, Cf, and Cs were selected based on Equations (8) and (9). For
the resonance capacitor, a multi-layer ceramic capacitor (MLCC) was employed, as these
have robust high-frequency characteristics. Figure 12 presents the experimental proto-
type for verifying IPT system operation. The input voltage was fixed at 110 V, and the
range of k was 0.06–0.20 because the wireless pad design was required to derive an ap-
propriate pad inductance value. Table 4 shows the prototype IPT converter prototype
measured parameters.
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Table 4. IPT converter prototype measured parameters.

Symbols Parameters Values [Unit]

Lp Transmitter pad inductance 149.79 [uH]
Ls Receiver pad inductance 39.88 [uH]
k Coupling coefficient 0.06–0.20

Lin Resonance inductor 34.36 [uH]
Cp Parallel resonance capacitor 74.81 [nF]
Cf Series resonance capacitor 21.70 [nF]
Cs Receiver resonance capacitor 64.22 [nF]
fo Operating frequency 100 [kHz]

4.2. Experimental Results

Figure 13 presents the experimental results for the aligned, maximum k (z = 30 mm)
misaligned, and minimum k (z = 90mm) misaligned conditions using a HIOKI PW6001
power analyzer. The experimental results confirmed that the output voltage was in the
range of 16.3–49.3 V, which was achieved within the input voltage range of the voltage
regulator. The difference in the output voltage range was caused by the voltage drop due
to the parasitic resistance component of the resonance device and the reactance error of the
passive device. However, this difference was considered negligible. The output current
varied according to the value of the load resistance. Figure 14 displays the input and
output waveforms in the aligned, misaligned in maximum k (z = 30mm), and misaligned in
minimum k (z = 90mm) states, respectively. Figure 14 confirmed that ZVS operation was
achieved with a square wave output.
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5. Conclusions

In this paper, a power supply system for MVDC-grade voltage/current measuring
instruments using a magnetic induction method was proposed and verified. The receiving
pad was constructed by considering the size of the MVDC-grade voltage/current measuring
instrument, and the separation distance range was selected according to the air insulation
voltage value required between the transmitting and receiving pads. A coil design was
selected that minimized any variations in the k value according to the range of separation
distance fluctuations. Moreover, the operating frequency and magnetic inductance (turn
count and layer count) were selected to accommodate the maximum current flowing in
the coil. A high-dimensional resonance network was considered for the transmitter to
prevent bifurcation problems caused by separation distance fluctuations during IPT system
operation, and an LCC-S topology was selected. For the output voltage range, the proposed
IPT power supply system had output characteristics of 16 V at the maximum separation
distance and 50 V at the minimum separation distance, and ZVS operation was achieved.
The coil winding design, magnetic inductance, and k value were selected using 3D FEM
simulations, and their validity was verified through operation after the IPT system was
designed similarly to that used in a laboratory environment. The experimental results
confirmed that the IPT system can satisfy the power characteristics required by the MVDC
current sensor from the minimum insulation distance of 30 mm to the maximum vertical
misalignment of 90 mm with ZVS operation. Therefore, the IPT system could be selected as



Electronics 2023, 12, 4702 13 of 14

a power supply method for the MVDC voltage/current measuring instrument considering
its insulation safety and ability to meet the range of output characteristics due to the
separation of distance fluctuations.
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