i\;lg electronics

Article

ODCS: On-Demand Hierarchical Consistent Synchronization
Approach for the IoT

Safaa S. Saleh 1*@® Iman S. Alansari 2, Mounira Kezadri Hamiaz 3(©, Waleed Ead #>(®, Rana A. Tarabishi 2,
Mohamed Farouk and Hatem A. Khater ’

check for
updates

Citation: Saleh, S.S.; Alansari, 1.S.;
Hamiaz, M.K.; Ead, W.; Tarabishi,
R.A.; Farouk, M.; Khater, H.A. ODCS:
On-Demand Hierarchical Consistent
Synchronization Approach for the
IoT. Electronics 2023, 12, 4708.
https://doi.org/10.3390/
electronics12224708

Received: 5 October 2023
Revised: 6 November 2023
Accepted: 6 November 2023
Published: 20 November 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Information Systems Department, Egyptian Institute of Alexandria Academy for Management and
Accounting, Alexandria 21934, Egypt

Computer Science Department, College of Computer Science and Engineering, Taibah University,
Medina 42353, Saudi Arabia; iansari@taibahu.edu.sa (L.S.A.)

Computer Science and Information Department, Applied College, Taibah University,

Medina 42351, Saudi Arabia; mhamiaz@taibahu.edu.sa

Computer Science and Information Technology, Egypt-Japan University of Science and Technology (E-JUST),
Alexandria 21934, Egypt; waleedead@bsu.edu.eg

Information System Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University,
Beni Suef 62514, Egypt

Department of Computer Science, Faculty of Computing and Information Technology, Arab Academy for
Science, Technology, and Maritime Transport, Alexandria 21913, Egypt; mfaroukaast316@gmail.com
Mechatronics Engineering Department, Faculty of Engineering, Horus University Egypt,

New Damietta 34518, Egypt; hkhater@horus.edu.eg

* Correspondence: safaa34@gmail.com

Abstract: An IoT data system is a time constraint in which some data needs to be serviced on or
before its deadline. Distributed processing is one of the most latent sources in such systems and
is considered a vital design concern. Many sources of delay in the IoT can affect the availability of
data from different resources, which may cause missing data deadlines, resulting in a catastrophic
effect. In fact, such systems are inherently distributed in nature and use distributed processing. The
distributed processing permits different nodes to obtain the information from remote sites, which
may take a long time to access the required data. Therefore, it is considered one of the most latent
sources in such systems, which is considered a vital design concern. The typical recommended
solution for this problem is to commit distributed transactions locally. Therefore, replication tech-
niques are used to enhance the availability of data and consequently avoid the resulting latency.
However, the use of local processing raises inconsistent periods. Therefore, this study proposes a
new synchronization framework to minimize periods of temporal inconsistency. It permits several
connected nodes to synchronize the shared data on demand concurrently without any need to use
distributed synchronization, which consumes the system resource and raises its delay cost. The
proposed framework aims to enhance the timely response of IoT real-time systems by minimizing
the temporal inconsistency periods. The results indicate that the synchronization framework can be
completed within a reasonable time period. They also depict improved consistency by minimizing
the temporal inconsistency duration and increasing the chance of meeting critical time requirements.

Keywords: replication; temporal inconsistency; graph subnetting; on demand synchronize; IoT data

1. Introduction

The Internet of Things (IoT) is a promising technology that is only possible due to the
technological innovations that have allowed for the reduction in components and extreme
decreases in power requirements. It is used almost for enhancing data collection and
automation using smart devices and technology. The IoT has become a key technology in
many domains, such as healthcare, transportation, industry, and smart homes and cities.

Electronics 2023, 12, 4708. https:/ /doi.org/10.3390/ electronics12224708

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224708
https://doi.org/10.3390/electronics12224708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0657-979X
https://orcid.org/0009-0007-5636-7062
https://orcid.org/0000-0003-2969-2269
https://orcid.org/0000-0003-3453-5145
https://doi.org/10.3390/electronics12224708
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224708?type=check_update&version=1

Electronics 2023, 12, 4708

20f15

The term IoT refers to a massive number of internet-connected “things” or nodes.
In fact, the IoT is based on a large number of sensing nodes that act to collect different
types of information from the surrounding environments via a variety of sensors [1]. The
IoT uses many types of data communication, and real-time communication is the most
well-known [2].

Time sensitivity is one of the most essential characteristics of the IoT. Some transactions
in systems with complex timing constraints must be completed before the deadline for
processed data [3]. Missing a deadline may have a fatal effect on the IoT system. The
distributed nature of most IoT applications sometimes enforces the sharing of distributed
data among several communicating nodes. In such systems, replication techniques are
used to avoid delayed processing that can cause missing critical deadlines due to the delay
in locating data from the remote nodes [4].

Using replication, when a datum is changed at a specific node (referred to by this work
as the base node), many copies of this changed datum (replicas) need to be published to
other consuming nodes. These consuming nodes are referred to by this work as replicated
nodes where the new values are integrated after the propagation phase [5]. The most
crucial design consideration for such systems is to make the required resources available
in a reasonable time [6]. Many studies have been conducted to offer distributed real-time
systems with strict criteria on the expected proper operation to improve the availability
of IoT data. Their primary goal is to satisfy the temporal constraints of contemporary
real-time IoT sensor networks [7].

Data synchronization in WSN is defined as a process of updating data on consuming
nodes with the most recent changes made by the base node to maintain consistency (Yi
et al., 2020). Concerning replication, data synchronization is responsible for updating local
data with the propagated global values. The objective here is to ensure that all nodes
use the same recent data. It has to be in real-time, and it is allowed in some cases to be
near real-time. This process can be performed automatically with each change, which can
increase the loads of the network traffic, increasing the latency [8]. Therefore, some works
choose to link synchronization with demand [9]. In general, the most recent replicated data
versions need to be synchronized by each consuming node. The IoT needs to accelerate data
synchronization between the data producers (publisher or base nodes) and the consumers
(subscriber or related nodes). The main challenge here is how to minimize the temporal
inconsistency periods via different replicas of the collected information [10].

To avoid the delay resulting from the distributed committing, many solutions are
directed to be based on the local committing. Viz, meeting time sensitivity comes at the
expense of consistency requirements [11]. However, this technique can be accepted by such
time-constraint systems to avoid the undesired latency, which can impact the critical time
requirements [12]. In fact, such systems are allowed to temporarily relax the consistency
requirement at the expense of availability. With the IoT, availability and reliability are more
important than rapid universal consistency.

In principle, by using on-demand synchronization, the local versions of data items are
synchronized with the most recent version only when they are needed (Raynal, 2018). It is
utilized to minimize the need for remote synchronization that may impact the capability
of IoT systems to meet their time requirements [13]. On-demand synchronization can be
implemented locally using the most recent states stored on the local nodes. This scenario
requires replicating the final state of the modified data items instead of transferring the
updating transaction itself. These states are transferred via detached replication [10].
On-demand synchronization can also be implemented remotely (globally) by using the
most recent states from the publisher node. However, searching the recent states is a
time-consuming operation that can cause timing requirement violations [14].

The current study addresses the temporal inconsistency of time-sensitive IoT systems
to enhance the consistency of such systems using an efficient synchronization approach. It
aims to minimize the temporal inconsistency periods among the different copies of data
on different nodes. The current study proposes a new on-demand hierarchical consistent

Electronics 2023, 12, 4708

30f15

synchronization approach (ODCS) for IoT data systems. ODCS is based on the state transfer,
not on the operation transfer with on-demand synchronization. The synchronization by
ODCS is prioritized to be performed locally first. If the replicated versions in the local node
are not sufficiently recent, the global synchronization starts with the specified base node.

To minimize the transmission delay, the ODCS needs to communicate with the pub-
lishing node via the lowest time—cost routing. Here, it represents the role of Network Time
Protocol (NTP) with the graph subnetting mechanism. Although NTP is a clock synchro-
nization protocol for distributed applications, ODCS (a data synchronization framework)
benefits from its hierarchical method of evaluating the time difference between different
network nodes. NTP, as an application layer protocol, is responsible for evaluating the de-
lay between nodes of a TCP/IP network with the ability to support consistent timekeeping
for data.

In fact, the introduced framework is motivated to support the IoT and similar systems
to address the temporal inconsistency problem. The proposed on-demand framework
includes two approaches for local and global synchronization. Using local on-demand
synchronization is the first contribution of this work, where the most recent version is
locally synchronized on demand. The IoT is supported in this fashion to avoid pointless
update activities and the associated scheduling and problem-solving overhead. The second
contribution introduces global on-demand synchronization to update the outdated items
with the most consistent state from the responsible base node. The global on-demand
synchronization method aims to reduce the time required to locate the global state using a
virtual graph subnetting to produce a set of subgraphs to the same base node. Then, NTP
helps in calculating the time cost of all subgraphs parallel acts to speed up the retrieving
of the global state and consequently reduce the temporal inconsistency period. This can
enhance the system performance, increase the chance of meeting the time necessities, and
develop the consistency of the IoT.

The rest of this article is structured as follows: Section 2 discusses the earlier connected
works. The proposed method for increasing the consistency of the IoT is presented in
Section 3. Section 4 presents an experimental investigation to assess the suggested frame-
work. Finally, Section 5 presents the conclusions of this study.

2. Related Work

Consistency is considered one of the most important topics when working with
replicated data in distributed systems [15]. The main objective of the majority of academics
in the IoT sector is to preserve the eventual consistency of time information by relaxing
reliability at the cost of accessibility [16]. Many strategies with various ideas are proposed
to equalize the inconsistency periods [17].

By surveying some research in on-demand synchronization, the article by [18] with
the title On-Demand Depth-First Traversal comes first. The authors of this research utilize
the concept of “On-demand” to decrease unnecessary operations in addition to the time-
consuming processing. The proposed work has benefited from the idea of this work and
the work by [11] to exclude unnecessary operations in light of timing requirements [19].
However, temporal consistency, which is the main concern of the proposed work, is not
included in the work by [19].

Ref. [20] used an on-demand selective method, Freshness/Tardiness (FIT), to maintain
consistency and scalability using state-transfer updating. To manage the trade-off between
latency and consistency, running transactions are selectively scheduled such that pending
changes are applied. For the most part, FIT relies on installing or skipping pending updates
when using a state-transfer method. However, when using an operation transfer model,
FIT effectively calculates the ideal number of updates that should be installed in order to
maximize advantages. This work differs from ODCS as it focuses mainly on scalability,
while the ODCS concerns mainly data availability. In addition, this work does not consider
latency and energy requirements. The ODCS benefits from their idea to control the trade-off
between latency and consistency.

Electronics 2023, 12, 4708

40f 15

To preserve the freshness of data in vehicle control systems, ref. [21] introduced
an on-demand updates strategy for efficient CPU consumption and reduce unnecessary
transactions. The introduced algorithm is based on a dynamically changed dependency
graph to reduce the generated transactions. Their results depict a significantly decreased
number of triggered transactions. This work is one of the most related works of ODCS as it
is based on the concept of on-demand updates. This work differs from ODCS as it does not
consider global consistency or meeting the power and timing requirements.

Another work that depends on on-demand computing is by [22]. By implementing
the replication and de-replication mechanisms using the fewest possible messages needed
to perform these operations, they suggest an on-demand Efficient Replication and De-
replication technique (OERD). By discovering the assets and obtaining them to satisfy
demands in a transparent manner, the OERD technique allows relocation options on file
transfer to be made without any user involvement. Replicating the requested files is linked
to the total number of requests which must reach the threshold value. Unlike ODCS, the
time and power requirements are not considered in this work.

On the other hand, the following works are not based on on-demand computing, but
they concern the timing requirement, which is an important aim of ODCS. These works
also do not consider the power requirement. They aim to reduce the time duration of
synchronization operations, such as the work by [23] that changed the predefined More—
Less framework to maintain temporal consistency. In addition, the work by [24] proposes
a new protocol to give more chances to meet the transaction deadlines. Their protocol
depends on building Lists of available replicas dynamically during the propagation to
tolerate the loss of update messages.

Additionally, the following studies are considered the closest to ODCS. For example,
the work by [7] introduces a simple synchronous protocol that focuses on data availabil-
ity. This work has an optimistic responsiveness in terms of system speed time-constraint
requirements. Generally, their results show that it is not ideal for replicas due to the long
offline period. It remains interesting for future work to produce more realistic synchronous
models as well as practical solutions in them. Also, the work by [11] introduces an intelli-
gent replication approach considering the time requirement. However, it does not consider
the power requirement, so it cannot be suitable for WSN or the IoT. Unlike ODCS, this
work also does not consider global consistency.

Also, for the synchronization studies, the work by [25] introduces a data-driven
machine-learning model for the synchronization of demand and supply in retail supply
chains. They try to forecast the demand and reduce satisfaction lead time. Another work
by [26] proposes an effective framework for data synchronization and consistency manage-
ment. It is based on an inverted index structure to synchronize data without central cache
management. Additionally, the work by [27] introduces a lightweight synchronization
algorithm for WSN with an aim to synchronize data measurements to minimize negligi-
ble overhead. Unlike the synchronization model of ODCS, these works do not consider
the local consistency or the time constraint of data, although they act to minimize the
synchronization time.

For the use of NTP, the work by [28] proposes an accurate time synchronization model
for the IoT that is based on an enhanced version of NTP, which utilizes one resource-
rich node on the mesh network and uses the border router to synchronize with a global
time reference. The work by [29] is similar to ODSC as it uses the timestamp in the
synchronization process. Their main aim is clock synchronization, which is different
from the aim of ODCS of data synchronization. They employ the data timestamp in the
estimation of the clock skew and offset, and ODCS employs the local data timestamp with
NTP in the data synchronization process.

In summary, Table 1 lists a number of studies that can be considered close to ODCS.
Each of them is similar to ODCS in several aspects and differs in certain aspects. A summary
of the differences and commonalities between ODCS and related works is presented in

Electronics 2023, 12, 4708

50f15

Table 1. For a better understanding of the following table, it is essential to consider the
following terms:

e Local synchronization refers to synchronization that occurs inside each node using the
most recent data version;

e Global synchronization refers to synchronization that occurs by requesting the most
data version from its base node;

e The timing requirement refers to the latency constraint property that requires a re-
sponse within a certain deadline or job management;

e On-demand computing refers to a delivery model that can perform a task when it is
needed only.

Table 1. Summary of the closely related works.

Work Local Global Timing On-Demand

Synchronization Synchronization Requirements Computing
[22] x v x v
[11] v X v v
[26] X v X x
[27] x v x x
[7] x v v x
[25] x v x x
ODCS v v v

3. The Proposed Approach
3.1. Mathematic Formulation

Most IoT system applications use time-constrained data. A fresh-consistent datum (d)
is defined according to Equation (1) as:

|TS(d) — TS| < to ¢y

where TS(d) is the timestamp when d is used, TS, is the created timestamp (time of creation
or updating), and ¢ is the accepted duration or (duration threshold). The value of d
at timestamp (ts) is expressed as valuef. All data that are managed by this work have
deadlines, and they can be used by sensor nodes, which are responsible for collecting
the new values (referred to as the base node (B)), or other nodes that are referred to as
replicated nodes (R). This work assumes that each datum can be modified by only one base
node (B), and it can be used by many replicated nodes (R). Also, each base node can be
responsible for collecting many data. Related nodes (or subscribers) of specified data are
assumed to be registered by the corresponding base node in the subscriber list. As the (B)
node modifies the datum, the new value must be propagated to all subscribers (Rs) of the
modified datum. Figure 1 shows an example of the base nodes of different data items and
related nodes of these data items. Note that Figure 1 notates (B) for the base node of any
specified datum and uses (R) to represent the consumer node; therefore, it is notated as the
related node for a specific datum.

In general, the nodes that make up this data’s interconnections can be represented as a
directed graph, G = (V, E), where V is the collection of nodes and E is the edges that signify
the connections between those nodes. Figure 1 shows the whole data dependency graph
G, which can be seen as a set of several subgraphs. Therefore, it can be split virtually into
many smaller subgraphs to reduce the time consumed for traversing.

Electronics 2023, 12, 4708

6 of 15

B2
R1

Bl
R4

B8
R2

B: Base node
R: Related node

B9
R4

Figure 1. Network Graph.

Graph G can be dynamically changed by adding or removing nodes for many re-
sponses. Sometimes, sensors may die due to exhausting the residual power and need to
be substituted with another powered sensor. Other times, extra sensors are needed to be
added to the system based on certain situations according to the requirement of model
change. These changes must be reflected in each corresponding base node. According to the
current graph, each base node has a set of corresponding consumers (or replicated nodes)
that need to receive replicated copies of each datum. Based on the proposed work, each
base node (B) transfers the final states of its data to its specified consumers (R). The timing
of ignition of updating or synchronization is determined by the timestamp of creation.

The process of the present work can be explained using the following example: A task
that generates a new datum d; on the base node (as Figure 1: B1, B2, B3, B4, B7) has to
transfer the new state of d; to its specified related (B3, B4, B5- for B1 and B6, B7, BS- for B2).

In fact, such time-constraint data systems need to deliver fresh data continuously to
their consumers. The greatest problem for any work in this area is the trade-off between
data integrity and achieving timing constraints in such a real-time IoT system. In order
to increase consistency while reducing latency, this work suggests a tolerant, optimistic
synchronization mechanism for the replicated real-time data of the IoT.

There are three kinds of transaction that handle information by each node according
to the proposed approach: (1) the sensing transactions, which update the sensing data after
each sensing operation; (2) the replicating transactions that act to publish the new values of
the sensed data to their related nodes (destinations); and (3) the update transactions which
are produced in the real-time system to keep the data fresh. These transactions are executed
at each node based on their specified priority. The short-deadline data have higher priority
than the data with longer deadlines.

There are two synchronization schemes for keeping the replicated data fresh: on-
demand synchronization and immediate synchronization. The use of any of them depends
on the timing requirements. For example, some applications need fresh data and cannot
miss their deadline (as in hard real-time systems); here, immediate synchronization is
more suitable for avoiding tardy transactions by missing the deadline. Other applications
can be tolerant to the relaxed time requirement (such as soft real-time systems); this type
can benefit from on-demand synchronization [8]. The proposed approach depends on
two on-demand synchronization schemes: local on-demand synchronization and global
on-demand synchronization. Using local on-demand synchronization, the synchronization
with the most consistent state of data occurs inside each node using the most recent copy
from the local replica repository. Global on-demand synchronization occurs when the
most recent data version is out-of-date via requesting the most consistent state from the
responsible base node.

Electronics 2023, 12, 4708

7 of 15

When an application needs to use datum d, the real-time transaction here needs to
obtain the freshest version of d; from the local repository or globally from the base node
before going through the next step. At the reflection of this point, the proposed work needs
to assess the consistency level of datum d; using Equation (2):

_ lt=TC)]

Con(d;) o

@)
where t is the current time stamp (time of synchronization), TC is the creation timestamp of
datum d;, and ¢ is the accepted difference. Equation (3) can be used to decide whether a
data item needs to be updated. The constraint for Equation (3) is as the following:

Con(d;)mustbe < 1 3)

For global synchronization, ODCS needs to balance the impact of transfer time require-
ment (TT) and processing of synchronization time requirement (TP) as in Equation (4):

where w; and w, are the weight of the transfer time and synchronization time and also
satisfy wy + wy = 1. With the deformation and combination of (1) time transmission cost (TT)
between the current node and the base node and (2) the processing time of synchronization
(TP). TT(d;) is defined by Equations (5) and (6), and TP(d;) is defined by Equation (7):

TA(;,) — TCC(,
TT(d;) = (4;) - (a;) 5)

where TA, is the expected arrival timestamp of d; that is calculated by Equation (6).
TAy; = t+ TCCy, 6)

where TCC;, is the communication time cost of d; between the current node and the
base node:
_ |tp+TCC(d))]

TP(d;) o

@)
where TP(d;) has to be <1, tp is the processing duration of synchronization.

In a regular synchronization process, each node collects all out-of-date data items
of the specific base node. Out-of-date data items have a difference in consistency level
(Equation (3)) of more than one, i.e., Con(d;) > 1.

As mentioned before, according to the proposed work, the traversing method considers
that each data item (d;) has only one base node, which is referred to as B(d;), and the base
node can be responsible for many items. This will generate a large number of distributed
synchronization transactions from the same base node. Therefore, the current approach
planned to generate a list of required updates for current consumer node R from each base
node B. In other words, if d;, d; are two data that are required by the current node R, and
the base node of d; (B(d)) is the same as B(d;), then (d; d;) will be added into the same list of
the same destination base node (B). This list is used to retrieve the most recent version of
each out-of-date item from their base nodes.

If the current node has a direct edge with B, the consistency (concostr p) cost between
the base node (B) and the current replicated node (R) depends on the length of the out-of-
date list (Iist_Len) that is expressed in Equation (8):

i
COMcostRB = Ziit{"” Con(d;) (8)

If the current node (R) does not have a direct edge with (B), each node needs to revise
all edges to (B), which is responsible for the required out-of-date list (list) using the depth-

Electronics 2023, 12, 4708

8 of 15

first traverse. To decrease the workload of the running traversing transaction, the proposed
approach may need to pre-generate a set of virtual subgraphs to each related (destination)
node to form the indirect base node G(B) during the system preparation stage. This will
help in the parallel evaluation of the cost of all subgraphs of the base node. This can
enhance the global on-demand update requirements and reduce the temporal inconsistency
periods. The constraint of choosing the best of all possible sub-graphs to base node minG(B)
is expressed in Equation (9), where min-ddg is the minimum deadline for all required data
items of the destination (B).

minG (B 7)211%10 ‘ (min(ddg)))

3.2. The Assumptions
The assumptions regarding the environment of the proposed framework are as follows:

1. The network is not fully connected, i.e., there is no point-to-point communication
between the two nodes. In other words, global synchronization requires a long time
and increases the inconsistency period;

2. All consumers of a given replica receive the new version automatically from the
responsible sensor node and store it in its repository;

3. Each datum can be modified by only one base node and used by many replicated
nodes. In addition, each base node can be responsible for collecting a large amount
of data.

3.3. The Proposed Framework

According to ODCS, the two main factors that impact the temporal inconsistency
periods of specific data between its base and consumer nodes are the time processing cost
and time transmission cost. The time processing cost (TP) is the time that is consumed by
executing the replicated transaction. The time transmission cost is the time that is consumed
to transfer the replica between base and consumer nodes. ODCS aims at reducing the
temporal inconsistency periods in two ways: the first way is to exclude the execution time
of the updated replica (T3 from Figure 2). By eliminating the time required for transaction
execution, transferring the final state of each datum rather than the entire update transaction
would shorten the period an inconsistency lasts. The inconsistency periods (as shown in
Figure 2) start from the end of the transaction committing on the producer (sender) to the
end of the transaction committing on the consumer (destination).

A repository that is used to store the transferred replicas on each node is crucial to
the consistent framework of ODCS. When synchronization is required, it provides the
operating transactions with the most recent copy of the necessary datum and retains the
received replicas. This repository is updated dynamically by receiving new versions at the
expense of old ones.

The second means of ODCS to reduce the temporal inconsistency periods is to mini-
mize the time transmission. It is based on minimizing graph traversing using the virtual
graph subnetting to produce a set of subgraphs to the same base node. Evaluating each
subgraph parallel will contribute to accelerating the selecting path and consequently reduc-
ing the temporal inconsistency period. This assessing technique is based on the hierarchical
methodology of NTP to estimate the time cost of each resulting subgraph. ODCS allows
data propagation without any global synchronization decision and acts to distribute the
newest value of specified datums to their destination nodes.

Using the on-demand local synchronization, the running transaction compares the
timestamp of the local version of the processed datum with the newest version in the replica
repository to use the recent value. The local synchronization process begins at this point to
decide whether to update the local version if the received version is more recent. Figure 3
summarizes this process of ODCS. If the difference between the resulting newest version
and the current timestamp is more than the threshold, then the global synchronization
starts to request the newest version from the responsible base node.

Electronics 2023, 12, 4708 9 of 15

Inconsistency' duration

Figure 2. The temporal inconsistency periods. T1: producing time; T2: transmitting time; T3:
executing time.

Base Nodes

Current R Node

Traacion IR

—

ew Value§ ‘

Data +TS
Data +TS

-
=

oc
Repository

|RR: Replica Repository - TS: Times*ramp|

Figure 3. The Process of ODCS.

3.4. On-Demand Synchronization Algorithm

According to ODCS, the synchronization with the global data value is linked with
any request of the individual datum locally. The synchronization procedure of the local
value using the most recent version in the local replica repository is linked to the demand
of the datum. To put it another way, whenever a datum is requested, the on-demand
synchronization procedure is launched in order to obtain the most recent value of that
particular datum and update the local value. Synchronization takes place only if it can suit

the greatest degree of consistency, thanks to this optimistic process. Algorithm 1 offers the
strategy for this approach.

Electronics 2023, 12, 4708

10 of 15

Algorithm 1: On-Demand Global Synchronization

Inputs: datum d; network graph schema GS,

1. SetcounterI=0

2. Retrieve TS1 (di) from the local main repository.

3. If freshness (di) = true, then

4. Evaluate consistency cost/ /Equations (2)—(4)

5. Synchronize (di) from the local replica repository.

6. Else If freshness (TS1(di)) = false, then//Equation (1)

7. Use GS (sub-graphing)// Algorithm 2

8. For each subgraph

9. For each node

10. Initiates a time-request exchange with the next node.
11. Calculate the link delay.

12. End For

13. Evaluate consistent cost/ /Equations (8) and (9)

14. Select subgraph with minimum cost./ / Algorithm 2
15. Update the graph schema.

16. End For

17. Retrieve TS(di) from the publisher node globally.

18. Endif

Outputs: most recent value of d;

Algorithm 2 is for traversing the network from the current replicating node (R) to the
base node (B) using the breadth first. The main idea is to add several related nodes into a
new graph that helps to select the minimum time cost of transmission transactions. For the
target of keeping the previous relationship of nodes unchanged, the algorithm adds a new
virtual smaller graph. The following pseudo-code is of Algorithm 2:

Algorithm 2: Graph Subnetting
Inputs: graph G(d), Base Node (B),

Set Q []//queue for breadth-first traverse Sub_Gli].
Set Nm/ /intermediate node

Set transCost[]/ / Transmission cost for Sub_G[]
For each possible starter of subgraph (Sub_Gl[i])
Generate a new Sub_G]i]

Breadth-first traverse Sub_Gli]

Qli]. push(Nm)

If (Nm is not B), then

9. transCost[i] += delay transmission cost to Nm
10. Else continue

11. Endif

12. End For

PN T LD

Outputs: set of Subgraphs from R node to B node

3.5. Complexity Analysis

To evaluate the time complexity of ODCS, the two algorithms (Algorithms 1 and 2)
presented in Sections 3.3 and 3.4 are considered. Algorithm 1 is responsible for retrieving
the most recent version of data globally. Algorithm 2 is responsible for subnetting the routes
from the base node to the related node. The performance of each algorithm is expressed by
the time complexity. The time complexities of both Algorithms 1 and 2 are O(n?) and O(n),
where n is the total number of routes from the base node to its related node.

Electronics 2023, 12, 4708

11 of 15

4. Experiments and Results

Using a customized JavaSIM simulator, a practical investigation to assess the sug-
gested framework is conducted across the IoT system [30]. JavaSIM is a discrete event
simulator that simulates sensor transactions and enables the generation of defined updates
and synchronization transactions. For simplicity, a completely connected WSN system
consisting of 10 nodes over different areas is used. The number of used data items is less
than 100 items with time constraint features between (50-500 ms) and size equal to 64 bytes.
The duration time of the sensor transaction is 30 ms. All nodes are used as base nodes, and
all of them can be used as replicating nodes which generate synchronization transactions.
Table 2 summarizes the set of parameters and the baseline settings for the simulation.

Table 2. Detailed Simulation Settings.

Parameter Default Value
Monitoring area 100 m x 100 m
Number of nodes—N 10/area
Number of data <100
Packet size 6400 bits
Data deadline 30 ms

The results of ODCS are compared with some related on-demand and consistency
approaches, such as BFT [7], IReIDe [11], and DOD [22], to assess the accuracy of the
suggested research. In addition, the synchronization works by [25,27], and Lui and Lai
(2018) are compared to evaluate the present work. Performance metrics are determined
by [31] as useful indicators of better consistency are used to assess the results:

1. Transaction miss ratio (MR);

The throughput in terms of the number of committed transactions;
Total commitment delay;

Synchronization rate.

Ll

4.1. Transaction Miss Ratio (MR)

The number of missing transactions can be indicated by the number of arrived trans-
actions to the total triggered transactions (update arrival rate).

A
ArriRate = ZIN (10)

where Al ; is the number of arrived transactions within the time threshold in time period
At, and U is the total number of updates. The arrival rate is evaluated in comparison with
other related works, as depicted in Figure 4. This figure reveals that the miss ratio of ODCS
is significantly better than its related works.

The outperformance of ODCS is due to the avoidance of global committing of transac-
tions in addition to minimizing the time of transferring.

4.2. The Number of Committed Transactions

Throughput is another valuable metric for data synchronization and transmission. It is
often used to compare against competitors for accurate evaluation. The observed through-
put (the number of committed transactions/s) is depicted in Figure 5. This experiment
examines the throughput for varying payloads in terms of number of replicas. Generally,
the throughput of related works tends to be slightly less than ODCS. But as the number
of replicas increases, the throughput of ODCS becomes closer to the works of [7,11]. This
means that the throughput of all works becomes better with fewer number of replicas.

Electronics 2023, 12, 4708

12 0f 15

Py IReIDe
| / / ——DOD

P [_,_ —O0DCS

0 20 30 40 50 &0 FO 80 90 100
Arrival Rate

MR

Figure 4. Transaction Miss Ratio (MR).

IRelDe

——BFT

[l P
[=] [l
=] =]

Throuput [Kops{sec]
[
[*a}
b

100

50

Figure 5. Throughput vs. number of replicas.

Unfortunately, the higher rate of replicas with lower throughput may point to the
saturated state, which can lead to a communication bottleneck. As the replica load increases,
the latency rises, causing the missing of deadlines; therefore, the number of committed
transactions decreases.

4.3. Total Transaction Delay

The transaction delay is considered an essential metric to assess the eventual consis-
tency. It indicates the transaction’s commitment delay, which is defined as the time required
to commit within its deadline [14]. To find the committed delay for successful transactions,
this work customizes the updating transaction to obtain the beginning time, ending time,
and data. Using the beginning and ending time, the duration of the transaction can be
retrieved with different throughputs (10, 20, 30, 40, 50, 60, 70, 80) operation/sec at each
node. Figure 6 depicts the results of the average duration with each throughput. The
average maximum throughput is 0.88 ms, and the minimum validation duration is 0.75,
which predicts the possibility of missing deadlines at the next trials. The figure shows
the outperforming of ODCS, which reduces the penalty of missing deadlines compared
to the related works, especially at an arrival rate of 80 updates/sec. This may be due to

Electronics 2023, 12, 4708 13 of 15

the absence of impact of distributed committing in addition to the minimizing impact of
transmission delay.

1800

1600

1400

1200

8
o

= |RelDe

:

DOD

BFT

g

- oDCs

8
|

Commitment delay

10 20 30 40 50 60 70 80
Throughput

g

o

Figure 6. Commitment delay.

4.4. Synchronization Rate

To evaluate the performance of the introduced synchronization approach and its
impact on data consistency, the synchronization metric is used. This metric is the successful
update rate of an updated datum (d;) and is defined as

SUn;
u

SucSynRatens(d;) = (11)

where SUj; is the number of successfully updated data within the time threshold in the

time period At, and U is the total number of updates involving data (d;). Figure 7 shows the
outperforming of ODCS that considers the timing requirement of global synchronization.

SucSynRate

120
100
B0
60
40
20
o
Pereira & Frazzon, Liu & Lai, Skiadopoulos et al.,
2021 2018 2019

Figure 7. Successful Rate [25-27].

Electronics 2023, 12, 4708 14 of 15

5. Conclusions

To maintain data freshness in the IoT system, an on-demand synchronization frame-
work (ODCS) is introduced with local and global synchronization approaches. The synchro-
nization operation of ODCS occurs on-demand locally when the datum is needed in any
transaction. In this way, the IoT can avoid unnecessary update activities and the associated
scheduling and problem-solving overhead. Global on-demand synchronization is used to
update the outdated items with the most consistent value from the responsible base node.
In this manner, the time of locating the global state is minimized using a virtual graph
subnetting to produce a set of subgraphs to the same base node. The assessment method
is based on the calculation of the delay of all subgraphs link by link parallelly. ODCS can
successfully minimize the local inconsistency of replicated data by eliminating unnecessary
update operations. The outcomes introduce the ability of ODCS to be completed within
a reasonable time. They also depict improved consistency by minimizing the inconsis-
tency periods. The experimental results show the ability of ODCS to reduce the number
of missing transactions and the transaction delay by around 53% and 48%, respectively.
In addition, the results also show the ability of ODCS to increase the throughput and
synchronization rate by 33% and 10%, respectively.

For future work, it is planned to extend the proposed work by adding a new technique
for continuous converging in the direction of a most consistent case, where conflicts are
ignored as possible at the update level.

In fact, such systems suffer from another known problem, which is security. This
problem is not considered by the current work, which mainly focuses on another problem
in a different scope. Therefore, for future work, the authors plan to enhance the current
work by adding a new component that complies, corrects, or prevents in some way the
cyberattacks that could occur in these transactions.

Author Contributions: Conceptualization, W.E., M.F. and H.A K.; Methodology, S.S.S., 1.S.A., M.K.H.,
R.A.T. and H.A.K,; Software, I.S.A. and M.K.H.; Validation, M.K.H., W.E., R.A.T. and H.A K.; Formal
analysis, S.S.S., IL.S.A.,, M. KH.,, WE., RA.T, ME and HAK. Investigation, M.K.H., WE., M.F.
and H.A K.; Resources, S.S.S., I.S.A., R A.T. and M.F,; Data curation, W.E.; Writing—original draft,
S.S.S. and I.S.A.; Writing—review & editing, M.K.H., WE., R A.T. and M.F; Visualization, S.S.S.;
Supervision, S.5.S., M.F. and H.A K; Project administration, 5.S.S. and H.A.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yohan, A.; Lo, N.-W,; Santoso, L.P. Secure and Lightweight Firmware Update Framework for IoT Environment. In Proceedings of
the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 15-18 October 2019.

2. Saleh, S.S.; Mabrouk, T.E; Tarabishi, R.A. An improved energy-efficient head election protocol for clustering techniques of
wireless sensor network. Egypt. Inform. J. 2021, 22, 439-445. [CrossRef]

3. Mi, X. The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree. Comput. Intell. Neurosci. 2022, 2022,
7022168. [CrossRef] [PubMed]

4. Frey, D.; Mostefaoui, A ; Perrin, M.; Roman, P-L.; Taiani, F. Differentiated Consistency for Worldwide Gossips. IEEE Trans. Parallel
Distrib. Syst. 2023, 34, 1-15. [CrossRef]

5. Salem, R.; Saleh, S.S.; Abdul-Kader, H. Scalable Data-Oriented Replication with Flexible Consistency in Real-Time Data Systems.
Data Sci. J. 2016, 15, 4. [CrossRef]

6. Goyal, R;; Patel, R.B.; Bhaduria, H.S.; Prasad, D. An efficient data delivery scheme in WBAN to deal with shadow effect due to
postural mobility. Wirel. Pers. Commun. 2019, 105, 129-149. [CrossRef]

7. Abraham, I.; Malkhi, D.; Nayak, K.; Ren, L.; Yin, M. Sync HotStuff: Simple and Practical Synchronous State Machine Replication.
In Proceedings of the 41st IEEE Symposium on Security and Privacy, Virtual, 18-20 May 2020.

8. Goyal, H.R.; Joshi, M. The clock synchronization of IOT devices of energy efficient data communication in IOT. Comput. Integr.

Manuf. Syst. 2022, 28, 91-98.

https://doi.org/10.1016/j.eij.2021.01.003
https://doi.org/10.1155/2022/7022168
https://www.ncbi.nlm.nih.gov/pubmed/35634074
https://doi.org/10.1109/TPDS.2022.3209150
https://doi.org/10.5334/dsj-2016-004
https://doi.org/10.1007/s11277-019-06997-5

Electronics 2023, 12, 4708 15 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Hirsch, C.; Davoli, L.; Grosu, R.; Ferrari, G. DynGATT: A dynamic GATT-based data synchronization protocol for BLE networks.
Comput. Netw. 2023, 222, 109560. [CrossRef]

Saranya, N.; Geetha, K.; Rajan, C. Data replication in mobile edge computing systems to reduce latency in Internet of Things.
Wirel. Pers. Commun. 2020, 112, 2643-2662. [CrossRef]

Salem, R.; Saleh, S.; Abdul-Kader, H. Intelligent Replication for Distributed Active Real-Time Databases Systems. Int. Arab.]. Inf.
Technol. 2018, 15, 505-513.

Guo, J.; Li, C.; Luo, Y. Fast replica recovery and adaptive consistency preservation for edge cloud system. Soft Comput. 2020, 24,
14943-14964. [CrossRef]

Feng, Y.; Liu, Z; Zhao, Y,; Jin, T.; Wu, Y,; Zhang, Y.; Cheng, J.; Li, C.; Guan, T. Scaling large production clusters with partitioned
synchronization. In Proceedings of the 2021 USENIX Annual Technical Conference, Virtual, 14-16 July 2021; pp. 81-97.

Han, Y,; Niyato, D.; Leung, C.; Kim, D.I.; Zhu, K; Feng, S.; Shen, X.; Miao, C. A Dynamic Hierarchical Framework for IoT-Assisted
Digital Twin Synchronization in the Metaverse. IEEE Internet Things]. 2023, 10, 268-284. [CrossRef]

Rocket, T.; Yin, M.; Sekniqi, K.; van Renesse, R.; Sirer, E.G. Scalable and probabilistic leaderless BFT consensus through
metastability. arXiv 2020, arXiv:1906.08936.

Enes, V.; Almeida, P.S.; Baquero, C.; Leitao, J. Efficient synchronization of state-based CRDTs. In Proceedings of the 2019 IEEE
35th International Conference on Data Engineering (ICDE), Macao, China, 8-11 April 2019; pp. 148-159.

Venkatraman, S.; Overmars, A.; Fahd, K.; Parvin, S.; Kaspi, S. Security Challenges for Big Data and IoT. In Proceedings of the 2020
2nd International Conference on Big Data Engineering and Technology, Singapore, 3-5 January 2020; pp. 1-6. [CrossRef]
Gustavsson, S.; Andler, ES. Decentralized and Continuous Consistency Management in Distributed Real-Time Databases with
Multiple Writers of Replicated Data. In Proceedings of the Workshop on Parallel and Distributed Real-Time Systems 2005
(IPDPS’05), Denver, CO, USA, 4-5 April 2005.

Khubhro, S.A.; Haider, Z.; Memon, K. Adaptive routing protocol for wireless body area networks with heterogeneous nodes.
J. Netw. Commun. Emerg. Technol. 2018, 8, 6-12.

Xu, C.; Sharaf, M.A.; Zhou, X.; Zhou, A. Quality-aware schedulers for weak consistency key-value data stores. Distrib. Parallel
Databases 2014, 32, 535-581. [CrossRef]

Yang, K.; Wang, B.; Dan, W.W. A Dynamic On-demand Updating Algorithm of Data Freshness in Vehicle Control System. Adv.
Inf. Sci. Serv. Sci. 2011, 3, 44-51.

Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management at Google with Borg.
In Proceedings of the Tenth European Conference on Computer Systems, Bordeaux, France, 21-24 April 2015.

Jiantao, W.; Song, H.; Kam-Yiu, L.; Aloysius, K. Maintaining data temporal consistency in distributed real-time systems. Real-Time
Syst. 2012, 48, 287-429.

Said, A.; Sadeg, B.; Ayeb, B. The DLR-ORECOP Real-Time Replication Control Protocol. In Proceedings of the 2009 IEEE
Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain, 22-25 September 2009.

Pereira, M.M.; Frazzon, M. A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail
supply chains. Int. |. Inf. Manag. 2021, 57, 102165. [CrossRef]

Liu, C.M.; Lai, C.C. A group-based data-driven approach for data synchronization in unstructured mobile P2P systems. Wirel.
Netw. 2018, 24, 2465-2482. [CrossRef]

Skiadopoulos, K.; Tsipis, A.; Giannakis, K.; Koufoudakis, G.; Christopoulou, E.; Oikonomou, K.; Kormentzas, G.; Stavrakakis, L.
Synchronization of data measurements in wireless sensor networks for IoT applications. Ad Hoc Netw. 2019, 89, 47-57. [CrossRef]
Beke, T.; Dijk, E.; Ozcelebi, T.; Verhoeven, R. Time Synchronization in IoT Mesh Networks. In Proceedings of the 2020 International
Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20-22 October 2020; pp. 1-8.
[CrossRef]

Wang, H.; Lu, R.; Peng, Z.; Li, M. Clock synchronization with partial timestamp information for wireless sensor networks. Signal
Process. 2023, 209, 109036. [CrossRef]

Darabkh, K.A.; Amro, O.M.; Al-Zubi, R.T.; Salameh, H.B.; Saifan, R. JavaSim-IBFD-CRNSs: Novel java simulator for in-band
Full-Duplex cognitive radio networks over Internet of Things environment. J. Netw. Comput. Appl. 2020, 172, 102833. [CrossRef]
Nikitin, K.; Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Khoffi, I.; Cappos, J.; Ford, B. Chainiac: Proactive software-
update transparency via collectively signed skipchains and verified builds. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security 17), Vancouver, BC, Canada, 16-18 August 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.comnet.2023.109560
https://doi.org/10.1007/s11277-020-07168-7
https://doi.org/10.1007/s00500-020-04847-2
https://doi.org/10.1109/JIOT.2022.3201082
https://doi.org/10.1145/3378904.3378907
https://doi.org/10.1007/s10619-013-7136-4
https://doi.org/10.1016/j.ijinfomgt.2020.102165
https://doi.org/10.1007/s11276-017-1481-6
https://doi.org/10.1016/j.adhoc.2019.03.002
https://doi.org/10.1109/ISNCC49221.2020.9297296
https://doi.org/10.1016/j.sigpro.2023.109036
https://doi.org/10.1016/j.jnca.2020.102833

	Introduction
	Related Work
	The Proposed Approach
	Mathematic Formulation
	The Assumptions
	The Proposed Framework
	On-Demand Synchronization Algorithm
	Complexity Analysis

	Experiments and Results
	Transaction Miss Ratio (MR)
	The Number of Committed Transactions
	Total Transaction Delay
	Synchronization Rate

	Conclusions
	References

