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Abstract: As a branch of sentiment analysis tasks, emotion recognition in conversation (ERC) aims
to explore the hidden emotions of a speaker by analyzing the sentiments in utterance. In addition,
emotion recognition in multimodal data from conversation includes the text of the utterance and its
corresponding acoustic and visual data. By integrating features from various modalities, the emotion
of utterance can be more accurately predicted. ERC research faces challenges in context construction,
speaker dependency design, and multimodal heterogeneous feature fusion. Therefore, this review
starts by defining the ERC task, developing the research work, and introducing the utilized datasets
in detail. Simultaneously, we analyzed context modeling in conversations, speaker dependency,
and methods for fusing multimodal information concerning existing research work for evaluation
purposes. Finally, this review also explores the research, application challenges, and opportunities
of ERC.

Keywords: emotion recognition in conversation; speaker dependency; context construct; fusion
method; feature extraction; multimodal data

1. Introduction

Sentiment analysis is the study of human attitudes and feelings in specific situations,
focusing on understanding the emotions expressed by humans through the analysis of
new aspects of human speech, voice, facial expressions, and behavior. Sentiment analysis
typically identifies positive, negative, and neutral emotions. In contrast, emotion recogni-
tion aims to discern individuals’ more nuanced emotions, such as hatred, joy, and disgust.
The transmission of human emotions usually involves multiple sensory channels, such as
hearing, vision, touch, and taste. Researchers utilize diverse modalities to convey emotional
information, including text, images, audio, EEG(Electroencephalogram signals), etc. They
further improve the effectiveness of multimodal emotional representation through meth-
ods like maximizing mutual information, difference learning, and evaluating consistency.
They are committed to the multimodal recognition of multichannel human emotional
signals to judge a person’s emotional state more comprehensively and accurately. Emotion
recognition covers text, audio, and video modalities. Compared to traditional sentiment
analysis, ERC does not analyze utterances in isolation. Instead, it combines the context and
dependency between speakers to track their emotional state within the conversation.

ERC research focuses on effective context modeling, speaker dependency, and fea-
ture fusion methods in multimodal data settings. Context modeling approaches typically
use Graph Neural Networks(GNNs) [1], long short-term memory (LSTM) [2], and other
structures to understand the relationships between speakers better. Multimodal feature
fusion uses criteria such as mutual information maximization, differences, and consistency
to strengthen and optimize its ability to fuse modal features effectively. In multimodal
ERC algorithms, researchers primarily employ three core algorithmic steps: feature ex-
traction, fusion, and classification. Feature extraction is responsible for extracting features
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from multimodal conversations, while feature fusion employs various methods to facil-
itate and guide the integration of these features. The final step involves classifying the
emotions of utterance in conversation. Let us take the multi-speaker conversation in the
MELD(Multimodal EmotionLines Dataset) [3] as an example in Figure 1. There are complex
interactions between speakers in a conversation, and each conversation contains text, audio,
and video.

Oh yeah, I'm sure. 

Was it...?

Boy scouts could 
have camped 
under there.

"Ooo," what?

The actress!

Thanks Rach.

You have to tell her!

So what are you 
gonna do?

1

2

3

4

5

6

7

8

Figure 1. The Framework Used for Multimodal Emotion Recognition in Conversation.

As ERC is an emerging research field, an overview of its research progress and chal-
lenges, the available datasets, and the utilized benchmarks are helpful for future ERC
research. Therefore, in this paper, we employ the current research resources to analyze and
model the various factors that influence emotional dynamics in conversations. Furthermore,
our paper not only provides insights into the current challenges and latest research findings
in the field of ERC but also highlights future challenges and potential approaches to address
these challenges. Our work aims to:

(1) We Summarize and analyze the relevant work about emotion recognition in con-
versation. Our work helps researchers fully understand the mainstream methods,
motivations, and methods in this research field and provides detailed information on
the available resources for beginners to learn.

(2) We classify the existing algorithms from three essential perspectives that affect mul-
timodal emotion recognition tasks: speaker dependence, contextual context, and
multimodal data fusion. We provide a detailed description and analysis of these
methods, thoroughly evaluating each.
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(3) We introduce real-life emotion recognition application scenarios and explain some
problems encountered in these real scenarios. Furthermore, we elaborate on the
challenges faced and suggest future research directions.

2. Emotion Categorization

Sentiment analysis is defined as the ability to perceive, integrate, and understand
human emotions, and its corresponding classification system is an organizational structure
for systematically classifying human emotions. An effective emotion classification system
should be able to scientifically contain and reasonably classify and describe the various
emotions that human beings possess. In the research field of sentiment analysis, some
familiar and mainstream sentiment classification models are available, including the Ekman
model [4], the pleasure, arousal, and domination (PAD) model [5], and the emotional wheel
model of Plutchik [6]. Utilizing these taxonomic systems enables the intricate and elusive
range of human emotions to be categorized into distinct categories, dimensions, and
facets, facilitating the capture and comprehension of the diverse attributes inherent in
each emotion. During the dialogue process, a machine can accurately perceive the user’s
emotions with the help of its estimated emotional classification mechanism and perform
corresponding processing steps, which significantly enriches the content of the dialogue
and makes the user respond with empathy, thereby improving the user’s emotions.

Regarding discrete emotion classification systems, researchers believe that emotion is
a psychological and physiological process caused by the cognition of developmental events
and factors that trigger changes in internal and external psychological signals, thus dividing
human emotions into limited categories, including emotions such as happiness, sadness,
anger, disgust, and surprise, among others. According to different theories, two to eight ba-
sic emotions can be used to divide the standard of emotion classification. Ekman proposed
seven characteristics for distinguishing between basic emotions and emotional phenomena:
autonomous evaluations, specific antecedent events that are present in other primates,
phenomena with rapid onsets, emotions with short durations, emotions with unconscious
or involuntary appearances, emotions reflected in unique physiological systems such as
the nervous system, and facial expressions. R. Plutchik proposed a Plutchik’s wheel model
composed of eight emotions based on the observation and research of human emotion
expressions and the generalizability of emotions. This model is shown in Figure 2 below.

Figure 2. Plutchik’s Wheel Model.
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Discrete models classify sentiment into a limited number of discrete categories, which
are limited in capturing similar sentiments and subtle variations. The dimensional emotion
model provides a more detailed emotion description and measurement method. By treating
emotion as a point in a multidimensional space and mapping the emotion to a continuous
frequency spectrum, we can compare emotional states more intuitively and accurately
through vectors and describe the complexity and variety of emotions. The dimensional
emotion model in two-dimensional space typically utilizes the arousal-valence mode [7].
Valence reflects positive or negative evaluations of the body’s intensity or activation of
emotions. Arousal reflects an individual’s will, low arousal indicates less energy or a lower
emotion degree. This model is shown in Figure 3 below.

Figure 3. Arousal-Valence Mode.

Afterward, Mehrabian and Russell [8] proposed the most famous three-dimensional
emotional model, the PAD model, through research on environmental psychology methods
and the feeling-thinking-action model. In the PAD model, pleasure refers to the positive
or negative feelings of emotions, arousal refers to the intensity or degree of emotional
activation, and dominance refers to the degree to which emotions control the behavior of
individuals. Considering emotion changes across these three dimensions, the PAD model
provides a more comprehensive framework for emotion classification and understanding.
This model is shown in Figure 4 below.

Figure 4. The PAD 3D Emotion Model.
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The PAD model is widely used in emotion-related research, and it helps people
describe and explain emotional experiences more accurately. The model can better capture
emotions’ subtle changes and complexities and provide valuable tools and theoretical
foundations for sentiment analysis, user experience design, and psychological research.

3. Datasets

In this section, we introduce the datasets used for emotion recognition in conversation
in detail, provide comprehensive information about these datasets, and describe the creation
processes of the datasets, including the data collection and annotation steps. In addition,
we provide the source of each dataset, ensuring the reliability and verifiability of the data.

3.1. MELD

The MELD dataset is based on video in the TV series ’Friends,’, including multi-person
conversations among nine main characters. To ensure that only single-speaker speech and
images are included in the conversation, scenes containing only one speaker are extracted
from the original videos. The entire dataset contains 1433 dialogues and 13,708 utterances.
Each utterance has two annotation levels: the first annotation is one of seven emotions
(neutral, happy, surprised, sad, angry, disgusted, or fearful), and the second level is one
of three sentiments (positive, negative, or neutral). Non-neutral emotions account for
more than 53% of the overall dataset. The MELD dataset is widely used in multimodal
dialogue emotion recognition because it contains unambiguous facial expressions and
speech emotions, providing more detailed information for emotion classification. However,
one disadvantage of this dataset is that the conversation content is usually script-based,
increasing the difficulty of emotion recognition. Nevertheless, the MELD dataset still
provides researchers with a valuable resource for exploring and researching multimodal
emotion recognition in conversation.

3.2. IEMOCAP

IEMOCAP [9] is an emotion recognition dataset recorded by the SAIL Laboratory
of the University of Southern California. This dataset covers the conversation scripts of
10 professional actors, including text and emotional expression information. The dataset is
divided into five sessions, each containing a male actor and a female actor. Each conversa-
tion consists of a scripted and freely interactive part where the actors interact in specific
situations. In total, the dataset contains 151 conversations with 7433 utterances. Each
utterance is annotated with one of six emotions: neutral, happy, sad, angry, frustrated, or
excited, with non-neutral emotions accounting for 77% of the dataset. One drawback of this
dataset is that, despite encompassing annotations for six distinct emotions, only four are
typically utilized in training and recognition.This preference arises due to the relative ease
in learning and distinguishing these four emotions compared to the others. The IEMOCAP
dataset provides a valuable resource for researchers to explore and study ERC. It features
authentic conversation and emotional expressions with professional actors, making the
dataset more realistic and diverse.

3.3. DailyDialog

DailyDialog [10] is a high-quality multi-turn conversation dataset containing only
plain text with less noise. The conversation in this dataset reflects dialogue scenes con-
cerning different topics in daily life without a fixed speaker identity. In addition to 7 types
of emotional annotations, the dataset also provides ten types of topic annotations and
four types of dialogue behavior annotations. The entire dataset includes 12,218 conversa-
tions containing 103,607 sentences. The emotion annotations cover the following seven
emotions: neutral, happiness, surprise, sadness, anger, disgust, and fear. Among them,
non-neutral emotions account for 16.8% of the dataset. While DailyDialog may have limited
applications in emotion recognition, it offers significant advantages, notably its expansive
data scale. Nevertheless, a notable limitation of this dataset is the excessive proportion of
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neutral emotions, which poses specific challenges to the task of emotion classification and
may necessitate reduction for improved performance. Overall, the DailyDialog dataset
provides researchers a valuable resource for exploring multi-turn emotion recognition and
related fields.

3.4. EmoryNLP

The EmoryNLP [11] dataset was created by extracting text from the first four seasons
of the TV series ‘Friends’ and adding emotion annotations. This dataset constructs a
corpus containing 897 conversation utterances and 12,606 utterances from 97 TV episodes,
providing variety. Each utterance is labeled with one of seven emotions: sad, mad, scared,
powerful, peaceful, joyful, and neutral. The EmoryNLP dataset provides researchers with
an exciting resource for emotion recognition and related research. This dataset uses TV
drama conversations to provide rich emotional expressions and diverse emotional scenes,
demonstrating a new perspective for exploring sentiment analysis.

3.5. EmotionLines

The EmotionLines [12] dataset is derived from two different data sources. The first
data source includes multi-person conversations extracted from the TV series ’Friends’, and
the second data source consists of two-person conversations from private Facebook chat
logs. The SocialNLP 2018 EmotionX Challenge used this dataset. The dataset can divided
into two independent parts, each containing 1000 conversations and 29,245 sentences. The
dataset has seven emotions: neutral, happiness, surprise, sadness, anger, disgust, and fear.
Among them, non-neutral emotions account for 44.5% of the dataset. This dataset combines
two conversational scenarios, TV dramas, and private chat records containing multi-person
and two-person conversations.

3.6. EmoContext

This dataset is constructed from two-person conversations in plain text, with three
utterances in each conversation, and only the last utterance has an emotional label.SemEval-
2019 Task 3 [13] used this dataset. The dataset contains thirty-eight thousand four hundred
twenty-one dialogues with 115,263 sentences. Four types of emotions are marked: happi-
ness, sadness, anger, and other; non-neutral emotions account for 42.8% of the dataset. Its
advantage is that the data scale is significant, and its disadvantages are that the dialogue
length is too short, and only the last sentence is marked.

3.7. M3ED

Multimodal Multiscene, Multilabel Emotional Dialogue (M3ED) [14] is a large-scale,
high-quality, multimodal, multiscene, multilabel emotional conversation dataset. The
dataset includes three modalities: voice, text, and video. More than 900 conversation clips
selected from 56 TV dramas, each utterance is marked with multi-emotional labels (for
a total of 24,449 sentences) using the six mainstream essential emotional labels (happy,
surprised, sad, angry, disgust, and fear) and a class of neutral emotions (for a total of seven
discrete emotions). The inter-annotator agreement score reaches 0.59, significantly higher
than the 0.43 of the MELD dataset and the 0.48 of the IEMOCAP dataset. In addition, this
dataset is also the first multimodal interaction dataset in China, which has an essential
supplementary role in the field of affective computing and is vital for promoting cross-
cultural emotion analysis and recognition research.

We provide detailed statistics in Table 1, including the number of data samples, the
conversation length, and the number of participants in each dataset. This information can
assist researchers in assessing the comprehensiveness and inclusivity of various datasets,
thereby enhancing their suitability for emotion recognition in conversation research. We
also conduct a detailed analysis of the scale and classification of each emotion category
in the datasets in Table 2, including the number of categories and the proportion of each
emotion category, and explore the balance and distribution among the categories. Such
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an analysis can help researchers understand the importance and attention of the different
emotions in each dataset and provide a valuable reference for further emotion recognition
research. Through these detailed introductions and analyses, readers can fully understand
the characteristics and usability of the currently available emotion recognition datasets.
These provide an essential foundation and guidance for subsequent research work.

Table 1. Comparison Among different emotion recognition datasets.

Dataset Data Type Train Dev Test

MELD Utterance 9989 1109 2610
Dialogue 1039 114 280

IEMOCAP Utterance 5810 1623
Dialogue 120 31

DailyDialog Utterance 87,832 7912 7823
Dialogue 11,118 7912 7863

EmoryNLP Utterance 9934 1344 1328

Emotion Lines Utterance 10,561/10,733 1178/1202 2764/2807
Dialogue 720/720 80/80 200/200

EmoContext Utterance 30,160 2755/5509

M3ED Utterance 17,427 2871 4201
Dialogue 685 126 179

Table 2. Label distribution statistics of different emotion recognition datasets.

Label MELD IEMOCAP Daily
Dialog

Emory
NLP

Emotion
Lines

Emo
Context M3ED

Neutral 6436 1708 85,572 3776 6530 - 10,028
Happiness/Joy 2308 648 12,885 2755 1710 4669 2287

Surprise 1636 - 1823 - 1658 - 1051
Sadness 1002 1084 1150 844 498 5838 3957
Anger 1607 1103 1022 1332 772 5954 5234

Disgust 361 - 353 - 338 - 1497
Fear 358 - 74 1646 - - 395

Frustration - 1849 - - - - -
Excitement - 1041 - - - - -

Peace - - - 1190 - - -
Powerful - - - 1063 - - -

Other - - - - - 21,960 -

4. Feature Extraction

A rich repository of emotional content can be discerned from the various modalities of
data generated within a conversation, including text, images, and video. Textual elements
encapsulate emotional expressions within speech, images document facial expressions
and bodily gestures, video records the dynamic evolution processes of emotional displays,
and speech captures a spectrum of emotions through intonation and verbal cues. These
different modalities are interrelated and complement each other’s information. Feature
extraction is a critical step of ERC. Effectively extracting emotional features from data can
help computer systems and algorithms better understand emotions and represent and
utilize multimodal data, thus achieving better results in sentiment analysis and emotion
recognition tasks. We summarized the feature extraction techniques in multimodal models
and listed them in Table 3, and listed extraction tools for unimodal ERC in Table 4.
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Table 3. The Feature extraction techniques employed within multimodal models.

Model Textual Visual Acoustic

MMGCN TextCNN DenseNet OpenSmile
DialogueTRM BERT 3D-CNN OpenSmile

Emocaps BERT 3D-CNN OpenSmile
MMT RoBERTa DenseNet OpenSmile
CMN TextCNN 3D-CNN OpenSmile
ICON TextCNN 3D-CNN OpenSmile

COGMEN sBERT OpenFace OpenSmile/LibROSA
MMDFN TextCNN DenseNet OpenSmile

GraphMFT TextCNN DenseNet OpenSmile
MMDAG RoBERTa DenseNet OpenSmile

Multilogue-Net GloVe Facet OpenSmile
C-LSTM TextCNN 3D-CNN OpenSmile

Table 4. The feature extraction techniques employed within unimodal models.

Model Textual

MuCDN RoBERTa
DialogueRNN Word2vec

EmoBERTa RoBERTa
DialogueGCN GloVe

DAG-ERC RoBERTa/BERT
SGED RoBERTa

S+Page [15] GloVe
HiTrans BERT

4.1. Textual Feature Extraction

When incorporating textual data into machine learning or deep learning frameworks,
it is imperative to acknowledge that such data frequently exhibit an unstructured nature. It
is necessary to conduct text feature extraction to adapt these data for use in these domains,
which will convert the text data into a vector representation. The earliest text feature
extraction method that emerged was the bag-of-words model [16]. This model is based
on segmenting the utterances in the given corpus and creating a vocabulary where each
word gives a unique index. The utterances are converted into a one-hot encoding vector,
represented by placing the words in the bag of words at the corresponding index positions
as 1 s. However, this approach must consider the order and contextual relationships
between the words in a sentence. Moreover, as the corpus expands, the feature vectors
corresponding to different sentences become high-dimensional and sparse, leading to
computational and processing difficulties.

With the continuous progress exhibited by neural network technology, the word
embedding technique has been widely used in text feature extraction tasks. This technique
effectively reduces the computational burden imposed on the utilized model by calculating
the similarities between words and mapping similar words into low-dimensional and
dense vectors. Among the many available word embedding methods, Word2vec [17] is the
most widely used approach. Word2vec is a word vector generation model that generates
high-quality word vectors by training on a large-scale corpus. Depending on the utilized
training method, Word2vec techniques can be classified into two categories: continuous
bag-of-words (CBOW) and skip-gram models [18]. CBOW models require a word to be
predicted based on the context of the current word, whereas the opposite is true for skip-
gram models. These methods can capture the correlations between words and generate
word vectors with low dimensionality and high density, thus exhibiting more generality.

In recent years, large-scale text pre-trained models (e.g., bidirectional encoder repre-
sentations from transformers (BERT) [19] and RoBERTa [20]), which have achieved excellent
results in numerous natural language processing (NLP) tasks, have gradually emerged
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and become mainstream applications. BERT employs two critical tasks in its training
process: masked language modeling (MLM) and next sentence prediction (NSP). These two
tasks improve language models’ comprehension of intersentence relations and contextual
associations. RoBERTa, built upon BERT’s foundation, was fine-tuned for the Masked
Language Modeling (MLM) task by removing the Next Sentence Prediction (NSP) task and
undergoing training on a more extensive and more diverse textual dataset. As opposed
to BERT, which fixes masking markers in different training rounds, RoBERTa reselects the
positions of the masking markers in every round; this practice endows the model with
a more robust understanding of contextual relations. Due to the solid representational
capabilities of pre-trained language models, they have become the most commonly chosen
tools for representation learning by researchers. Compared to the traditional method of
extracting word and sentence vectors, pre-trained models based on large-scale precondition
training make the sentence features of the given text more semantic.

4.2. Visual Feature Extraction

Extraction of visual features involves gathering information from videos, which in-
cludes aspects like facial expressions, head movements, and body postures. This process is
broadly categorized into two primary approaches. One approach involves the utilization
of neural networks, specifically convolutional neural networks (CNNs), as introduced
by Krizhevsky et al. in their work on ImageNet [21]. These networks are employed to
conduct convolutional computations on video data, in which consists of multiple sequential
image frames, deriving continuous visual features. For example, Tran et al. [22] proposed
an efficient and straightforward deep three-dimensional CNN (3D-CNN) for capturing
spatiotemporal features from an input video. Compared with the traditional 2D-CNN, the
3D-CNN adds a depth channel, which can be either a video frame or a different part of a
stereo image, which makes the 3D-CNN more suitable for some scenes.

The second method employs specific software libraries, namely, OpenFace [23] and
Facet [24]. OpenFace, the prevailing tool in current practice, initially conducts frame-level
processing on the input video to extract a comprehensive set of features. These features
encompass 68 key facial landmarks, 17 facial action units, and head posture, orientation,
and eye gaze measurements. The user selects features based on a predetermined frame rate
corresponding to the visual attributes in the current video. In addition, Facet extensively
extracts visual features from the video, resulting in a more precise retrieval of facial action
unit characteristics than OpenFace, which excels primarily in facial detection tasks.

These methodologies exhibit significant advantages and potential for practical appli-
cations in visual feature extraction, allowing researchers diverse options to cater to their
distinct research requirements. Facet and OpenFace are frequently selected as the primary
visual feature extraction tools across a broad spectrum of emotion recognition and classifi-
cation tasks. This preference arises from their capacity to delve deeply into the information
encapsulated within the visual modality by adopting a multifaceted approach. Conse-
quently, researchers can effectively pinpoint and preserve vital task-related information.

4.3. Audio Feature Extraction

In emotion recognition during conversational interactions, acoustic signals assume a
pivotal role. Audio feature extraction focuses on capturing key signal features from the
sound of the current sentence that can represent emotions, including time-domain features
such as the root-mean-square energy and zero-crossing rate and frequency-domain features
such as mel-scale cepstral coefficients (MFCCs). These sound features help reveal the emo-
tional fluctuations behind sounds and enrich the diversity of emotion recognition. Current
dominant techniques for audio feature extraction primarily rely on open-source libraries,
including widely used ones like LibROSA [25], openSMILE [26], and COVAREP [27].

LibROSA is a commonly used audio processing library that extracts acoustic fea-
tures from audio data by default at a sampling rate of 22,050 Hz. These features in-
clude 1-dimensional logarithmic fundamental frequencies, 20-dimensional MFCCs, and
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12-dimensional constant Q spectral coefficients. In addition, LibROSA also supports manual
settings for extracting other features, such as zero-crossing rates. COVAREP is another au-
dio feature extraction library that can extract various audio features. Its internal resampling
speed is fast, and its feature extraction process often takes a shorter period. The openSMILE
toolkit is a modular and flexible feature extraction tool capable of extracting a wide range of
audio features. In addition, openSMILE also provides several statistical functions, such as
the second-order mean, the discrete cosine transform, and linear predictive coding, which
can further process the features extracted from audio data.

These open-source libraries offer a wide range of functionalities and flexibility. They
empower us to choose appropriate feature extraction techniques. We can also use these
libraries to process the extracted features further, enhancing audio features’ accuracy and
richness of information for multimodal dialogue emotion recognition tasks.

5. Methods

Two main research directions involve traditional ERC algorithms. First, emotions
are affected by context in conversation, so the utilized model must construct this context
to provide richer information. Second, emotions are also related to the speaker’s state,
but it is challenging to model the emotional dependencies between speakers effectively.
Moreover, as researchers apply multimodal data in the context of emotion recognition
during conversations, they are dedicated to leveraging multimodal information to advance
the progress of this field. This multimodal information includes the linguistic content
of conversations, a speech’s vocal characteristics, and a speaker’s facial expressions. An
effective multimodal fusion mechanism can alleviate the deficiency of unimodal and obtain
richer emotional information from different perspectives. This chapter focuses on three
core research directions of ERC: methods for constructing dialogue context, modeling the
dependencies between speakers, and fusing multimodal representations. By delving into
these aspects, we can broaden our research horizon and bring new ideas to ERC.

5.1. Context Construction

Researchers utilize diverse methodologies and techniques, including sliding windows
and hierarchical models, to thoroughly investigate context modeling approaches. This
enables them to harness the surrounding utterances effectively. In this section, we explore
the context modeling strategies and skills of different models to help researchers better
understand the applications and effects of technical methods in emotion recognition tasks,
and we demonstrate the comparative impact of various models in Table 5.

Table 5. Comparison of the performance of aforementioned methods on two primary datasets,
IEMOCAP and MELD, with Wa-F1 indicating the weighted average F1 score. For more detailed
insights, please refer to the paper.

Happy Sad Neutral Angry Excited Frustrated Wa-F1 Wa-F1

DialogueRNN 33.83 69.83 57.76 62.5 64.45 59.46 59.89 57.03
C-LSTM 47 79.9 56.40 62.3 71.4 59.25 59.19 -
DialogueGCN 42.75 84.54 43.54 64.19 63.08 66.99 64.18 58.1
EmoCaps 71.91 85.06 64.48 68.99 78.41 66.76 71.77 64

5.1.1. Sequential Models

The preliminary endeavors in modeling the inter-dependencies among contextual
utterances encompassed sequential models, such as LSTM, recurrent neural networks
(RNNs) [28], and gated recurrent units (GRUs) [29]. These models iteratively extract histor-
ical utterances and retain the sequential organization of the conversational components,
ensuring the suitability of the models for preserving the chronological continuity of the
conversation. Wollmer et al. [30] adopted an LSTM-based RNN that could explicitly learn
to perform clustering in the emotional space and simulate contextual knowledge to achieve
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improved performance. Nevertheless, in models such as LSTM, constructing a context
capable of distinguishing between individual speakers still needs to be addressed.

Majumder et al. [31] posited that the emotional attributes in a conversation are contin-
gent upon three primary factors: the speaker, the contextual information provided by the
preceding utterance, and the contextual information embedded within the prior utterance.
Hence, DialogueRNN incorporates these three factors, employing three GRUs to encode
the overarching context (global state), participant-specific context (party state), and emo-
tional nuances (emotion representations). The DialogueRNN model can comprehensively
consider this information and perform joint coding for emotion recognition tasks through
such a division of labor.

An alternative Transformer-Based Context and Speaker-Sensitive Model context mod-
eling approach involve utilizing expansive, pre-trained language models such as BERT and
RoBERTa to comprehend the contextual intricacies in conversation. Researchers leverage
these models to augment the process of integrating contextual information. Transformer-
Based Context- and Speaker-Sensitive Model(HiTrans) [32] combines multiple utterances
marked with [CLS] and packs them into an input sequence. An utterance sequence with a
length exceeding 512 first divides itself into blocks, passes through BERT, and then passes
through another transformer. The low-level transformer generates the current discourse
representation, and the high-level transformer further generates global contextual infor-
mation embedded in the discourse representation. Kim et al. [33] integrates the speaker’s
identity into the context, enriching the context extracted by the transformer model. Al-
though pre-trained on massive data texts provides a large-scale pre-trained model with
more powerful semantic capabilities, difficulties concerning computing resources and
context sequence length limitations still need to be solved.

Furthermore, the conventional sequential modeling approach needs to be improved
in its ability to capture the impact of prior states on the current utterance, as it needs to pay
more attention to the influence of future states on the present situation. This approach must
fully exploit the bidirectional dependencies inherent in contexts, prompting researchers
to shift their focus toward bidirectional historical modeling. A bidirectional model can
represent the history from the past to the present and from the present to the past. It
simultaneously considers the forward and backward information in the dialogue history,
facilitating a more comprehensive understanding of the context.

Researchers have employed bidirectional RNNs, LSTM networks, and transformer
models to establish chronological records for bidirectional dialogue modeling. C-LSTM [34]
takes the features of each utterance as its inputs and processes them through a bidirectional
LSTM unit. One approach involves sequentially processing utterances in the forward
direction, while another entails reverse sequential processing. This methodology enables
the model to concurrently incorporate the contextual information preceding and following
each utterance, subsequently merging the resulting output features from both directions
to construct a holistic, contextual feature. Bidirectional LSTM models capture the context
of utterances better than unidirectional LSTMs. Models such as a bidirectional GRU
(BiGRU) [35] and BiTransformer [36] are committed to improving the expression ability of
dialogue history through bidirectional modeling to understand the emotions and context
more comprehensively, and these approaches have achieved specific results in ERC tasks.
The success of this method offers valuable insights for advancing research in emotion
recognition and contextual understanding.

5.1.2. Graph-Based Methods

The primary method for modeling context is stacking utterances, thus incorporating
facial structural constraints to effectively capture extensive, multimodal, and diverse con-
textual information across longer distances. Simultaneously, researchers have observed
that conversation can be construed as innate graph structures. The evident correlations
and inter-dependencies prevail among these sentences. Furthermore, conversation conven-
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tionally involves multi-turn exchanges marked by intricate dependencies and interaction
patterns. The evident correlations and inter-dependencies prevail among these sentences.

These interaction patterns can ideally exploit GNNs’ edges to facilitate the holistic
modeling of the emotional dynamics within the conversation. They were additionally
driven by advancements in human-computer interaction technology and contextual scenar-
ios; diverse node types can be employed within a graph structure for modeling multimodal
conversation data, encompassing the text, audio, and video modalities. Dynamically adapt-
ing to the dimensions and intricacies of conversation, GNNs can process dialogic graphs
with varying dimensions and configurations. This adaptability enables them to capture
finer and more intricate dependencies in interactions.

In graph-based ERC tasks, conventionally, utterances in conversation are represented
as nodes, and predefined composition rules establish the connections. Graph-based re-
search typically centers on utilizing GNNs and Graph Convolutional Networks(GCNs) [37]
within the graph construction paradigm. This approach encompasses the following
principal components.

Node definitions: Nodes represent nodes in a session, and standard graph-based conver-
sations are represented by G = (V, E). When only considering the text modality, the set of
nodes V corresponds to the number of sentences in the conversation, represented as V = N.
However, in cases where the conversation involves multimodal settings, including videos,
audio, and text, the size of the node set V is expanded to 3 N.
Edges: Edge construction relationships mainly depend on the conversation context, such
as the temporal, speaker’s relationship. In contrast, the weight of an edge represents the
strength of the association between two nodes. Ghosal et al. [38] distinguish the links
of utterance nodes according to their temporal relationships for the first time, and this
approach clarifies the characteristics by which other speakers influence the target speaker.
Experiments have proven that it is essential to distinguish between different contexts
and speaker dependencies in relational modeling cases. On this basis, the Multimodal
Fusion via Deep Graph Convolution Network(MMGCN) [39] models relationships under
multimodal dialogue settings.

As depicted in Figure 5, MMGCN establishes two distinct categories of edges that
connect internal interactions within the same modality and interactions across different
modalities. DAG-ERC [40] treat each conversation as a Directed Acyclic Graph(DAG); each
utterance only accepts information from some previous utterances and cannot propagate
information back to itself and the words of its predecessor. However, DAG-ERC focuses on
computing the information flow between utterances and does not consider the interactions
among conversations under the multimodal data setting.
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Figure 2: Framework illustration of the MMGCN based emotion recognition in conversation, which consists of
three key components: Modality Encoder, Multimodal Graph Convolutional Network, Emotion Classifier.

2.3 Graph Convolutional Network

Graph convolutional networks have been widely
used in the past few years for their ability to cope
with non-Euclidean data. Mainstream GCN meth-
ods can be divided into spectral domain methods
and non-spectral domain methods (Veličković et al.,
2017). Spectral domain GCN methods (Zhang
et al., 2019) are based on Laplace Spectral decom-
position theory. They can only deal with undi-
rected graphs. Non-spectral domain GCN meth-
ods (Veličković et al., 2017; Schlichtkrull et al.,
2018; Li et al., 2015) can be applied to both di-
rected and undirected graphs, but consuming larger
computing resource. Recently, researchers have
proposed methods to make spectral domain GCN
deeper without over-smoothing (Li et al., 2019;
Chen et al., 2020). In order to further improve
MMGCN on ERC, we encode the multimodal
graph using spectral domain GCN with deep layers.

3 Method

A dialogue can be defined as a sequence of utter-
ances {u1, u2, ..., uN}, where N is the number of
utterances. Each utterance involves three sources
of utterance-aligned data corresponding to three
modalities, including acoustic (a), visual (v) and
textual (t) modalities, which can be represented as
follows:

ui = {ua
i , u

v
i , u

t
i} (1)

where uai , uvi , uti denote the raw feature represen-
tation of ui from the acoustic, visual and textual

modality, respectively. The emotion recognition in
conversation task aims to predict the emotional sta-
tus label for each utterance ui in the conversation
based on the available information from all three
modalities. Figure 2 illustrates the overall frame-
work of our proposed emotion recognition in con-
versation system, which consists of three key mod-
ules: Modality Encoder, Multimodal Fused Graph
Convolutional Network (MMGCN), and Emotion
Classifier.

3.1 Modality Encoder

As we mentioned above, the dialog context infor-
mation is important for predicting the emotion label
of each utterance. Therefore, it is beneficial to en-
code the contextual information into the utterance
feature representation. We generate the context-
aware utterance feature encoding for each modality
through the corresponding modality encoder. To be
specific, we apply a bidirectional Long Short Term
Memory (LSTM) network to encode the sequential
textual context information for the textual modality.
For the acoustic and visual modalities, we apply a
fully connected network. The context-aware fea-
ture encoding for each utterance can be formulated
as follows:

ht
i = [
−−−−→
LSTM(ut

i, h
t
i−1),

←−−−−
LSTM(ut

i, h
t
i+1)]

ha
i =W a

e u
a
i + bai

hv
i =W v

e u
v
i + bvi

(2)

where uai , uvi , uti are the context-independent raw
feature representation of utterance i from the acous-
tic, visual and textual modalities, respectively. The

Figure 5. Multimodal Fusion via the Deep GCN (MMGCN) Proposed by Hu et al. [39].



Electronics 2023, 12, 4714 13 of 28

On this basis, Xu et al. [41] proposed a multimodal DAG, which transmits information
flows between nodes with the same modality and nodes across modalities. Information
is only allowed to flow from previous utterances to the current utterance, and the cur-
rent utterance is prohibited from passing information to itself or the previous utterances.
Furthermore, due to the importance of the textual modality, this model only allows the
visual and acoustic modalities to convey information to the textual modality, limiting the
interaction and information flow between nonverbal modal features. This approach fur-
ther improves the ability of a directed multimodal dialogue graph to capture multimodal
conversation characteristics.

Weights: In the Edge weight setting, the MMGCN assumes that the higher the similarity
between two nodes is, the more critical the information interaction between them is, so
the edge weight between them is also greater. The MMGCN uses angular similarity to
represent the weights between nodes. The graph comprises two distinct categories of
edges: the connection between the same modality, as exemplified by Equation (1), and the
connection between different modalities, as represented by Equation (2). In these equations,
ni and nj refer to the feature representations of the i-th and j-th nodes within the graph,
respectively. The symbol γ denotes a hyperparameter. The edge weight computation is
performed as follows:

Aij = 1− π arccos(sim(ni, nj)) (1)

Aij = γ(1− π arccos(sim(ni, nj))) (2)

Since the neighboring nodes influence the current utterance node differently, GAT [42] is
used to compute the edge weights. The traditional GAT, as defined in Equations (3) and (4),
computes the scoring functions:

eij = α([Whi, ||, Whj]), j ∈ Ni (3)

Aij =
exp(LeakyReLU(eij))

∑k∈Ni

exp(LeakyReLU(eik)) (4)

eij indicates the importance of the node’s features to node i when incorporating the
graph structure into the mechanism by considering Ni, which represents the neighborhood
of node i in the graph. These values are subsequently normalized across all choices
of j using the softmax function. Furthermore, the attention coefficients remain static in
traditional GAT. Therefore, GATv2 [43] strategically relocates the LeakyReLU activation
function between the weight matrix (W) and the subsequent non-linear layer, followed
by the concatenation before applying a linear transformation with W. Empirical findings
validate that GATv2 yields a more expressive attention mechanism, resulting in enhanced
experimental performance:

Aij =
exp(σ(aωT[Wωxi||Wωxj]))

∑uk∈N(ui)
exp(σ(aT

ω [Wωxi||Wωxk]))
(5)

In this context, xi corresponds to the feature representation of node ui. Both uj and
uk are neighboring nodes of ui. Here, uk ∈ N(ui) represents the neighborhood of ui. ωij
denotes the edge weight between ui and uj, and σ indicates the leaky rectified linear unit
(LeakyReLU) non-linear activation function. Wω and aω are adjustable parameters.

Each modality (e.g., text, sound, and images) uniquely expresses information and
emotions in a multimodal ERC task. In addition to classic modeling methods based on
intra-modal contextual relations and inter-modal interactions, Zhang et al. [44] transforms
the task into a node classification problem; each sub-graph in the graph represents a
conversation, and each node is an utterance in the conversation. In addition, nodes
represent speakers in the whole graph. When constructing an edge, each utterance in
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each conversation is first connected, and the weight of the connecting edge using angular
similarity. Then, each utterance is connected with the corresponding speaker with an edge,
and the weight of the edge is from the inverse speaking frequency of the speaker. Then, the
graph is sent to a two-layer GCN to train and classify its nodes.

Graph-related research has yet to fully explore how to integrate the differences between
different modalities effectively. Therefore, future research should further study a strategy
for fusing multimodal features better to utilize the relationships and complementary
information between different modalities. For example, we can explore how to design a
more accurate weight calculation method to reflect the contributions of different modalities
in ERC tasks.

5.1.3. Transformer-Based Methods

Transformers [45] are widely used in various downstream tasks in NLP(Natural lan-
guage processing technology) due to their powerful sequence modeling and relationship
capture capabilities. The multimodal emotion recognition task focuses mainly on the ability
to represent different modal features and their fusion. Early ERC tasks in multimodal
settings focused on improving the representation capabilities achieved for each modality.
They improved the performance of traditional text-based emotion recognition models
by enhancing the interaction and fusion of features. However, due to the representa-
tion capability differences among different modalities and data heterogeneity, interaction
modeling introduces noise, which blurs the ability to represent multimodal information.
Transformer’s self-attention mechanism can capture the dependencies between utterances,
making it an ideal choice for multimodal interaction modeling and learning that applies to
various tasks and datasets.

DialogueTRM (A Novel Multi-Grained Interactive Fusion) [46], shown in Figure 6 be-
low, explores different emotional behaviors from intra-modal and inter-modal perspectives.
It builds a new layered transformer that can easily switch between sequential and feed-
forward structures according to the contextual preferences within each modality. To achieve
multimodal interaction fusion, it applies neuron- and vector-level feature interactions to
learn the different contributions of individual modalities.

Li et al. [47] propose a new structure named Emoformer to extract multimodal emotion
vectors from different modalities and fuse them with sentence vectors to be an emotion
capsule and obtain emotional classification results through a context analysis model. A
sequence-based approach employs a transformer-based context- and speaker-sensitive EDC
model (Trans). It consists of two transformers. First, a pre-trained bidirectional transformer
encoder generates a global utterance representation. Then, another high-level transformer
captures the global information in the given dialogue, generates a global context, and
combines speaker-sensitive tasks to judge whether sentences belong to the same speaker.

The Main Modal Transformer (MMT) [48] model utilizes a transformer architecture
and consists of two attention mechanisms: cross-modal attention (Cm) and cross-task
attention (Ct). Cross-modal attention learns the fusion relationships between different
modalities. In contrast, cross-task attention learns the relationships between different
tasks (e.g., sentiment analysis and emotion recognition). The main task of the MMT
is to improve its multimodal feature fusion effect. It uses a two-level emotional cue
extractor to extract emotional evidence. In addition, a cross-modal transformer (CMT)
preserves the integrity of the dominant modal features and enhances the representations of
weak modal features. Liu et al. [49] proposed a hierarchical dialog understanding model
named HiDialog, shown in Figure 7, which performs sequence modeling by inserting
unique tokens in conversations and introduces multi-turn and turn-level attention to
learn embedding representations. In addition, the model utilizes a heterogeneous graph
network [50] to optimize the learned embeddings.
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Figure 2: Model architecture. The figure is an example struc-
ture by referring Table 1 where,K = 3, N = 3. In the HT
module, the BERT consecutively receives three-modal in-
puts, and the Transformer wraps all the outputs from BERT.
Attention masks manage the context preference by switch-
ing the model structure. In the MGIF module, the gate simul-
taneously receives three-modal representations from HT to
make the neuron-grained fusion, and the Transformer wraps
the gated representations to make vector-grained fusion.

the Transformer. The multi-modal gate is for neuron-grained
fusion that adjusts the neuron features of different modalities
at the same position. The Transformer is for vector-grained
fusion that learns the importance of the gated representations
via the built-in attention mechanism.

Neuron-Grained Fusion. The issue of multi-modal fu-
sion is that the neuron features at the same position are in-
comparable between different modalities, which causes the
vector features of different modalities to fall into different
spaces. To make the neuron features comparable, we apply
the multi-modal gate (Arevalo et al. 2020) to allocate con-
trastive weights to neuron features across different modali-
ties. The weights of neurons are interactively computed and
contrastively learned along with the training process. After
training, the multi-modal gate can learn the relative impor-
tance between neuron feature of different modalities at the
same position, so that the feature space problem can be al-
liviated. Let ri,(t), ri,(v), ri,(a) ∈ RDr be the textual, visual,
and acoustic representations at the i-th step output from the

HT module, the gate operation between textual and visual
representations is computed as

hi,(t) = tanh(Wt · ri,(t)) (4)

hi,(v) = tanh(Wv · ri,(t)) (5)

z = σ(Wz · [ri,(t); ri,(v); ri,(t) ∗ ri,(v)]) (6)

hi,(tv)= z ∗ hi,(t) + (1− z) ∗ hi,(v) (7)

where hi,(t), hi,(v) ∈ RDh are the projections of ri,(t) and
ri,(v). ∗ is referring to the Hadamard product whose func-
tion is to use neurons in one vector to weight the neurons of
its counterpart at the same position. σ is the sigmoid func-
tion that maps the weights to (0, 1). Our strategy is using
neurons in z to weight neurons in hi,(t) and using neurons
in 1−z to weight neurons in hi,(v), where, z ∈ RDh is com-
puted by feature interactions among ri,(t), ri,(v), and their
Hadamard product, [ ; ] denotes the concatenation. Note that
“1−” operation performs like softmax in attention mecha-
nism. It normalizes the weights of neurons at the same po-
sition, so that the contribution of the neurons can be con-
trastively learned. The contrastive weighting makes neurons
at the same position comparable and additive. hi,(tv) is the
bi-modal fused representation. W and · are the weight ma-
trices and dot product, respectively. We simplify the above
computation as

hi,(tv) = GATE(ri,(t), ri,(v)) (8)

Similarly, we can obtain

hi,(ta) = GATE(ri,(t), ri,(a)) (9)

hi,(av) = GATE(ri,(a), ri,(v)) (10)

where hi(∗) represents the neuron-grained fused vectors.
Vector-Grained Fusion. There are three fused vectors af-

ter neuron-grained fusion. We need to learn the contribution
of each vector for emotional predictions. In vector-grained
fusion, we allocate one weight to an entire vector indicating
its importance. Attention (Cho et al. 2014) is an effective
approach for vector-grained interactive weighting. We use
another Transformer as the fusion module, where the built-
in multi-head attention learns the interactive weights for
vector-grained features. Following strategies in BERT, the
input is constituted by adding a special embedding [CLS]
at the head, which is {[CLS], hi,(tv), hi,(ta), hi,(av)}. The
order of the input is fixed. By feeding the input to the Trans-
former, the vector-grained fusion can be computed as

ui = TRM([CLS], hi,(tv), hi,(ta), hi,(av)), (11)

where TRM is the Transformer. ui is the output of the last
hidden layer at [CLS] position for making predictions.

Discriminator
The discriminator, shown in the top of Figure 2, uses a two-
layer perceptron with hidden layer activated by tanh. The
output can be the softmax for categorized emotion or linear
layer for consecutive emotion, formulated as

oi = tanh(Wl · ui) (12)

Figure 6. The DialogueTRM Method Proposed by Mao et al. [46].

This subsection summarizes the experimental results of different models in context
modeling and comparisons among their performances. The performance of the models
compared in terms of accuracy and generalizability, and the advantages and disadvan-
tages of different models. The future direction is to examine the complementarity and
redundancy in multimodal context features to improve the robustness and performance
of prediction methods. By intensely studying the correlations and interactions between
different modalities, more powerful multimodal feature fusion methods can be designed
better to capture the rich information in these different modalities. In summary, there is
some progress in multimodal ERC research. However, further in-depth research and explo-
rations are still needed to give full play to the advantages of multimodal differences and
rich features. We expect multimodal ERC’s performance and application to be improved
by adopting more effective fusion strategies and deeper feature analyses.
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Figure 7. The architecture of CMT proposed by Zou et al. [48].

5.2. Speaker Dependency

Speaker dependency plays a pivotal role in conversational dynamics. It encompasses
two distinct facets: intra-speaker dependency and inter-speaker dependency. Figure 8,
sourced from the publicly accessible IEMOCAP dataset, illustrates a dialogue where Partici-
pant A (Pa) begins distressed during the initial exchanges (U1 and U3) and seeks consolation.
Participant B (Pb), however, responds with sarcasm. Consequently, this interaction influ-
ences the speaker’s emotional state to remain ostensibly neutral throughout the dialogue.
In contrast, Pa persists in a state of distress at utterances U1 and U3, and due to the intra-
speaker dependency, this state carries through to U5. Here, Pa is further influenced by
Pb’s state—illustrative of inter-speaker dependency—and reacts with anger. This exem-
plification underscores the importance of examining speaker dependency within ERC
tasks, offering insights into speakers’ nuanced and implicit emotions in complex conversa-
tion environments.This section sorts and summarizes the speaker dependency modeling
approaches proposed in existing work from several perspectives, we demonstrate the
comparative impact of various models in Table 6.

Table 6. Comparison performance of the speaker-dependency modeling approach on two
main datasets.

Methods Happy Sad Neutral Angry Excited Frustrated Wa-F1 Wa-F1

CTNet 51.3 79.9 65.8 67.2 78.7 58.8 67.5 60.5
MM-DFN 42.22 78.98 66.42 69.77 75.56 66.33 68.18 59.46
ICON 32.8 74.4 60.6 68.2 68.4 66.2 63.5 56.3
SGED – – – – – – 68.53 65.46
COGMEN 51.9 81.7 68.6 66.0 75.3 58.2 67.6 –
HiTrans – – – – – – 64.50 61.94
Emoberta – – – – – – 68.57 65.61
DAG-ERC – – – – – – 68.03 63.65
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Figure 8. A Representative Dialogue Sample from the IEMOCAP Dataset.

5.2.1. Embedded Speaker Dependency

Embedded speaker dependency modeling refers to the implicit exploration of speaker
dependencies by representing speaker information as sentence features, and the research
concerning such methods has focused on how to obtain speaker features efficiently. Conver-
sational Transformer Network (CTNet) [51] was primarily designed to address the intricate
task of bimodal emotion recognition within conversational contexts, encompassing both
textual and audio modalities. In pursuit of explicitly incorporating speaker-related infor-
mation into multimodal sentence representations, CTNet undertakes a multistep process.
CTNet extracts a 512-dimensional utterance-level speaker embedding from audio MFCCs
through the x-vector system and combines the speaker embedding with the unimodal
speaker embedding. The speaker embedding concatenated with the subsequent modeling
steps’ unimodal and cross-modal input features.

Unlike CTNet, which uses a sequential structure to simulate conversation, the Multi-
modal Dynamic Fusion Network (MM-DFN) [52] and MMGCN simulates the structure of
an undirected graph. Before building the graph, to incorporate the speaker’s information
into the graph, the MMDFN and MMGCN first convert the speakers involved in the current
dialogue into one-hot codes and then obtain the corresponding speaker features from the
one-hot codes of the current sentence through a linear layer. Then, they splice the speaker
features with the three modalities of the corresponding sentence to obtain the three modal
features containing the speaker information. ConGCN primarily focuses on the textual
unimodal aspect of conversations, representing dialogues as undirected graphs. Unlike
conventional approaches, ConGCN initializes nodes in a graph, excluding those of the
dialogue sentences, as random vectors. These initialized nodes serve a specific purpose
within the graph (known as ’speaker nodes’) and are dynamically updated during graph
evolution. This update mechanism aids the model in exploring speaker-related charac-
teristics, thereby facilitating the modeling of speaker dependencies. The strength of this
embedded speaker dependency modeling approach lies in its simplicity. However, it needs
to be improved in effectively capturing evolving speaker states throughout a dialogue, as
this issue poses challenges in comprehensively modeling intricate speaker dependencies.
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5.2.2. Dynamic Speaker Dependency Based on Sequential Structures

Due to the limitations of embedded speaker dependency modeling, researchers pro-
posed dynamic speaker dependency modeling to improve the ability of models to capture
the speaker dependencies that interact in conversations. Dynamic speaker dependency
modeling means the utilized model generates or updates speaker-specific information
based on historical dialogue or historical speaker information during the dialogue process.
The existing dynamic speaker dependency modeling approaches are mainly divided into
two categories, sequential structure-based and graph-based methods, according to their
dialogue modeling techniques; this section provides an overview of the existing sequential
structure-based dynamic speaker dependency modeling approaches.

Earlier work on ERC focused on conversational context, often using structures such as
LSTM to integrate contextual information. However, this method ignores the essential im-
pacts of the influence relationships between speakers and themselves on speaker sentiment
in a dialogue. The Conversational Memory Network (CMN) [53] is the first method to
consider the ERC task’s inter-speaker dependency and intra-speaker dependence features.
The CMN first obtains the three modal features corresponding to the current sentence,
splices them to obtain multimodal features, and feeds the sentence within the context
window to a GRU to obtain the features corresponding to the current moment containing
contextual information. Afterward, the CMN sifts through the information between the
current sentence features and the previously obtained sentence features containing contex-
tual information through an attention mechanism, obtains the degree of influence between
the two types of features in the form of weights, and performs a weighted summation
operation to obtain the speaker features corresponding to the current sentence.

Interactive Conversational Memory Network(ICON) [54], on the other hand, intro-
duces an interactive memory unit for multiparty conversation based on the CMN, and its
self-influence module (SIM) designed to model intra-speaker dependency by integrating all
historical sentences of the speaker corresponding to the current moment with the help of a
GRU. Then, the GRU in the dynamic global influence module (DGIM) is used to model the
influence between the SIM memory obtained from the SIM module at the current moment
and the global memory obtained from the DGIM at the previous moment for the speakers;
this step obtains the global state at the current moment and stores it in the memory unit.
Subsequently, the memory unit is fused with the current discourse representation using
the attention mechanism to determine the final emotion prediction. DialogueRNN is used
to model the conversational utterance, the context, and the current speaker’s emotional
state with the help of three GRU units, representing the global state, the party-state, and
the emotion representation, respectively.

Similar to DialogueRNN, Shenoy proposed a Context-Aware RNN (Multilogue-Net) [55],
which uses multiple GRUs to account for the interlocutor state, the interlocutor’s inten-
tion, the previous and future emotions, and the context of the dialogue. Unlike Dia-
logueRNN, Multilogue-Net interacts with the information based on pairwise attention to
obtain information for judging the speaker’s emotion from different modalities. However,
DialogueRNN and Multilogue-Net only consider intra-speaker dependency and ignore
inter-speaker dependency. To this end, Zhao et al. [56] designed a Mutual Conversa-
tional Detachment Network (MuCDN) that splits the whole conversation into multiple
sub-conversations, regarded as potential influence relations between speakers and calcu-
lates the relative lengths between sentences based on the discourse tree. Inter-speaker
and intra-speaker GRUs can capture the dependencies between speakers within each sub-
conversation. The former processes all sentences of the current speaker, while the latter
handles all sentences of the non-current speaker. The drawbacks of this approach include
disrupting the conversational flow, impeding the comprehension of contextual and posing
challenges in revealing the intricacies of inter-speaker dependencies.

To address these issues, Bao et al. [57] introduces a novel structure for modeling
speaker dependencies (SGED). SGED comprises two core components: a Conversational
Context Encoder (CCE) and a Speaker State Encoder (SSE). The CCE generates current
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sentence features enriched with contextual information, while the SSE explores intra- and
inter-speaker dependencies. Intra-speaker dependencies are established by attending to
the speaker dependency from the SSE in the previous moment for the current speaker,
encompassing all sentences preceding the current moment. Eventually, the intra- and
inter-speaker dependencies derived from the SSE undergo activation through a function,
resulting in the speaker dependency at the present moment. The key advantages of this
method lie in its effectiveness in probing the intricate interactions within a dialogue, and the
SGED module seamlessly integrates with existing methods, enhancing overall performance.

5.2.3. Dynamic Speaker Dependency Based on Graph Structures

The previous section introduced a methodology for representing dialogues sequen-
tially and modeling dynamic speaker dependencies. However, the disadvantage of a
sequential structure is that distance limitations are observed between sentences, which
makes it challenging to perform interactions between sentences at longer distances. Simi-
larly, it is difficult for speaker features far from each other to interact effectively, limiting the
sequential structure in terms of modeling long-distance contexts and speaker dependencies.
With the continuous development of GNNs, researchers in the ERC field have found that
simulating dialogues with graph structures can effectively address the shortcomings of
sequential structures in cases with speaker interactions. During the process of simulating
dialogue with a graph structure, the nodes in the graph often represent sentences at dif-
ferent moments. These sentences can be directly connected through edges, which means
that no matter how far apart the sentences are, as long as they connect with edges, they can
directly interact to explore the influence relationships between the speakers more effectively.
In addition, the research development of GNNs and the advantages of graph structures in
speaker interaction tasks have made exploring speaker dependencies with graph structures
a mainstream strategy in recent years.

DialogueGCN defines various types of edges based on speaker identities. Sequential
relationships help the model understand the flow of discourse and the corresponding
speaker relationships, thus enabling it to simulate dialogues more accurately. Joshi et al. [58]
proposed that the information reflecting speakers’ emotions in dialogues comes from two
primary sources: global information and local information. The global information is the
context, and the local information includes the inter-/intra dependence between speakers.
COGMEN uses the transformer encoder part of its position embedding module to obtain
the global information and then constructs a directed graph by taking the sentence features
containing global information as nodes, with four types of edges: past sentences of the
current speaker, past sentences of the other speaker, future sentences of the current speaker,
and future sentences of the other speaker. Different edges represent the relationships
between the speaker’s identities and the temporal information. The constructed directed
graph is then fed into a Relational Graph Convolutional Network(R-GCNs) [59]and a graph
transformer [60] to obtain sentence features with contextual dependencies and inter-/intra
speaker dependencies.DAG-ERC combines the advantages of graphs and the constraints of
conversation to determine the construction rules of the DAG: a direction constraint and a
tele-information constraint. This compositional approach provides the relative position of
the conversation and the speaker’s identity, which helps the model better capture real-life
contextual relationships and speaker dependencies.

In addition to the above methods, some speaker dependency modeling methods have
also been developed from other perspectives, such as HiTrans, which designs an auxiliary
task, determining whether two sentences are from the same speaker, and places the result
into a final loss function to improve the model’s sensitivity to speaker information. In
addition, with the emergence and development of large-scale text pretraining models,
some approaches centered on such models have emerged because training on a large
corpus of conversation gives them strong speaker dependency comprehension capabilities.
For example, Emoberta uses pre-trained RoBERTa as its core; for it to be able to grasp
the influence relationships between speakers, Emoberta splices the sentences and their
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corresponding speaker names before inputting them in RoBERTa, which enables the model
to obtain both contextual and speaker information and thus integrate the influences of both
aspects to give better judgments. However, the ERC method based on large pre-trained
models is limited by the arithmetic power of the computer and the amount of training data,
which makes it difficult to migrate between different scenarios effectively.

5.3. Multimodal Fusion

In prior research on ERC, a common oversight has been the neglect of differential
emotional behaviors exhibited within and across various modalities when modeling con-
versational context. Developing effective modeling strategies for handling multimodal
contextual information is instrumental in yielding more precise emotion prediction results.
Furthermore, it is crucial to acknowledge the distinct contributions of emotional expression
in multimodal settings. Words and sounds have proven more beneficial in predicting neu-
tral emotions than the visual modality. Hence, when integrating multimodal information
for emotion prediction, it becomes imperative to comprehend the unique contributions of
each modality and transform them into fusion weights. However, a fundamental challenge
arises because different modalities are often represented in distinct feature spaces, making
assessing and quantifying their contributions directly intricate. Consequently, a significant
avenue of research pertains to the effective fusion of multimodal contextual information in
the context of multimodal ERC.

Compared with unimodal emotion recognition, multimodal emotion recognition
has many advantages, including expressing richer information with the help of multiple
representations. We demonstrate the comparative impact of various models in Table 7.
Integrating visual information can reveal verbal cues such as facial expressions and body
movements, while audio information helps convey characteristics such as the pitch and
volume of a sound. This representation method for fusing multimodal data helps to
consider emotional information from different perspectives comprehensively, thus making
predictions more accurate, especially for classification situations that are easily confused
in unimodal settings. In unimodal emotion recognition experiments, specific dialogue
sentences can be incorrectly categorized as ‘angry’ or ‘neutral,’ particularly in the case
of the ’frustrated’ emotion category. However, when integrating concurrent analyses of
the audio and video modalities, including visual cues such as frowning expressions in
the video features and auditory characteristics such as increased volume in the audio
features, the model enhances its ability to comprehend emotions, resulting in more precise
classifications.

Table 7. Comparative performance analysis of the aforementioned multimodal fusion methods.

IEMOCAP MELD
Model Happy Sad Neutral Angry Excited Frustrated Wa-F1 Wa-F1

GraphMFT 45.99 83.12 63.08 70.3 76.92 63.84 68.07 58.37
MMGCN 42.34 78.67 61.73 69 74.33 62.32 66.22 58.65
MMDAG - - - - - - 70.57 64.10
DialogueTRM 48.7 77.52 74.12 66.27 70.24 67.23 69.23 63.55

In early studies, to introduce multimodal features to ERC tasks with multimodal
settings, researchers typically used cascading methods to integrate features to guide emo-
tion recognition. The researchers proposed the CMN model by concatenating features
from all three modalities but ignoring the interactions between the modalities. The CMN
first uses the three modal features acquired from the input video, improving the accuracy
and enhancing the robustness of emotion recognition from video. However, this method
completely ignores the interactions between the processes of extracting helpful information
in interactive scenarios. On this basis, researchers further proposed GME-LSTM [61] to
perform multimodal information fusion in emotion recognition tasks for each utterance.
The experiments showed that multimodal features to the LSTM model without an attention
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mechanism would lead to declines in the F1 score, proving that although audio and video
features provide rich content, they may also have noise.

Researchers in recent years have begun to explore more effective multimodal feature
fusion methods, retain high-quality and adequate information during the fusion process,
and reduce the influences of redundancy and noise, thereby improving the performance
and accuracy of multimodal emotion recognition. Therefore, GME-LSTM uses a gating
mechanism at each time step and passes the features through a temporal attention layer. At
the same time, works such as DialogueTRM adopt attention mechanisms to guide effective
multimodal feature fusion procedures.

However, as researchers have gradually discovered that GNNs can model long-
distance contexts and different types of relationships, graph-based methods have become
the mainstream approach. These methods ensure that their GNNs select the critical internal
context and multimodal interaction information during learning by defining different types
of multimodal sentence nodes and designing multimodal interaction information. The
MMGCN was the first model to consider the combination of multimodal and contextual
information. It uses undirected graphs to explore a more effective method for fusing multi-
modal interaction and contextual information. However, directly concatenating utterances
from various modalities may introduce additional noise.

Furthermore, the MMGCN embeds utterances in a single GNN simultaneously with
utterances within other modalities, which poses challenges for multimodal fusion. To
solve the above problems, GraphMFT [62] adopts multiple improved GATs to extract the
contextual dependencies within modalities and the complementary dependencies between
modalities, thus effectively promoting the current discourse and intra-modal and inter-
modal discourse interactions. For example, GraphMFT introduces a loss function with four
subspaces to constrain the extracted multimodal features for alleviating the heterogeneity
problem encountered in multimodal ERC, and it incorporates the PairCC strategy to solve
the information propagation direction limitation. We employ a multisubspace mapping
function and a PairCC strategy to address the heterogeneity gap. This approach models
the given dialogue as three graphs (V-A, V-T, A-T) to capture the contextual information
and complementary information between modalities.

In the current research, the problem with the utilized multimodal feature fusion algo-
rithms is that the interactions among heterogeneous information from different modes must
be more fully considered, and it is not sufficient to reflect real emotions under conflicts and
differences between modal features. In response to this problem, researchers have explored
different fusion strategies. For example, they proposed weighing different modalities while
considering the importance differences among multimodal features and assigning weights
via importance attention networks. Despite these efforts, multimodal ERC research still
needs to be improved, and further consideration needs to be given to the existence of
certain complementary and differential information in different modalities and the com-
bination of contextual interactions. Aspects such as speaker dependence and dialogue
context are also understudied in multimodal settings. In addition, in multimodal ERC
tasks, multimodal connection fusion methods exist in various forms but cannot solve the
modal conflict problem effectively. Therefore, when different modalities conflict, the fused
modalities of the existing models interfere with each other, producing inaccurate results.
Therefore, the current research focusing on multimodal fusion methods should consider
how to use the relationships between modalities to eliminate modal conflicts, enabling the
constructed models to describe better multimodal fusion features for recognizing emotions
in dialogues.

To solve the above-mentioned problems, additional research can delve into the follow-
ing avenues. First, more intricate and potent modality fusion strategies can be contemplated,
ensuring the comprehensive incorporation of the variances between different modalities
throughout the feature fusion phase. Second, it is imperative to underscore the pivotal
role of contextual cues in enhancing the accuracy of multimodal emotion recognition meth-
ods during conversational interactions. This necessitates a comprehensive exploration
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of strategies for optimizing the utilization of context and speaker-specific dependencies.
In addition, introducing more advanced model structures handles multimodal conflicts.
Improved multimodal fusion can provide more accurate and effective solutions for tasks
such as emotion recognition. In future research, these directions should be further explored,
and the existing methods should be continuously improved to advance the field of ERC.

6. Applications of ERC

As a pivotal undertaking within NLP, emotion recognition in conversations has found
extensive applications across various domains, notably exemplified by the deployment of
intelligent service robots. These sophisticated automatons discern users’ emotional states by
scrutinizing their ongoing and historical conversational interactions, subsequently adapting
their response strategies to enhance user experiences. Recent years have witnessed the
pervasive integration of multimodal information transmission. Consequently, multimodal
data have emerged as the predominant mode of communication. For instance, within a
multimodal context, an intelligent customer service robot orchestrates a comprehensive
analysis of user emotions by assimilating facial features, textual inputs, and vocal cues,
subsequently implementing context-sensitive policy adjustments. Below, we delineate a
few illustrative instances of emotion recognition in conversational application domains.

6.1. Human-Computer Interaction

ERC plays a crucial role in improving human-computer interaction experiences. A ma-
chine can perceive and understand a user’s emotional state and changes at different points
during their dialogue to better respond to user needs and provide personalized services
or answers. In virtual assistants, emotion-driven games, and emotion-oriented chatbots,
sentiment analysis can help machines respond and make decisions based on the user’s
emotional state. In recent related research, Rashkin et al. [63]) introduced a novel dialogue
dataset grounded in emotional contexts, comprising 25,000 scenes. Empirical experiments
have demonstrated that a model trained on this dataset receives higher empathy ratings
from human evaluators, thus enhancing user experiences in human-computer interactions.
These studies aim to further augment the empathetic expressions generated by the model
by leveraging user context and emotional information derived from the conversation.

ERC, combined with natural language generation technology, enables machines to
communicate and express in an emotionally rich manner, enhancing the emotional in-
teraction and communication capabilities between machines and humans. ERC has also
applied to customer service and support. Businesses can analyze customer conversations
with service representatives to identify a customer’s emotional state, increase customer
satisfaction and service quality, and resolve potential issues on time.

6.2. Mental Health Assessment

In recent years, dialogues that provide emotional support have gradually emerged
with the development and refinement of theories related to emotional support.ERC can be
used to assist with mental health assessments. Analyzing an individual’s language and
conversations can assess their emotional and mental health, which helps identify potential
depression, anxiety, or other mental health issues. However, the need for well-designed
tasks and suitable corpora hinders the related research progress. To this end, Liu et al. [64]
defined the ESC (Emotional Support Conversation) task and proposed an ESC framework
based on the theory of helping skills. Comforting and giving advice do not need to be
performed in sequence. In addition, the author also constructed a high-quality ESC dataset
ESConv with rich annotations and demonstrated the role of the ESConv dataset in training
more emotional support systems through related experiments. Tu et al. [65] proposed a
new emotional support method, MISC, which integrates COMET into emotional support
conversations and uses an attention mechanism to learn from the obtained knowledge
selectively, grasps the user’s emotions and changes in emotional support dialogue.
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6.3. Social Science Research

ERC is also of great significance in social science research. Analyzing social media data,
online comments, and questionnaires reveals the expressions of and changes in human
emotions in different social situations and events. This result helps researchers understand
the evolution processes and factors influencing human emotional and psychological states.
For example, mining user information on social media platforms such as Twitter and
Facebook to obtain health- and drug-related information has sparked great interest in
pharmacovigilance research. Such social media speeches can be analyzed to detect drug
abuse, use responses, and drug-related emotional expressions. Most of these studies are
based on aggregate results obtained for large populations rather than specific individuals.
To research individuals or specific groups of people, Mahata et al. [66] designed a CNN-
based model to identify personal drug intake comments mentioned in user conversations
in tweets or blogs, thereby tracking the expression of information about the user’s mood
and other aspects of drug intake on social media.

7. Challenges

ERC research has made relatively strong progress. Deep learning models have demon-
strated significant promise in extracting emotional features, capturing conversation dy-
namics, and modeling contextual factors, speaker characteristics, and emotional transitions.
Nevertheless, numerous challenges persist despite these accomplishments.

7.1. ERC in Real Scenarios

ERC research has made significant progress, and some challenges have been success-
fully addressed. However, emotion recognition in realistic real-time human-computer
interaction scenarios still faces additional challenges. As shown in Figure 9, at first, mul-
timodal ERC data are obtained from capturing and collecting data in the multi-sensory
world of human beings. The video angle, volume, and light changes observed in natural
scenes all impact the recognition ability of an algorithm. The training data may also need
to cover different regional dialects used in conversations. Problems such as losses, dam-
age, and delays occur during data transmission. For multimodal scenarios, ensuring the
complete transmission of the three data modes and delivering them to the model without
delay is an enormous challenge. In addition, it is usually necessary to consider the ERC
task in a real-time environment. It is impossible to accurately understand the complete
speaker relationship and the impacts of future utterances, so the context relationship and
speaker modeling process can only rely on previous iterations, which limits the constructed
algorithm’s capability to a certain extent.

Figure 9. A Diagram Describing the ERC Flow in a Real-World Scenario.

To address the above challenge, it is crucial to leverage past conversation models better
to model the correlation of emotions in future conversations. Furthermore, clearly defining
roles and purposes in conversations, especially when dealing with unclear dynamics and
difficult-to-determine speaker relationships, can better alleviate the limitations of natural
ERC-constrained environments on the above issues.
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7.2. Latency Due to Data Processing

ERC tasks can be divided into multimodal and plain text ERC. In terms of transmission
speed, the speed of plain text can satisfy industrial users’ needs. However, audio and
video transmission induce considerable delays on the network channel, so they cannot
be used in actual industrial cases. In real usage scenarios, the industrial transmission
process typically uses video and audio streams to transmit and assemble data frames and
perform feature extraction. Traditional encoder-based methods are no longer applicable
in this case. In addition, the feature extraction of multimodal conversations is also time-
consuming, especially with the traditional video feature extraction method. We used the
feature extraction tools commonly employed by researchers in ERC tasks to evaluate the
time required for feature extraction. We used pre-trained BERT for text, LibROSA for
audio, and OpenFace for videos. We divided the videos in the MELD dataset into different
experimental groups according to their lengths and performed feature extraction. During
this process, we recorded each group’s time spent on feature extraction and analyzed the
results in detail, as shown in Table 8. According to the statistical results shown in the table,
it can be observed that video feature extraction takes the longest time, and other modalities
also have delays of more than one second. Such delays may have severe adverse effects on
scenarios that require a high-quality human-computer interaction experience.

Therefore, when dealing with the transmission of longer video and audio data, we
need to employ more flexible mechanisms to accommodate the transfer of smaller data units
and utilize the features from these smaller units to predict emotions in the conversation.
This approach helps address the delays caused by data transmission and processing and
overcomes some limitations arising from incomplete contexts.

Table 8. Time-of-day statistics for the feature extraction process of multimodal dialogue emotion
recognition in natural scenes.

Video Duration
(Time) Text Feature Vision Feature Audio Feature Total Time

1 s 1.8 s 2.2 s 1.3 s 5.3 s
4 s 1.8 s 6.05 s 1.4 s 9.25 s
8 s 1.8 s 10.4 s 1.6 s 13.8 s

7.3. Classification of an Imbalanced Dataset

The current category labels for emotion recognition exhibit an unbalanced classification
distribution, with significant variations among the number of samples in different emotion
categories. However, this unbalanced classification task displays characteristics that require
enhancement, particularly in its inherent bias towards the dominant category. In an
unbalanced training set, the class with a large sample size significantly impacts the model
training process, making it more inclined to predict the dominant category. Fewer emotional
categories give the model a more vital ability to identify rare emotional categories with less
training data. It is easy to confuse fused emotions.

Therefore, in the work related to dataset construction, it is necessary to focus more
on enriching the data for emotional categories with fewer samples to narrow this gap.
Although recent research has proposed some methods to deal with partially missing modal-
ities in sentiment analysis tasks [67,68], a key challenge remains in the field of general
ERC, namely, the lack of a flexible and broadly applicable framework and paradigm for
effectively dealing with missing and emerging modalities. In cases with missing modalities,
the existing methods mainly focus on using information from other available modalities to
compensate for the impact of the missing modalities, thus maintaining ERC accuracy. In
addition, some methods enable information transfer between different modalities by learn-
ing shared representations across the modalities to improve the robustness of the model to
the missing modalities. However, more flexible and broadly applicable frameworks and
paradigms are still needed to deal with missing modalities. Such a framework should be
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able to adapt to different situations and various types of missing modalities and automati-
cally adapt to emerging concerns. Further research can explore domain knowledge and
transfer learning techniques to deal with missing modalities and develop general methods
and algorithms that apply to different tasks and application scenarios.

In summary, while various methods have been proposed to address ERC challenges
in the context of partially missing modalities, there is still a need for a flexible and broadly
applicable framework and paradigm to handle both missing and emerging modalities.
Moreover, it is essential to develop general methods and algorithms tailored to different
emotion recognition tasks and application scenarios.

8. Conclusions and Future Research Ideas

Emotions are essential in understanding human research by machines, an essential
component of cognitive behavior. For a machine to truly understand humans, it must
be able to recognize, understand, and respond to human expressions of emotion. With
the continuous development and in-depth study of artificial intelligence technology, the
influence of emotion in AI research will continue to expand, especially in fields such as
AIGC, which require machines to possess enhanced cognitive abilities to achieve higher
cognitive functionality. Therefore, this paper provides a comprehensive review of the
recent research progress, focusing on the research motivations and experimental effects of
context modeling, speaker dependency considerations, and related knowledge integration
to understand the significance of these studies better.

Furthermore, we have synthesized methods for extracting features from multimodal
data and conducted an in-depth exploration of relevant datasets in this research domain. We
have also identified the challenges currently faced by researchers, such as issues in real-time
contexts and imbalances in data, and have proposed potential solutions to these problems.
By providing researchers with a comprehensive perspective and valuable references, we
aim to facilitate the ongoing advancement of the ERC task, ultimately enriching human-
computer interaction.
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