
Citation: Azurmendi, I.; Zulueta, E.;

Lopez-Guede, J.M.; González, M.

Simultaneous Object Detection and

Distance Estimation for Indoor

Autonomous Vehicles. Electronics

2023, 12, 4719. https://doi.org/

10.3390/electronics12234719

Academic Editors: Yi Xie, Dan Dan

and Jiahao Liu

Received: 18 October 2023

Revised: 11 November 2023

Accepted: 17 November 2023

Published: 21 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Simultaneous Object Detection and Distance Estimation for
Indoor Autonomous Vehicles
Iker Azurmendi 1,2 , Ekaitz Zulueta 1, Jose Manuel Lopez-Guede 1,* and Manuel González 2

1 Department of Systems and Automatic Control, Faculty of Engineering of Vitoria-Gasteiz, University of the
Basque Country (UPV/EHU), Nieves Cano, 01006 Vitoria-Gasteiz, Spain;
iazurmendi@centrostirling.com (I.A.); ekaitz.zulueta@ehu.eus (E.Z.)

2 CS Centro Stirling S. Coop., Avda. Álava 3, 20550 Aretxabaleta, Spain; mgonzalez@centrostirling.com
* Correspondence: jm.lopez@ehu.eus

Abstract: Object detection is an essential and impactful technology in various fields due to its ability
to automatically locate and identify objects in images or videos. In addition, object-distance estimation
is a fundamental problem in 3D vision and scene perception. In this paper, we propose a simultaneous
object-detection and distance-estimation algorithm based on YOLOv5 for obstacle detection in indoor
autonomous vehicles. This method estimates the distances to the desired obstacles using a single
monocular camera that does not require calibration. On the one hand, we train the algorithm with
the KITTI dataset, which is an autonomous driving vision dataset that provides labels for object
detection and distance prediction. On the other hand, we collect and label 100 images from a custom
environment. Then, we apply data augmentation and transfer learning to generate a fast, accurate,
and cost-effective model for the custom environment. The results show a performance of mAP0.5:0.95
of more than 75% for object detection and 0.71 m of mean absolute error in distance prediction, which
are easily scalable with the labeling of a larger amount of data. Finally, we compare our method with
other similar state-of-the-art approaches.

Keywords: object detection; YOLO; distance estimation; autonomous vehicles; indoor navigation; AGV

1. Introduction

Autonomous navigation has become a hot topic in recent years [1], especially for
autonomous road vehicles. Various development groups, from automobile manufacturers
to technology and IT companies, are contributing to the autonomous transport of cargo
and people. At the same time, robotics and automation are increasingly being developed
to replace manual work and improve the performance of tasks in almost all fields. Unfor-
tunately, the autonomous navigation of indoor mobile robots has not received as much
attention as that of road vehicles, especially in the case of vision-guided robots [2].

Mobile robots are mechatronic devices that can move in a physical environment and are
used to assist humans in various activities, whether hazardous or non-hazardous, repetitive,
and disruptive. This category of robots interacts with the environment through sensors
and actuators to move and perform their functions autonomously. They are typically used
in offices, hospitals, production lines, or industry. In the latter case, automated guided
vehicles (AGVs) stand out [3].

One of the main problems to be solved to make autonomous driving feasible is the
reliable and accurate detection of obstacles [4]. Especially in recent years, automated
driving technology has gained attention, and obstacle-avoidance algorithms have become
an important and indispensable technology. As mentioned by Chang et al. [5], obstacle
avoidance has always been a very important research topic in the field of robotics. Similarly,
Hanumante et al. [6] describe real-time obstacle avoidance as one of the key issues for
successful applications of mobile robot systems.

Electronics 2023, 12, 4719. https://doi.org/10.3390/electronics12234719 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234719
https://doi.org/10.3390/electronics12234719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8959-0742
https://orcid.org/0000-0002-5310-1601
https://doi.org/10.3390/electronics12234719
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234719?type=check_update&version=1

Electronics 2023, 12, 4719 2 of 18

All mobile robots have some form of collision avoidance system, ranging from al-
gorithms that detect an obstacle and stop the robot before it reaches it, to sophisticated
algorithms that allow for the robot to avoid obstacles. The latter algorithms are much
more complex, as they involve not only the detection of an obstacle but also some kind of
quantitative measurement of the dimensions of the obstacle. Once the obstacle has been
detected, the obstacle avoidance algorithm must steer the robot around the obstacle and
resume movement towards the original path [7].

Automatic obstacle avoidance is critical for many autonomous systems, such as Un-
manned Aerial Vehicles (UAVs) or Autonomous Mobile Robots (ARMs). In recent years,
the development of intelligent and autonomous mobile robots has been at the heart of
autonomous vehicle research, as they provide safety and intuitive control when working
in different scenarios, such as surveillance, mapping, construction, delivery, and traffic
monitoring, among others.

According to Yuri D. V. Yasuda et al. [2] the following terms are defined:

• Obstacle. An obstacle is a part of the environment, an agent, or any other object that
the robot must avoid colliding with.

• Obstacle detection. Obstacle detection is the process of finding an obstacle and
determining its position. This can be performed using distance measurements, images,
and sounds. It is important to avoid collisions with the robot, which could result
in injury or damage. As discussed above, obstacle detection is a sub-task of the
locomotion problem.

Over the past decades, significant research has been devoted to the problems of obsta-
cle detection [8,9] and environmental perception, including object detection and distance
estimation. Even though much attention has been paid to the object detection task, distance
estimation still receives very little interest in the computer vision community [10]. Radars
and LiDaRs (Light Detection and Ranging) can be used to provide distance information,
but they are expensive or provide poor information about objects compared to image
sensors. Stereo vision and monocular vision can also be used for distance estimation.
Stereo vision can calculate the distance to objects more intuitively and accurately. However,
as mentioned by Huang et al. [11], stereo vision systems require a long execution time
due to calibration and matching between both cameras and exhibit low efficiency and
considerable computational complexity. On the other hand, although distance estimation
using a monocular camera is currently being studied in the literature and is one of the most
classical tasks in computer vision, current monocular distance estimation methods require
a lot of data acquisition to obtain accurate results [12].

This study proposes an accurate and lightweight deep learning model that can predict
object-specific distances from monocular images. The idea has been to modify an existing
object-detection algorithm to simultaneously detect objects and estimate distances between
them and the camera in an image.

An object distance estimator can be useful in many areas. In autonomous driving, it
could allow an integrated vehicle system to inform and alert the driver, either to prompt the
driver to take preventive action or to prepare the vehicle’s safety systems for an imminent
collision [13,14]. As discussed by Davydov et al. [15], accurate distance estimation is a
prerequisite for Advanced Driver Assistance Systems (ADAS) to provide the driver with
safety-related functions such as adaptive cruise control and collision avoidance. In robot
motion, it can provide distance information for collision avoidance. In video surveillance
perception, it can provide 3D information for object tracking [16].

Our idea is to develop a low-cost camera-based algorithm that detects objects and
estimates distances, which could be used as the first part of a fully automated obstacle
avoidance algorithm for an AGV that would be used for the autonomous transport of cargo
in industry. The following is an overview of the research contributions:

• To the best of our knowledge, this is the first time that simultaneous object detection
and distance prediction has been performed in an autonomous indoor vehicle using
only a monocular camera;

Electronics 2023, 12, 4719 3 of 18

• The results show a precise and lightweight object detection and distance-estimation
algorithm that can be used for obstacle avoidance in autonomous indoor vehicles;

• Different sized object detection and distance prediction models have been trained on a
custom dataset and their comparative has been presented;

• The article demonstrates how an accurate deep learning algorithm can be obtained
with few images by using transfer learning;

• A comparison with other state-of-the-art obstacle detection methods for autonomous
indoor vehicles is presented.

The rest of the paper is organized as follows. In Section 2, a state-of-the-art overview
of obstacle detection work for indoor autonomous vehicles is reviewed. Section 3 presents
the YOLO object-detection algorithm and the modified architecture for simultaneous object
detection and distance estimation. Additionally, the used datasets and the applied image
augmentation techniques are described. The training results, comparing different object
detection models, are discussed in Section 4. Moreover, some examples of the algorithm
performance are also shown. The results are discussed in Section 5. The paper is concluded
in Section 6.

2. Related Work

As noted by Nai-Hsiang Chang et al. [5], obstacle avoidance has always been a
very important research topic in the field of robotics. The most important thing is to
find out the obstacle location in relation to the robot as accurately as possible [17]. For
obstacle avoidance in autonomous vehicles, some basic requirements for image processing
include the following features. On the one hand, the prediction must achieve almost 100%
accuracy to obtain a reliable obstacle-detection system. On the other hand, the prediction
must guarantee real-time processing and fast inference speed to reduce the latency of the
autonomous vehicle control loop.

To find a solution to the obstacle avoidance problem, several methods have been
proposed in the literature in recent years [18–22]. There are a variety of sensors that
can be used for obstacle detection. Some of the most popular sensors [23] are infrared
sensors [24,25], ultrasonic sensors [26,27], cameras [28,29], radars [30,31], or LiDaRs [32,33].

Additionally, the rapid development of Machine Learning (ML), especially Deep
Learning (DL) [34], has promoted self-learning as a new area of research for robot obstacle
avoidance [35]. In this category of techniques, different neural network architectures have
been used to detect obstacles using computer vision. Nowadays, due to the development of
large-scale computation, Convolutional Neural Networks (CNNs) are one of the most pow-
erful vision-based algorithms. Therefore, their use in mobile robots for obstacle detection
has increased.

For example, Liu et al. [36] present an end-to-end CNN-based model for detecting
obstacles in images and consequently, generating steering commands for controlling the
robot. Similarly, Rezaei and Darabi [29] use a deep neural network to inform the robot
about the suitable direction of movement. Moreover, Christiansen et al. [37] introduce
DeepAnomaly, an algorithm combining DL and anomaly detection to exploit the homoge-
nous characteristics of a field to perform accurate and reliable anomaly detection. With
the combination of background subtraction and DL, they develop a fast state-of-the-art
detector for obstacles that are distant, heavily occluded, and unknown.

Furthermore, different object-recognition techniques such as CNN-based architectures
are used to find the object in the image and estimate the position of the obstacle in relation
to the vehicle. RCNNs (Region-based CNNs) and the YOLO (You Only Look Once) family
are the most commonly used CNN-based models for this purpose [38]. For instance,
Singh et al. [39] use YOLO object-detection algorithm results to aid the mobile robot in
detecting obstacles and navigating in an indoor environment. Another example is provided
by Su et al. [40], where an improved YOLOv5s object detection method is used for a
semi-structured apple environment.

Electronics 2023, 12, 4719 4 of 18

The use of semantic segmentation in obstacle detection in mobile robotics has also
been used in the literature. For example, Teso-Fz-Betoño et al. [41] used this technique to
distinguish between the floor, which is the navigation-free space, and the walls, which are
the obstacles. Something similar was performed by Dang and Bui [28], who provided a
real-time solution to the problem of obtaining hallway scenes from a single image.

On the other hand, as mentioned in the introduction, another objective of this work
is to predict the distance to the detected obstacles. To detect distance to objects using
computer vision several methods have been proposed in the literature. One solution is
to use stereo vision and combine it with an obstacle detection algorithm to determine the
distance to objects. The methods proposed by Macias-Garcia et al. [42] and Luo et al. [43] are
two examples where deep learning and stereo vision are combined for obstacle detection in
mobile robotics.

Another solution is proposed by Scokzeń et al. [44]. They used an RGB-D camera
to detect obstacles in an agricultural mobile robot using a four-stage method: collection
of RGB and depth images, generation of semantic segmentation based on RGB image,
reconstruction of the point cloud with segmentation results and depth image, and projection
of point in 2D occupancy grid for detecting obstacle position on the map.

Nevertheless, this study aimed to generate simultaneous object detection and distance
estimation using a low-cost monocular camera. Therefore, if only a single camera should
be used, some of the most widely used approaches in image-based obstacle detection
are the depth-based methods [45]. In these methods, a DL network was trained with
appropriate data to determine the depth of each pixel (depth map) in a single image. An
obstacle was detected if the predicted pixels in an image had a value lower than a threshold.
Monodepth2 [46], Fastdepth [47], and DNet [48] are some examples of monocular depth
estimation techniques.

Chen et al. [49] used YOLOv3 and Monodepth [50], a combination of monocular object
detection and depth estimation models, to generate a disparity map in a single camera
during inference. The distance was estimated from the Monodepth output and used in
the predicted YOLO boxes to get the position of the obstacles. Also, Zhang et al. [16]
followed the method of [10] to develop deep a neural network that can output object
distance directly using an R-CNN-based deep regression network. Their pipeline only
requires 2D image datasets with annotations of bounding boxes and distances, which are
less expensive to collect.

Another approach used in the literature was the prediction of the distance after
detecting the objects. DisNet [4] is an example of a distance estimation network, where
the authors used a YOLO object-detection algorithm for bounding box prediction and
a neural network for predicting the distances of different objects in an image from the
data generated by the regressor and other object-related default parameters. Like DisNet,
Natanael et al. [14] used YOLOv3 to detect bounding boxes along with coordinates, and
from these coordinates, they calculated distances analytically.

Going a step further, Marek et al. [51] present a modified YOLOv3 architecture to
perform object detection and distance prediction simultaneously. They also compare two
alternatives: adding a single output to the prediction vector to predict the distance to the
object and adding a distance output for each of the classes that can be detected. As they
comment, the addition of a single output gives better results.

Additionally, Zhu et al. [10] first proposed the use of distance-valued labels in the
training process, which can automatically predict the distance of a given object in RGB
images without the camera parameters. The framework of the proposed model consists of
a feature extractor, a distance regressor, and a multiclass classifier.

To conclude this section, a comparison of our method with other obstacle detec-
tion/avoidance systems for autonomous indoor vehicles is presented in Table 1.

Electronics 2023, 12, 4719 5 of 18

Table 1. State of the art comparison of obstacle detection methods.

Ref

Obstacle Detection
Obstacle

Avoidance
Pros [

1

] and Cons [

1

]
Sensor Method Distance

Estimation

[26]

Ultrasonic sensor
Processing of the data
collected from the sensor

X X

1

Compact size, low cost, and easy implementation.

1

Sensing capability with all matering types.

1

Short measure distance for low cost sensors (10 m).

1

Influenced by air temperature and humidity.

1

Not customisable for custom types of obstacles.

[27] X X

[52] X X

[53] X X

[24]

Infrared sensor

Combination of three
infrared sensors around
the chassis

X X

1

Small size.

1

Low cost and fast.

1

Cannot detect transparent and black objects.

1

Several sensors are needed for good performance.[25]
Combination of data from
infrared sensors and
a camera

X 7

[54]

Li
D

aR

2-D RPLiDAR Filtering, processing, and
clustering lidar raw data X X

1

Very-high accuracy measurements.

1

High resolution at range.

1

Unaffected by darkness or bright light conditions.

1

Slower and more expensive than other methods.

1

Complex data interpretation.

1

Sensitive to dirt.

[55] LiDaR
Lidar raw data processing

X X

[17] 2D LiDaR X 7

[56]

V
is

io
n

Gray Scale
Camera

Inverse perspective
mapping + image
abstraction and geodesic
distance computation

7 7

1

Fast and accurate.

1

Low cost.

1

No distance to obstacle information.

1

Manual labelling for quantitative evaluation.

[57] Omnidirectional
vision

Improved dynamic
window approach and
artificial potential field

7 X

1

360◦ vision.

1

Robust and effective method (won the 2017 FIRA
avoidance challenge).

1

No distance to obstacle information.

[58] Stereo Camera Depth-map mapping with
world coordinates X X

1

High precision compared to monocular vision.

1

Large computational complexity.

1

High hardware cost.

[44] RGB-D Camera

Semantic segmentation

X X

1

Information for each pixel.

1

Laborious image labelling work.

1

Powerful hardware needed for fast training and
inference.

[28]

RGB Camera

7 X

[40] Object detection 7 7

1

Flexible customisation for obstacle detection.

1

Accurate results for different seasons.

1

No direct distance information.

[29]
Obstacle classification
with CNNs

7 X

1

Easy to train and label.

1

Accurate results for trained objects.

1

No distance to obstacle information.

1

No multi-obstacle detection.
[36] 7 X

[59] Obstacle edge detection X X

1

Fast, accurate, and easy to implement.

1

Only useful for reduced type of obstacles.

[60] Image processing 7 X

1

Simple and efficient.

1

No distance to obstacle information.

Ours Object-detection
algorithm modification X 7

1

Flexible customisation for obstacle detection.

1

Fast and accurate.

1

Low cost.

1

Easily scalable.

1

Light and visibility dependent.

The results in Table 1 show that each of the studied methods has its positive and
negative aspects. For example, ultrasonic sensors are a low-cost and easy-to-apply solution
but have a short detection range. If more sensing distance is required, the price increases.
Additionally, LiDaR sensors are more expensive, and the processing of the information is
more complex and time-consuming, but they offer very accurate detections. Therefore, the
main limitations of the algorithms in the literature so far were that they did not combine
obstacle detection and position estimation with a single sensor (you needed to use a sensor

Electronics 2023, 12, 4719 6 of 18

combination) and were not customizable to the working environment. On the other hand,
our method is fast, accurate, low-cost (only one camera is needed), and it can be customized
for each working environment labeling new images of the potential obstacles that the
vehicle will meet. Finally, it is easily scalable by tagging as many images as needed.

3. Simultaneous Object Detection and Localization

The idea behind the simultaneous object detection and distance estimation model of
this work is the modification of an existing object-detection algorithm. The modification
consists of adding an output to the prediction vector of the existing model, which involves
modifying the network architecture, the loss function, the way labels are read, and the
calculation of model validation metrics. This section details the original object-detection
model used as a baseline, the datasets used to train and test the model, and the pseudocode
of the overall process followed to achieve the objective of the work.

3.1. YOLO (You Only Look Once)

The base model used to achieve simultaneous object detection and distance estimation
was YOLOv5. The YOLOv5 algorithm, an evolution of the YOLOv1, YOLOv2, YOLOv3,
and YOLOv4 models, is a family of pre-trained object detection architectures and models
designed for the COCO dataset [61].

YOLO is a popular and influential object-detection algorithm and model architecture
in the field of computer vision and deep learning. The key innovation of YOLO is that
it performs object detection in real time by dividing the image into a grid and making
predictions for each grid cell. Unlike traditional object detection methods that involve
multiple passes over an image, YOLO takes a one-stage approach, where it simultaneously
predicts the bounding boxes and class probabilities of objects in a single forward pass
through the neural network. Although YOLO is not the only one-step detection model, it is
generally more efficient than the other state-of-the-art algorithms in terms of speed and
accuracy [62].

The YOLO algorithm has gone through several versions, with each version (YOLOv1,
YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOX, YOLOR,
PP-YOLO, DAMO-YOLO, or YOLO-NAS) introducing improvements in accuracy and
efficiency. Nowadays, the good results of the architecture have allowed for object detection
using YOLO algorithms to be used in a wide range of applications such as autonomous
driving [63,64], defect detection [65,66], or healthcare [67,68], among others [62,69].

3.1.1. Updating the Prediction Vector

As mentioned above, this work proposes the modification of a YOLOv5 algorithm
that, besides locating and labeling the different objects in an image, predicts their distance
from the camera. For this purpose, we start with a YOLOv5 algorithm implemented in
Keras (https://github.com/yyccR/yolov5_in_tf2_keras, accessed on 11 November 2023).
This algorithm, like the original YOLOv5, was designed with a specific number of outputs
(see Figure 1), which depend on the number of classes to be identified.

Electronics 2023, 10, x FOR PEER REVIEW 7 of 19

taneously predicts the bounding boxes and class probabilities of objects in a single for-
ward pass through the neural network. Although YOLO is not the only one-step detec-
tion model, it is generally more efficient than the other state-of-the-art algorithms in
terms of speed and accuracy [62].

The YOLO algorithm has gone through several versions, with each version
(YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8,
YOLOX, YOLOR, PP-YOLO, DAMO-YOLO, or YOLO-NAS) introducing improvements
in accuracy and efficiency. Nowadays, the good results of the architecture have allowed
for object detection using YOLO algorithms to be used in a wide range of applications
such as autonomous driving [63,64], defect detection [65,66], or healthcare [67,68],
among others [62,69].

3.1.1. Updating the Prediction Vector
As mentioned above, this work proposes the modification of a YOLOv5 algorithm

that, besides locating and labeling the different objects in an image, predicts their dis-
tance from the camera. For this purpose, we start with a YOLOv5 algorithm implement-
ed in Keras (https://github.com/yyccR/yolov5_in_tf2_keras). This algorithm, like the
original YOLOv5, was designed with a specific number of outputs (see Figure 1), which
depend on the number of classes to be identified.

Figure 1. YOLOv5 model prediction vector.

A prediction vector is given as 𝑝 = (𝑏, 𝑜, 𝑐) = (𝑥, 𝑦, 𝑤, ℎ, 𝑜, 𝑐ଵ, 𝑐ଶ, . . . , 𝑐௡) , where (𝑥, 𝑦, 𝑤, ℎ) are coordinates produced by the bounding box regressor, (𝑜) denotes the ob-
jectness, the confidence that the prediction vector 𝑝 captures a real object, and (𝑐ଵ, 𝑐ଶ, . . . , 𝑐௡) represents the confidence that the detected object is each of the 𝑛 classes.
The 𝑛 classes represent the different 𝑛 objects that can be detected by the model. In total,
each prediction vector consists of 5 (𝑥, 𝑦, 𝑤, ℎ, 𝑜), which are constant for each object de-
tector, plus 𝑛 values, which depends on the number of classes to detect, i.e., 5 + 𝑛.

On the other hand, besides the prediction vector, the output of the YOLOv5 algo-
rithm is a set of tensors representing the detections of objects at different levels of image
resolution, corresponding to different anchor scales (anchors). Each tensor has a form
(batch size, num anchors, grid size, grid size, num attributes), where
• 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒: the number of images in the input batch;
• 𝑛𝑢𝑚 𝑎𝑛𝑐ℎ𝑜𝑟𝑠: the number of anchors used for each grid cell;
• 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒: the size of the grid that divides the image into cells;
• 𝑛𝑢𝑚 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠: the number of attributes by detection, including bounding box co-

ordinates, object confidence scores, class scores, and other related values. This is the
explained prediction vector 𝑝 = (𝑏, 𝑜, 𝑐).
The objective is to modify the output of the model so that for each prediction it

makes, it provides the distance of the object from the camera, as shown in Figure 2.

Figure 1. YOLOv5 model prediction vector.

A prediction vector is given as p = (b, o, c) = (x, y, w, h, o, c1, c2, ..., cn), where (x, y, w, h)
are coordinates produced by the bounding box regressor, (o) denotes the objectness, the
confidence that the prediction vector p captures a real object, and (c1, c2, ..., cn) represents

https://github.com/yyccR/yolov5_in_tf2_keras

Electronics 2023, 12, 4719 7 of 18

the confidence that the detected object is each of the n classes. The n classes represent
the different n objects that can be detected by the model. In total, each prediction vector
consists of 5(x, y, w, h, o), which are constant for each object detector, plus n values, which
depends on the number of classes to detect, i.e., 5 + n.

On the other hand, besides the prediction vector, the output of the YOLOv5 algorithm
is a set of tensors representing the detections of objects at different levels of image resolution,
corresponding to different anchor scales (anchors). Each tensor has a form (batch size, num
anchors, grid size, grid size, num attributes), where

• batchsize: the number of images in the input batch;
• numanchors: the number of anchors used for each grid cell;
• gridsize: the size of the grid that divides the image into cells;
• numattributes: the number of attributes by detection, including bounding box coor-

dinates, object confidence scores, class scores, and other related values. This is the
explained prediction vector p = (b, o, c).

The objective is to modify the output of the model so that for each prediction it makes,
it provides the distance of the object from the camera, as shown in Figure 2.

Electronics 2023, 10, x FOR PEER REVIEW 8 of 19

Figure 2. Modified prediction vector of the YOLOv5 model for simultaneous object detection and
distance estimation.

For the object-detection algorithm, adding distance to the prediction vector means
increasing the number of outputs and modifying the architecture so that the model
learns a new prediction output, using the characteristics of a regression output and ap-
plying the ability to train itself to minimize the loss of distance estimation as well. Then,
for distance detection, the prediction vector is extended in the form 𝑝 = (𝑏, 𝑑, 𝑜, 𝑐) =(𝑥, 𝑦, 𝑤, ℎ, 𝑑, 𝑜, 𝑐ଵ, 𝑐ଶ, . . . , 𝑐௡), where 𝑑 is the distance to the object and is class independent.
In total, each new prediction vector will consist of 6 + 𝑛 values, where 𝑛 is the number of
different objects that can be detected by the model.

The algorithm also uses the following four approaches to improve accuracy and ef-
ficiency: Residual Blocks, Bounding Box Regression, Intersection over Unions (IoU), and
Non-Maximun Suppression (NMS). First, Residual Blocks are often used as building
blocks within the neural network architecture to extract features from input images effi-
ciently. In bounding box regression, the coordinates of the predicted bounding box are
adjusted to closely match the true location of the object. IoU measures the overlap be-
tween the predicted bounding box and the ground truth bounding box of an object. Fi-
nally, NMS is a post-processing technique used to filter out duplicate or redundant ob-
ject detections.

3.1.2. New YOLO Loss Function
As mentioned above, the original YOLOv5 prediction vector returns three outputs:

the probability of each class for the detected objects, the objectness score, and the bound-
ing boxes. Thus, the YOLOv5 loss consists of three parts: class loss (Binary Cross Entro-
py loss), objectness loss (Binary Cross Entropy loss), and bounding box loss (Complete
Intersection over Union loss) (see Equation (1)). On the one hand, the classification loss (Lୡ୪ୱ) measures the accuracy of the predictions of the classes of objects detected in each
grid cell. On the other hand, the objectness loss (L୭ୠ୨) measures how well the model pre-
dicts whether an object is present in each grid cell. Finally, the bounding box regression
loss (Lୠୠ୭୶) assesses how accurate the predictions of the bounding box coordinates
around the object are. λଵ, λଶ, and λଷ are the weighting coefficients (hyperparameters) that
control the relative importance of each term in the overall loss function. Loss = λଵ · Lୡ୪ୱ + λଶ · L୭ୠ୨ + λଷ · Lୠୠ୭୶ (1)

In addition, the balance loss is used to adjust the confidence and regression loss
weights in the different detection layers, depending on the size of the objects and the
scale of the prediction layer. The balance weights are [4.0, 1.0, 0.4], respectively, and they
ensure that the predictions at different scales contribute appropriately to the total loss
(see Equation (2)). L୭ୠ୨ = 4.0 · L୭ୠ୨ୱ୫ୟ୪୪ + 1.0 · L୭ୠ୨୫ୣୢ୧୳୫ + 0.4 · Lୠୠ୭୶ୱ୫ୟ୪୪ (2)

This strategy aims to consider objects of different sizes more equally in terms of
loss, which can help the model focus on accurate detection regardless of object size. This
technique of differentially weighting losses according to object size and scale is a way of
adjusting the relative importance of different aspects of detection in different prediction
layers. The new YOLOv5 loss used in this work consists of four parts: class loss (Cate-

Figure 2. Modified prediction vector of the YOLOv5 model for simultaneous object detection and
distance estimation.

For the object-detection algorithm, adding distance to the prediction vector means
increasing the number of outputs and modifying the architecture so that the model learns
a new prediction output, using the characteristics of a regression output and apply-
ing the ability to train itself to minimize the loss of distance estimation as well. Then,
for distance detection, the prediction vector is extended in the form p = (b, d, o, c) =
(x, y, w, h, d, o, c1, c2, ..., cn), where d is the distance to the object and is class independent.
In total, each new prediction vector will consist of 6 + n values, where n is the number of
different objects that can be detected by the model.

The algorithm also uses the following four approaches to improve accuracy and
efficiency: Residual Blocks, Bounding Box Regression, Intersection over Unions (IoU), and
Non-Maximun Suppression (NMS). First, Residual Blocks are often used as building blocks
within the neural network architecture to extract features from input images efficiently.
In bounding box regression, the coordinates of the predicted bounding box are adjusted
to closely match the true location of the object. IoU measures the overlap between the
predicted bounding box and the ground truth bounding box of an object. Finally, NMS is a
post-processing technique used to filter out duplicate or redundant object detections.

3.1.2. New YOLO Loss Function

As mentioned above, the original YOLOv5 prediction vector returns three outputs:
the probability of each class for the detected objects, the objectness score, and the bounding
boxes. Thus, the YOLOv5 loss consists of three parts: class loss (Binary Cross Entropy loss),
objectness loss (Binary Cross Entropy loss), and bounding box loss (Complete Intersection
over Union loss) (see Equation (1)). On the one hand, the classification loss (L cls) measures
the accuracy of the predictions of the classes of objects detected in each grid cell. On the
other hand, the objectness loss (Lobj) measures how well the model predicts whether an
object is present in each grid cell. Finally, the bounding box regression loss (L bbox) assesses
how accurate the predictions of the bounding box coordinates around the object are. λ1, λ2,

Electronics 2023, 12, 4719 8 of 18

and λ3 are the weighting coefficients (hyperparameters) that control the relative importance
of each term in the overall loss function.

Loss = λ1·Lcls + λ2·Lobj + λ3·Lbbox (1)

In addition, the balance loss is used to adjust the confidence and regression loss
weights in the different detection layers, depending on the size of the objects and the
scale of the prediction layer. The balance weights are [4.0, 1.0, 0.4], respectively, and they
ensure that the predictions at different scales contribute appropriately to the total loss (see
Equation (2)).

Lobj = 4.0·Lsmall
obj + 1.0·Lmedium

obj + 0.4·Lsmall
bbox (2)

This strategy aims to consider objects of different sizes more equally in terms of
loss, which can help the model focus on accurate detection regardless of object size. This
technique of differentially weighting losses according to object size and scale is a way of
adjusting the relative importance of different aspects of detection in different prediction
layers. The new YOLOv5 loss used in this work consists of four parts: class loss (Categor-
ical Cross Entropy loss), objectness loss (Binary Cross Entropy loss), bounding box loss
(Complete Intersection over Union loss), and distance loss (MAE) (see Equation (3)).

Loss = λ1·Lcls + λ2·Lobj + λ3·Lbbox + λ4·Ldis (3)

Correctly balancing the weights in each term of the loss function is critical to achieve
effective training and optimal object detection performance. Each term has a specific
purpose, and adjusting the weights allows you to assign the appropriate importance to
each feature of the problem improving the accuracy and generalization of the model.

3.2. Datasets

In deep learning, as in machine learning, one of the most important aspects to consider
is the type of data you feed the model. The more data you have, the more likely a ML
algorithm is to understand them and make accurate predictions on new data. As mentioned
by Li Liu et al. [70], datasets have played a crucial role throughout the history of DL research,
not only as a common ground for measuring and comparing the performance of competing
algorithms but also for pushing the field towards increasingly complex and challenging
problems [62].

3.2.1. KITTI Dataset

KITTI is an autonomous driving vision dataset developed by the Karlsruhe Institute
of Technology and the Toyota Technological Institute in Chicago for various tasks such
as stereo, optical flow, visual odometry, 3D object detection, and 3D tracking [8]. This
work uses the KITTI 3D object detection dataset which consists of 7481 training images and
7518 test images and their corresponding point clouds, for a total of 80.256 labeled objects.
The description of the dataset and an example are given in Table 2.

Table 2. Description of the KITTI 3D Object Detection dataset.

Name Type Truncated Occluded Alpha BBox Dimensions Location Rotation ry

N◦ of values 1 1 1 1 4 3 3 1

Example Car 0.0 0 −1.57 596.71 174.68 624.59 201.52 1.66 1.73 3.05 0.01 1.8 46.71 −1.57

Where

• Type describes the type of object: ‘Car’, ‘Van’, ‘Truck’, ‘Pedestrian’, ‘Person_sitting’,
‘Cyclist’, ‘Tram’, ‘Misc’ or ‘DontCare’;

• Truncated is a float from 0 (non-truncated) to 1 (truncated), where truncated refers to
the object leaving image boundaries;

Electronics 2023, 12, 4719 9 of 18

• Occluded is and integer (0, 1, 2, 3) indicating occlusion state: 0 = fully visible,
1 = partly occluded, 2 = largely occluded, 3 = unknown;

• Alpha is the observation angle of the object, ranging [-pi...pi];
• Bbox is the 2D bounding box of the object in the image (0-based index): contains left

top and right bottom pixel coordinates;
• 3D object dimensions: height, width, length (in meters);
• 3D object location (x,y,z) in camera coordinates (in meters);
• Rotation ry is the rotation around the Y-axis in camera coordinates [−pi...pi].

For this work, we will be calculating the absolute distance from the object to the
camera, not just the depth. For this reason, it is necessary to process the location information
provided by the KITTI image set. So, from the KITTI dataset, we only need the type, bbox,
and location data for our application. In addition, the data can be filtered with the occlusion
variable to detect just fully visible objects. Some examples of the KITTI image set are shown
in Figure 3.

Electronics 2023, 10, x FOR PEER REVIEW 10 of 19

Figure 3. Some labelled KITTI 3D Object Detection dataset images.

3.2.2. Custom Dataset
As mentioned in the introduction, the goal is to detect obstacles in a specific envi-

ronment. Training the designed object detection and distance-estimation algorithm using
only the KITTI dataset would not produce good results for the application, as it would
not correctly represent the vehicle’s working environment. For this reason, 104 images of
the specific environment in which the robot moves were collected and labeled. The im-
ages were captured at a resolution of 640 × 480 at the Vitoria-Gasteiz University of Engi-
neering with a Logitech C920s webcam, and they were manually labeled using a laser
meter to measure the distance to the obstacles (in this case people). The reason for de-
tecting people as obstacles is that the vehicles we are working with (AGVs) are used for
the transport of cargo in an industrial environment, so a possible application of this type
of algorithm is to make the vehicle act autonomously when it encounters a worker. An-
other possible application could be the interaction of a service robot with people. Some
images of the dataset are shown in Figure 4.

Figure 4. Images from custom object detection and distance estimation dataset.

3.3. Data Augmentation
As described in Albumentations: Fast and Flexible Image Augmentations [71], data

augmentation is a commonly used technique to increase both the size and diversity of
labeled training sets by using input transformations that preserve the corresponding
output labels. Usually, modern computer vision-based deep learning models require
large amounts of high-quality labelled images to perform successfully. The use of data

Figure 3. Some labelled KITTI 3D Object Detection dataset images.

3.2.2. Custom Dataset

As mentioned in the introduction, the goal is to detect obstacles in a specific envi-
ronment. Training the designed object detection and distance-estimation algorithm using
only the KITTI dataset would not produce good results for the application, as it would not
correctly represent the vehicle’s working environment. For this reason, 104 images of the
specific environment in which the robot moves were collected and labeled. The images
were captured at a resolution of 640 × 480 at the Vitoria-Gasteiz University of Engineering
with a Logitech C920s webcam, and they were manually labeled using a laser meter to
measure the distance to the obstacles (in this case people). The reason for detecting people
as obstacles is that the vehicles we are working with (AGVs) are used for the transport
of cargo in an industrial environment, so a possible application of this type of algorithm
is to make the vehicle act autonomously when it encounters a worker. Another possible
application could be the interaction of a service robot with people. Some images of the
dataset are shown in Figure 4.

Electronics 2023, 12, 4719 10 of 18

Electronics 2023, 10, x FOR PEER REVIEW 10 of 19

Figure 3. Some labelled KITTI 3D Object Detection dataset images.

3.2.2. Custom Dataset
As mentioned in the introduction, the goal is to detect obstacles in a specific envi-

ronment. Training the designed object detection and distance-estimation algorithm using
only the KITTI dataset would not produce good results for the application, as it would
not correctly represent the vehicle’s working environment. For this reason, 104 images of
the specific environment in which the robot moves were collected and labeled. The im-
ages were captured at a resolution of 640 × 480 at the Vitoria-Gasteiz University of Engi-
neering with a Logitech C920s webcam, and they were manually labeled using a laser
meter to measure the distance to the obstacles (in this case people). The reason for de-
tecting people as obstacles is that the vehicles we are working with (AGVs) are used for
the transport of cargo in an industrial environment, so a possible application of this type
of algorithm is to make the vehicle act autonomously when it encounters a worker. An-
other possible application could be the interaction of a service robot with people. Some
images of the dataset are shown in Figure 4.

Figure 4. Images from custom object detection and distance estimation dataset.

3.3. Data Augmentation
As described in Albumentations: Fast and Flexible Image Augmentations [71], data

augmentation is a commonly used technique to increase both the size and diversity of
labeled training sets by using input transformations that preserve the corresponding
output labels. Usually, modern computer vision-based deep learning models require
large amounts of high-quality labelled images to perform successfully. The use of data

Figure 4. Images from custom object detection and distance estimation dataset.

3.3. Data Augmentation

As described in Albumentations: Fast and Flexible Image Augmentations [71], data aug-
mentation is a commonly used technique to increase both the size and diversity of labeled
training sets by using input transformations that preserve the corresponding output la-
bels. Usually, modern computer vision-based deep learning models require large amounts
of high-quality labelled images to perform successfully. The use of data augmentation
allows for an increase in the volume, quality, and variety of training data, thus reducing
manual-labelling times and improving the results of the developed models [72].

In this project, the original image set was increased to approximately 500 images
(×5 original images) using image-augmentation techniques such as horizontal flipping,
random brightness, contrast modification, RGB shift, or the addition of random noise, as
these are modifications that do not change the distance to the objects (see Figure 5).

Electronics 2023, 10, x FOR PEER REVIEW 11 of 19

augmentation allows for an increase in the volume, quality, and variety of training data,
thus reducing manual-labelling times and improving the results of the developed mod-
els [72].

In this project, the original image set was increased to approximately 500 images (×5
original images) using image-augmentation techniques such as horizontal flipping, ran-
dom brightness, contrast modification, RGB shift, or the addition of random noise, as
these are modifications that do not change the distance to the objects (see Figure 5).

Figure 5. Examples of images with data augmentation (the left image is the original).

The idea was to first train the network on the KITTI dataset and then apply transfer
learning to our images from the custom dataset. Transfer learning is the reuse of a pre-
trained model on a new problem and allows for the knowledge gained from previous
training to be used to improve the results of a future task without the need to use large
amounts of labeled data. A list of step-by-step instructions for training the custom object
detection and distance estimation model is shown below.
1. Download and preprocess the KITTI dataset. In this work, the KITTI 3D Object De-

tection (https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d,
accessed on 11 November 2023) dataset will be used in the first stage to train the al-
gorithm.

2. Generate object detection and distance estimation custom dataset. To use the devel-
oped model in a custom environment, it is necessary to collect and label a dataset
that describes the new environment.

3. Create or find an object-detection algorithm. There are in the literature several ob-
ject-detection algorithms. However, you should look for or design one that allows
you to modify the architecture easily.

4. Modify object detection model architecture to estimate distance to objects as well.
Once the object-detection algorithm is working correctly, it will be necessary to
modify the architecture so that it can also predict distances to detected objects.

5. Train the model with object detection and distance prediction dataset. The first
training of the new model will be performed on a dataset with many labelled imag-
es, like KITTI or nuScenes. This will allow the network to optimise its weights for
better training on customised images.

6. Transfer learning of the model weights with the custom dataset. After training the
model with the large database, the model is re-trained with the images of the cus-
tomised environment where the vehicle will move. In this way, the network can
adapt correctly to the environment with a low amount of data.

Figure 5. Examples of images with data augmentation (the left image is the original).

The idea was to first train the network on the KITTI dataset and then apply transfer
learning to our images from the custom dataset. Transfer learning is the reuse of a pre-
trained model on a new problem and allows for the knowledge gained from previous
training to be used to improve the results of a future task without the need to use large
amounts of labeled data. A list of step-by-step instructions for training the custom object
detection and distance estimation model is shown below.

1. Download and preprocess the KITTI dataset. In this work, the KITTI 3D Object
Detection (https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=
3d, accessed on 11 November 2023) dataset will be used in the first stage to train the
algorithm.

2. Generate object detection and distance estimation custom dataset. To use the devel-
oped model in a custom environment, it is necessary to collect and label a dataset that
describes the new environment.

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

Electronics 2023, 12, 4719 11 of 18

3. Create or find an object-detection algorithm. There are in the literature several object-
detection algorithms. However, you should look for or design one that allows you to
modify the architecture easily.

4. Modify object detection model architecture to estimate distance to objects as well.
Once the object-detection algorithm is working correctly, it will be necessary to modify
the architecture so that it can also predict distances to detected objects.

5. Train the model with object detection and distance prediction dataset. The first
training of the new model will be performed on a dataset with many labelled images,
like KITTI or nuScenes. This will allow the network to optimise its weights for better
training on customised images.

6. Transfer learning of the model weights with the custom dataset. After training
the model with the large database, the model is re-trained with the images of the
customised environment where the vehicle will move. In this way, the network can
adapt correctly to the environment with a low amount of data.

Repeat steps five and six to find the best model performance. Finally, the models
will be trained until the correct architecture and hyperparameters are found for which the
network detects objects and estimates distances correctly.

4. Results

In this section, the results of the proposed simultaneous object detection and distance-
estimation algorithm will be discussed. On the one hand, to evaluate the object detection
performance of the models with the custom dataset, the precision (P, Equation (4)), recall (R,
Equation (5)), and mean average precision (mAP, Equations (6) and (7)) were calculated and
compared. Precision measures the model’s ability to make accurate positive predictions,
while recall measures the proportion of actual positive cases that the model correctly
identifies. To calculate mAP, you first need to create a precision–recall curve for each class
that the model is trying to detect. The precision–recall curve is generated by varying the
confidence threshold for the detection model and calculating the precision and recall at
each threshold. The total number of different confidence thresholds or detection scores is N.
For each class, you calculate the area under the precision–recall curve. This area is called
the Average Precision (AP, Equation (6)). To obtain the mAP (Equation (7)), the average
of the AP values across all classes (nclasses) is calculated, which summarizes the overall
performance of the object detection model.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
N

∑
k=1

Precision(k)·∆Recall(k) (6)

mAP =
1

nclasses

nclasses

∑
i=1

APi (7)

where TP, FP, and FN refer to the true positives, false positives, and false negatives, respec-
tively. TP are positive samples with correct classification, FP are negative samples with
incorrect classification, and FN are positive samples with incorrect classification. On the
other hand, to evaluate the distance estimation accuracy, the MAE (Mean Absolute Error,
Equation (8)) and MAPE (Mean Absolute Percentage Error, Equation (9)) values are used,
because it is more important to detect a close obstacle than a far obstacle, in order to avoid

Electronics 2023, 12, 4719 12 of 18

potential imminent collisions. The metrics were calculated with the help of the following
equations.

MAE =
1
N

N

∑
k=1

∣∣∣yk,real − yk,pred

∣∣∣ (8)

MAPE =
1
N
·

N

∑
k=1

∣∣∣∣∣yk,real − yk,pred

yk,real

∣∣∣∣∣ (9)

The results of the different YOLOv5-based models can be seen in Table 3.

Table 3. Results.

Model Object Detection Distance Estimation Speed

Type Params (M) mAP 0.5 mAP 0.5:0.95 Precision Recall MAE (m) MAPE (%) Inf. Time (gpu|cpu) (ms)

YOLOv5n 1.8 0.867 0.731 0.510 0.930 0.87 18.3 51|65

YOLOv5s 7.1 0.882 0.785 0.594 0.934 0.72 28.9 57|87

YOLOv5m 20.9 0.921 0.782 0.615 0.936 0.71 14 65|135

YOLOv5l 46.2 0.897 0.817 0.641 0.936 0.83 23.9 76|223

The results in Table 3 show that there is a progressive improvement in performance
with the increase in the model parameters. On the one hand, the object detection results
show good accuracy, with a mAP0.5:0.95 of more than 70% for all models. On the other
hand, the distance estimation results show an average absolute error of about 0.7–0.8 m
and a mean average precision error between 10 and 30%. The best distance prediction
model YOLOv5m has a 0.71 m MAE and 14% MAPE. A MAE of 0.71 m and a MAPE of
14% means that, on average, the predictions made by a model are off by 0.71 m and 14%
from the actual or real values.

For the visualization of the training results, Tensorboard was used, which is the Ten-
sorFlow visualization toolkit. The device used in this experiment was a laptop with an Intel
Core i7-11800H CPU and a NVIDIA GeForce RTX 3070 GPU. The software environment
was CUDA 11.6 and Python 3.7.

Figure 6 provides several images of the test set where the results of the trained
models are compared. The results show that although the lighter models still fail in some
estimations of distance, the heaviest model nearly predicts all the results perfectly. The
labels in the images of Figure 6 have the (Detected class: Predicted distance by de net [m],
Real distance [m]) form.

The images in Figure 6 show that the simultaneous object detection and distance
estimation model works quite well for the four displayed models. On the one hand, all
four models correctly perform the part of detecting people. On the other hand, distance
estimation is a factor where a progressive improvement is seen with the increasing number
of model parameters: the YOLOv5n model still estimates distances of 0m for some images,
while the YOLOv5l, the heaviest one, practically hits all distances.

Additionally, in Table 4 our method is compared quantitatively with other object-
detection algorithms available in the literature, including official object-detection models
trained on big databases as well as different object-detection modifications made by re-
searchers. The model comparison has been carried out for similar tasks in autonomous
(mostly indoor) vehicles, which do not necessarily involve obstacle detection. The results
show that the performance of the model depends on different factors such as the selected
detection algorithm, the complexity of the task the vehicle will perform (such as the detec-
tion of objects with easily distinguishable patterns as well as the working environment), or
the number of training images/training labels and their quality.

Electronics 2023, 12, 4719 13 of 18

Electronics 2023, 10, x FOR PEER REVIEW 13 of 19

Table 3. Results.

Model Object Detection Distance Estimation Speed
Type Params (M) mAP 0.5 mAP 0.5:0.95 Precision Recall MAE (m) MAPE (%) Inf. Time (gpu|cpu) (ms)

YOLOv5n 1.8 0.867 0.731 0.510 0.930 0.87 18.3 51|65
YOLOv5s 7.1 0.882 0.785 0.594 0.934 0.72 28.9 57|87
YOLOv5m 20.9 0.921 0.782 0.615 0.936 0.71 14 65|135
YOLOv5l 46.2 0.897 0.817 0.641 0.936 0.83 23.9 76|223

The results in Table 3 show that there is a progressive improvement in performance
with the increase in the model parameters. On the one hand, the object detection results
show good accuracy, with a mAP0.5:0.95 of more than 70% for all models. On the other
hand, the distance estimation results show an average absolute error of about 0.7–0.8 m
and a mean average precision error between 10 and 30%. The best distance prediction
model YOLOv5m has a 0.71 m MAE and 14% MAPE. A MAE of 0.71 m and a MAPE of
14% means that, on average, the predictions made by a model are off by 0.71 m and 14%
from the actual or real values.

For the visualization of the training results, Tensorboard was used, which is the
TensorFlow visualization toolkit. The device used in this experiment was a laptop with
an Intel Core i7-11800H CPU and a NVIDIA GeForce RTX 3070 GPU. The software envi-
ronment was CUDA 11.6 and Python 3.7.

Figure 6 provides several images of the test set where the results of the trained
models are compared. The results show that although the lighter models still fail in
some estimations of distance, the heaviest model nearly predicts all the results perfectly.
The labels in the images of Figure 6 have the (Detected class: Predicted distance by de
net [m], Real distance [m]) form.

Model Image Test 1 Image Test 2 Image Test 3 Image Test 4

YO
LO

v5
n

YO
LO

v5
s

YO
LO

v5
m

Electronics 2023, 10, x FOR PEER REVIEW 14 of 19

YO
LO

v5
l

Figure 6. Image model comparison.

The images in Figure 6 show that the simultaneous object detection and distance es-
timation model works quite well for the four displayed models. On the one hand, all
four models correctly perform the part of detecting people. On the other hand, distance
estimation is a factor where a progressive improvement is seen with the increasing
number of model parameters: the YOLOv5n model still estimates distances of 0m for
some images, while the YOLOv5l, the heaviest one, practically hits all distances.

Additionally, in Table 4 our method is compared quantitatively with other object-
detection algorithms available in the literature, including official object-detection models
trained on big databases as well as different object-detection modifications made by re-
searchers. The model comparison has been carried out for similar tasks in autonomous
(mostly indoor) vehicles, which do not necessarily involve obstacle detection. The results
show that the performance of the model depends on different factors such as the select-
ed detection algorithm, the complexity of the task the vehicle will perform (such as the
detection of objects with easily distinguishable patterns as well as the working environ-
ment), or the number of training images/training labels and their quality.

Table 4. Quantitative state of the art object detection model comparison.

Ref
Object Detection Model Data

Work Environment
Model mAP 0.5 Dataset N Images

[73]
YOLOv5n 45.7

Mixed - Official YOLOv5 algorithm. General object detection.
YOLOv5l 67.3

[40] Improved YOLOv5s 95.2 Custom 1800 Semi-structured apple orchard environment.

[74] YOLOv3
49.4

BDD100K +100,000 Autonomous vehicles in outdoor environment
in clear (1) and rainy (2) conditions. 52.6

[75] JET-Net 59.1 Mixed +55,000 Football environment for autonomous robots.
[76] Tiny-YOLO 67.6 Mixed 7700 General indoor environment for mobile robots.

[77] Faster R-CNN 82.8 Custom 1625
Different conditions outdoor environment for mobile ro-

bots.
[78] Improved YOLOv4 86.8 DJI ROCO 2065 Robomaster Competition environment for mobile robots.

Ours
YOLOv5n 86.7

Custom 104 Custom indoor environment for automated guided vehi-
cles. YOLOv5l 89.7

Finally, Table 5 compares the mean absolute error with other distance estimation
models using a single monocular camera. It should be noted that the working environ-
ment of the other models (outdoor) is different from ours (indoor) and that the maxi-
mum detection distances are larger, so there is no direct comparison of the distance er-
ror. However, these values serve to determine the functionality and feasibility of our
model.

Figure 6. Image model comparison.

Table 4. Quantitative state of the art object detection model comparison.

Ref
Object Detection Model Data

Work Environment
Model mAP 0.5 Dataset N Images

[73]
YOLOv5n 45.7

Mixed - Official YOLOv5 algorithm. General object
detection.YOLOv5l 67.3

[40] Improved
YOLOv5s 95.2 Custom 1800 Semi-structured apple orchard environment.

[74] YOLOv3
49.4

BDD100K +100,000
Autonomous vehicles in outdoor environment

in clear (1) and rainy (2) conditions.52.6

[75] JET-Net 59.1 Mixed +55,000 Football environment for autonomous robots.

[76] Tiny-YOLO 67.6 Mixed 7700 General indoor environment for mobile robots.

[77] Faster R-CNN 82.8 Custom 1625 Different conditions outdoor environment for
mobile robots.

[78] Improved
YOLOv4 86.8 DJI ROCO 2065 Robomaster Competition environment for

mobile robots.

Ours
YOLOv5n 86.7

Custom 104
Custom indoor environment for automated

guided vehicles.YOLOv5l 89.7

Electronics 2023, 12, 4719 14 of 18

Finally, Table 5 compares the mean absolute error with other distance estimation mod-
els using a single monocular camera. It should be noted that the working environment of
the other models (outdoor) is different from ours (indoor) and that the maximum detection
distances are larger, so there is no direct comparison of the distance error. However, these
values serve to determine the functionality and feasibility of our model.

Table 5. Quantitative state of the art monocular distance to object estimation model comparison.

Ref MAE (m) Distance Estimation Method Task

[4] 2.0 Deep Neural Network Distance estimation in railway environment.

[51] 2.57 YOLOv3 prediction vector modification Distance to multiples classes (vehicles, pedestrians, trams,
trucks, etc.) estimation for autonomous vehicles.

[10] 46.2 End-to-end learning-based model Distance to multiples classes (vehicles, pedestrians, trams,
trucks, etc.) estimation in autonomous vehicles.

[16] 1.83 R-CNN based structure Distance estimation to cars, pedestrians, and
cyclists for autonomous vehicles.

Ours 0.71 YOLOv5 prediction vector modification Distance to obstacles prediction in indoor environment.

5. Discussion

This paper presents a set of algorithms for detecting objects and estimating distances
to them simultaneously. The results demonstrate the feasibility of training a deep learning
model using very few samples of data, saving the laborious time-consuming manual
labeling of images. The use of data augmentation techniques that do not alter the distance
to the objects allows for the generation of new synthetic images and obtaining satisfactory
results for the task at hand. Furthermore, applying transfer learning from a trained model
with a large dataset makes training in a customized environment much quicker and simpler.

The main limitations of the algorithm are that it has only been trained with a reduced
set of images for a custom environment and just one type of obstacle. However, this can
easily be improved by manually labeling more images, although this is time-consuming,
and is the major challenge of deep learning algorithms. Moreover, not all models offer the
same performance characteristics, so it is necessary to find the appropriate model for each
application, considering, for example, aspects such as detection accuracy and inference time.
Similarly, it is necessary to have hardware that can quickly run these algorithms. However,
nowadays it is even possible to find microcontrollers that support deep learning libraries.
Another negative aspect to consider is that currently no obstacle avoidance algorithm has
been developed, although it can be used to avoid collisions in a simple way, such as the
reduction of vehicle speed if the distance to the obstacle is more than 5 m and a full stop if
it is less than 5 m.

To conclude this section, the contributions of this paper have been compared with other
papers covering similar topics in Tables 1, 4 and 5. On the one hand, the literature review
in Table 1 shows that there are several methods for obstacle detection, all of which have
their advantages and disadvantages. For example, ultrasonic sensors are low cost and easy
to implement but have a short range of action and cannot be customized for the detection
of only some types of obstacles. Likewise, LiDaRs have good resolution and provide
distance information but are more expensive than other sensors. Additionally, camera-
based methods are low-cost compared to some specialized sensors and offer detailed
information about the surroundings. However, most computer vision-based methods did
not provide distance estimation, especially when using a single, uncalibrated camera.

On the other hand, taking this into account, our algorithm uses a single monocular
uncalibrated camera, as the only source of information. The use of deep learning algorithms
allows for the generation of a flexible model in terms of the obstacles to be avoided: it can be
trained in a customized way for just the desired obstacles. In addition, the proposed model
offers very high performance with a very small dataset, with more than 75% of mAP0.5:0.95.

Electronics 2023, 12, 4719 15 of 18

For example, the official YOLOv5l algorithm has 49% mAP for general-purpose object
detection. Furthermore, Table 4 shows that our algorithm provides accurate results when
compared to other object-detection algorithms in similar mobile robot tasks. Some results
of similar studies on environment recognition include Tiny-YOLO [76] with and improved
YOLOv4 [78] with 67.6% and 86.8% of mAP, respectively. In comparison, our algorithm
offers better accuracy, and the number of training images is more than 10 times lower. For
distance estimation (see Table 5), our best model has an MAE of 0.71 m, slightly better than
monocular camera distance estimation models in outdoor autonomous vehicles. Finally,
our algorithm was easy to use and implement, and different versions of the algorithm are
provided depending on the hardware available to deploy it.

6. Conclusions

The present work aimed to develop an algorithm that simultaneously performs object
detection and distance estimation for an autonomous indoor vehicle. A modification of a
YOLOv5-based Keras implementation is proposed for obstacle detection in a custom envi-
ronment. The results show an incredible performance with a custom dataset of 100 images.
The developed algorithm can detect obstacles in an image and predict its distance to the
camera with high accuracy and low inference time.

In the results, different models for simultaneous object detection and distance estima-
tion, with parameters from 1.8 M up to 46.2 M, are compared. A progressive improvement
is shown as the volume of parameters to be trained increases, with the YOLOv5l model
providing very accurate results for the task at hand. These results illustrate the usefulness
of transfer learning and the possibility of detecting customized obstacles with a low-cost
vision sensor that can be used for autonomous driving in both indoor and outdoor vehicles.

Future research directions can be divided into two main areas: on the one hand, to
use this algorithm as a baseline for developing an obstacle avoidance algorithm using
techniques such as reinforcement learning, and on the other hand, to deploy this type of
algorithm on low-cost hardware, such as a microcontroller or a Coral Edge TPU.

Author Contributions: Conceptualization, I.A.; methodology, I.A. and M.G.; software, I.A.; valida-
tion, I.A., M.G., E.Z. and J.M.L.-G.; formal analysis, M.G., E.Z. and J.M.L.-G.; investigation, I.A. and
M.G.; resources, I.A. and M.G.; data curation, I.A. and M.G.; writing—original draft preparation,
I.A.; writing—review and editing, I.A., M.G., E.Z. and J.M.L.-G.; visualization, I.A., M.G., E.Z. and
J.M.L.-G.; supervision, M.G., E.Z. and J.M.L.-G.; project administration, I.A., M.G. and E.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful for the support provided by the UPV/EHU.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM Algorithms: A Survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017,

9, 16. [CrossRef]
2. Yasuda, Y.D.V.; Martins, L.E.G.; Cappabianco, F.A.M. Autonomous Visual Navigation for Mobile Robots: A Systematic Literature

Review. ACM Comput. Surv. 2020, 53, 1–34. [CrossRef]
3. Mota, F.A.X.D.; Rocha, M.X.; Rodrigues, J.J.P.C.; Albuquerque, V.H.C.D.; Alexandria, A.R.D. Localization and Navigation for

Autonomous Mobile Robots Using Petri Nets in Indoor Environments. IEEE Access 2018, 6, 31665–31676. [CrossRef]
4. Haseeb, M.A.; Guan, J.; Ristić-Durrant, D.; Gräser, A. DisNet: A Novel Method for Distance Estimation from Monocular Camera.

In Proceedings of the 10th Planning, Perception and Navigation for Intelligent Vehicles (PPNIV18), IROS, Madrid, Spain, 1
October 2018.

5. Chang, N.-H.; Chien, Y.-H.; Chiang, H.-H.; Wang, W.-Y.; Hsu, C.-C. A Robot Obstacle Avoidance Method Using Merged CNN
Framework. In Proceedings of the 2019 International Conference on Machine Learning and Cybernetics (ICMLC), Kobe, Japan,
7–10 July 2019; pp. 1–5.

https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1145/3368961
https://doi.org/10.1109/ACCESS.2018.2846554

Electronics 2023, 12, 4719 16 of 18

6. Hanumante, V.; Roy, S.; Maity, S. Low Cost Obstacle Avoidance Robot. Int. J. Soft Comput. Eng. 2013, 3, 52–55.
7. Borenstein, J.; Koren, Y. Real-Time Obstacle Avoidance for Fast Mobile Robots. IEEE Trans. Syst. Man Cybern. 1989, 19, 1179–1187.

[CrossRef]
8. Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of

the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
9. Bernini, N.; Bertozzi, M.; Castangia, L.; Patander, M.; Sabbatelli, M. Real-Time Obstacle Detection Using Stereo Vision for

Autonomous Ground Vehicles: A Survey. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 873–878.

10. Zhu, J.; Fang, Y. Learning Object-Specific Distance from a Monocular Image. In Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3838–3847.

11. Huang, L.; Zhe, T.; Wu, J.; Wu, Q.; Pei, C.; Chen, D. Robust Inter-Vehicle Distance Estimation Method Based on Monocular Vision.
IEEE Access 2019, 7, 46059–46070. [CrossRef]

12. Liang, H.; Ma, Z.; Zhang, Q. Self-Supervised Object Distance Estimation Using a Monocular Camera. Sensors 2022, 22, 2936.
[CrossRef]

13. Leu, A.; Aiteanu, D.; Gräser, A. High Speed Stereo Vision Based Automotive Collision Warning System. In Applied Computational
Intelligence in Engineering and Information Technology; Precup, R.-E., Kovács, S., Preitl, S., Petriu, E.M., Eds.; Topics in Intelligent
Engineering and Informatics; Springer: Berlin, Heidelberg, 2012; Volume 1, pp. 187–199, ISBN 978-3-642-28304-8.

14. Natanael, G.; Zet, C.; Fosalau, C. Estimating the Distance to an Object Based on Image Processing. In Proceedings of the
2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 18–19 October 2018;
pp. 211–216.

15. Davydov, Y.; Chen, W.-H.; Lin, Y.-C. Supervised Object-Specific Distance Estimation from Monocular Images for Autonomous
Driving. Sensors 2022, 22, 8846. [CrossRef]

16. Zhang, Y.; Ding, L.; Li, Y.; Lin, W.; Zhao, M.; Yu, X.; Zhan, Y. A Regional Distance Regression Network for Monocular Object
Distance Estimation. J. Vis. Commun. Image Represent. 2021, 79, 103224. [CrossRef]

17. Mochurad, L.; Hladun, Y.; Tkachenko, R. An Obstacle-Finding Approach for Autonomous Mobile Robots Using 2D LiDAR Data.
Big Data Cogn. Comput. 2023, 7, 43. [CrossRef]

18. Horan, B.; Najdovski, Z.; Black, T.; Nahavandi, S.; Crothers, P. OzTug Mobile Robot for Manufacturing Transportation. In
Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October
2011; pp. 3554–3560.

19. Yildiz, H.A.; Can, N.K.; Ozguney, O.C.; Yagiz, N. Sliding Mode Control of a Line Following Robot. J. Braz. Soc. Mech. Sci. Eng.
2020, 42, 561. [CrossRef]

20. Shitsukane, A.; Cheriuyot, W.; Otieno, C.; Mvurya, M. A Survey on Obstacles Avoidance Mobile Robot in Static Unknown
Environment. Int. J. Comput. 2018, 28, 160–173.

21. Joshi, K.A.; Thakore, D.G. A Survey on Moving Object Detection and Tracking in Video Surveillance System. Int. J. Soft Comput.
Eng. (IJSCE) 2012, 2, 2231–2307.

22. Lee, H.; Yoon, J.; Jeong, Y.; Yi, K. Moving Object Detection and Tracking Based on Interaction of Static Obstacle Map and Geometric
Model-Free Approachfor Urban Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3275–3284. [CrossRef]

23. Kinsky, P.; ZHou, Q. Obstacle Avoidance Robot. Available online: https://digital.wpi.edu/concern/student_works/mg74qn550
?locale=en (accessed on 16 June 2023).

24. Al-Mallah, M.; Ali, M.; Al-Khawaldeh, M. Obstacles Avoidance for Mobile Robot Using Type-2 Fuzzy Logic Controller. Robotics
2022, 11, 130. [CrossRef]

25. Crnokic, B.; Peko, I.; Grubisic, M. Artificial Neural Networks-Based Simulation of Obstacle Detection with a Mobile Robot in a
Virtual Environment. Int. Robot. Autom. J. 2023, 9, 62–67. [CrossRef]

26. Azeta, J.; Bolu, C.; Hinvi, D.; Abioye, A.A. Obstacle Detection Using Ultrasonic Sensor for a Mobile Robot. IOP Conf. Ser. Mater.
Sci. Eng. 2019, 707, 012012. [CrossRef]

27. Derkach, M.; Matiuk, D.; Skarga-Bandurova, I. Obstacle Avoidance Algorithm for Small Autonomous Mobile Robot Equipped
with Ultrasonic Sensors. In Proceedings of the 2020 IEEE 11th International Conference on Dependable Systems, Services and
Technologies (DESSERT), Kyiv, Ukraine, 14–18 May 2020; pp. 236–241.

28. Dang, T.-V.; Bui, N.-T. Obstacle Avoidance Strategy for Mobile Robot Based on Monocular Camera. Electronics 2023, 12, 1932.
[CrossRef]

29. Rezaei, N.; Darabi, S. Mobile Robot Monocular Vision-Based Obstacle Avoidance Algorithm Using a Deep Neural Network. Evol.
Intel. 2023, 16, 1999–2014. [CrossRef]

30. Gao, M.; Tang, J.; Yang, Y.; He, Z.; Zeng, Y. An Obstacle Detection and Avoidance System for Mobile Robot with a Laser Radar. In
Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada,
9–11 May 2019; pp. 63–68.

31. Guo, L.; Antoniou, M.; Baker, C.J. Cognitive Radar System for Obstacle Avoidance Using In-Motion Memory-Aided Mapping. In
Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6.

32. Gia Luan, P.; Thinh, N.T. Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots.
Appl. Sci. 2020, 10, 3355. [CrossRef]

https://doi.org/10.1109/21.44033
https://doi.org/10.1109/ACCESS.2019.2907984
https://doi.org/10.3390/s22082936
https://doi.org/10.3390/s22228846
https://doi.org/10.1016/j.jvcir.2021.103224
https://doi.org/10.3390/bdcc7010043
https://doi.org/10.1007/s40430-020-02645-3
https://doi.org/10.1109/TITS.2020.2981938
https://digital.wpi.edu/concern/student_works/mg74qn550?locale=en
https://digital.wpi.edu/concern/student_works/mg74qn550?locale=en
https://doi.org/10.3390/robotics11060130
https://doi.org/10.15406/iratj.2023.09.00265
https://doi.org/10.1088/1757-899X/707/1/012012
https://doi.org/10.3390/electronics12081932
https://doi.org/10.1007/s12065-023-00829-z
https://doi.org/10.3390/app10103355

Electronics 2023, 12, 4719 17 of 18

33. Hutabarat, D.; Rivai, M.; Purwanto, D.; Hutomo, H. Lidar-Based Obstacle Avoidance for the Autonomous Mobile Robot.
In Proceedings of the 2019 12th International Conference on Information & Communication Technology and System (ICTS),
Surabaya, Indonesia, 18 July 2019; pp. 197–202.

34. Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends®Signal Process. 2014, 7, 197–387. [CrossRef]
35. Jia, B.; Feng, W.; Zhu, M. Obstacle Detection in Single Images with Deep Neural Networks. Signal Image Video Process. 2016, 10,

1033–1040. [CrossRef]
36. Liu, C.; Zheng, B.; Wang, C.; Zhao, Y.; Fu, S.; Li, H. CNN-Based Vision Model for Obstacle Avoidance of Mobile Robot. MATEC

Web Conf. 2017, 139, 00007. [CrossRef]
37. Christiansen, P.; Nielsen, L.; Steen, K.; Jørgensen, R.; Karstoft, H. DeepAnomaly: Combining Background Subtraction and Deep

Learning for Detecting Obstacles and Anomalies in an Agricultural Field. Sensors 2016, 16, 1904. [CrossRef] [PubMed]
38. Lin, B.-S.; Lee, C.-C.; Chiang, P.-Y. Simple Smartphone-Based Guiding System for Visually Impaired People. Sensors 2017, 17,

1371. [CrossRef]
39. Jot Singh, K.; Singh Kapoor, D.; Thakur, K.; Sharma, A.; Gao, X.-Z. Computer-Vision Based Object Detection and Recognition for

Service Robot in Indoor Environment. Comput. Mater. Contin. 2022, 72, 197–213. [CrossRef]
40. Su, F.; Zhao, Y.; Shi, Y.; Zhao, D.; Wang, G.; Yan, Y.; Zu, L.; Chang, S. Tree Trunk and Obstacle Detection in Apple Orchard Based

on Improved YOLOv5s Model. Agronomy 2022, 12, 2427. [CrossRef]
41. Teso-Fz-Betoño, D.; Zulueta, E.; Sánchez-Chica, A.; Fernandez-Gamiz, U.; Saenz-Aguirre, A. Semantic Segmentation to Develop

an Indoor Navigation System for an Autonomous Mobile Robot. Mathematics 2020, 8, 855. [CrossRef]
42. Macias-Garcia, E.; Galeana-Perez, D.; Bayro-Corrochano, E. CNN Based Perception System for Collision Avoidance in Mobile

Robots Using Stereo Vision. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow,
UK, 19–24 July 2020; pp. 1–7.

43. Luo, W.; Xiao, Z.; Ebel, H.; Eberhard, P. Stereo Vision-Based Autonomous Target Detection and Tracking on an Omnidirectional
Mobile Robot. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics;
SCITEPRESS—Science and Technology Publications, Prague, Czech Republic, 29–31 July 2019; pp. 268–275.

44. Skoczeń, M.; Ochman, M.; Spyra, K.; Nikodem, M.; Krata, D.; Panek, M.; Pawłowski, A. Obstacle Detection System for Agricultural
Mobile Robot Application Using RGB-D Cameras. Sensors 2021, 21, 5292. [CrossRef]

45. Badrloo, S.; Varshosaz, M.; Pirasteh, S.; Li, J. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned
Vehicles: A Review. Remote Sens. 2022, 14, 3824. [CrossRef]

46. Godard, C.; Mac Aodha, O.; Firman, M.; Brostow, G. Digging Into Self-Supervised Monocular Depth Estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Soul, Republic of Korea, 27 October–2 November 2019.

47. Wofk, D.; Ma, F.; Yang, T.-J.; Karaman, S.; Sze, V. FastDepth: Fast Monocular Depth Estimation on Embedded Systems. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 6101–6108.

48. Xue, F.; Zhuo, G.; Huang, Z.; Fu, W.; Wu, Z.; Ang, M.H. Toward Hierarchical Self-Supervised Monocular Absolute Depth
Estimation for Autonomous Driving Applications. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 2330–2337.

49. Chen, Z.; Khemmar, R.; Decoux, B.; Atahouet, A.; Ertaud, J.-Y. Real Time Object Detection, Tracking, and Distance and Motion
Estimation Based on Deep Learning: Application to Smart Mobility. In Proceedings of the 2019 Eighth International Conference
on Emerging Security Technologies (EST), Colchester, UK, 22–24 July 2019; pp. 1–6.

50. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left-Right Consistency. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

51. Vajgl, M.; Hurtik, P.; Nejezchleba, T. Dist-YOLO: Fast Object Detection with Distance Estimation. Appl. Sci. 2022, 12, 1354.
[CrossRef]

52. Yanmida, D.Z.; Imam, A.S.; Alim, S.A. Obstacle Detection and Anti-Collision Robot Using Ultrasonic Sensor. Elektrika 2023, 22,
11–14. [CrossRef]

53. Anh, P.Q.; duc Chung, T.; Tuan, T.; Khan, M.k.a.A. Design and Development of an Obstacle Avoidance Mobile-Controlled Robot.
In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Seri Iskandar, Malaysia, 15–17
October 2019; pp. 90–94.

54. Madhavan, T.R.; Adharsh, M. Obstacle Detection and Obstacle Avoidance Algorithm Based on 2-D RPLiDAR. In Proceedings of
the 2019 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 23–25 January 2019;
pp. 1–4.

55. Ravankar, A.; Ravankar, A.A.; Rawankar, A.; Hoshino, Y. Autonomous and Safe Navigation of Mobile Robots in Vineyard with
Smooth Collision Avoidance. Agriculture 2021, 11, 954. [CrossRef]

56. Kaneko, N.; Yoshida, T.; Sumi, K. Fast Obstacle Detection for Monocular Autonomous Mobile Robots. SICE J. Control. Meas. Syst.
Integr. 2017, 10, 370–377. [CrossRef]

57. Li, S.-A.; Chou, L.-H.; Chang, T.-H.; Yang, C.-H.; Chang, Y.-C. Obstacle Avoidance of Mobile Robot Based on HyperOmni Vision.
Sens. Mater. 2019, 31, 1021. [CrossRef]

58. Mane, S.B.; Vhanale, S. Real Time Obstacle Detection for Mobile Robot Navigation Using Stereo Vision. In Proceedings of the 2016
International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016; pp. 637–642.

https://doi.org/10.1561/2000000039
https://doi.org/10.1007/s11760-015-0855-4
https://doi.org/10.1051/matecconf/201713900007
https://doi.org/10.3390/s16111904
https://www.ncbi.nlm.nih.gov/pubmed/27845717
https://doi.org/10.3390/s17061371
https://doi.org/10.32604/cmc.2022.022989
https://doi.org/10.3390/agronomy12102427
https://doi.org/10.3390/math8050855
https://doi.org/10.3390/s21165292
https://doi.org/10.3390/rs14153824
https://doi.org/10.3390/app12031354
https://doi.org/10.11113/elektrika.v22n1.404
https://doi.org/10.3390/agriculture11100954
https://doi.org/10.9746/jcmsi.10.370
https://doi.org/10.18494/SAM.2019.2226

Electronics 2023, 12, 4719 18 of 18

59. Widodo, N.S.; Pamungkas, A. Machine Vision-Based Obstacle Avoidance for Mobile Robot. J. Ilm. Tek. Elektro Komput. Dan Inform.
2020, 5, 77. [CrossRef]

60. Saidi, S.M.; Mellah, R.; Fekik, A.; Azar, A.T. Real-Time Fuzzy-PID for Mobile Robot Control and Vision-Based Obstacle Avoidance.
Int. J. Serv. Sci. Manag. Eng. Technol. 2022, 13, 1–32. [CrossRef]

61. Ahmad, I.; Yang, Y.; Yue, Y.; Ye, C.; Hassan, M.; Cheng, X.; Wu, Y.; Zhang, Y. Deep Learning Based Detector YOLOv5 for
Identifying Insect Pests. Appl. Sci. 2022, 12, 10167. [CrossRef]

62. Azurmendi, I.; Zulueta, E.; Lopez-Guede, J.M.; Azkarate, J.; González, M. Cooktop Sensing Based on a YOLO Object Detection
Algorithm. Sensors 2023, 23, 2780. [CrossRef]

63. Jia, X.; Tong, Y.; Qiao, H.; Li, M.; Tong, J.; Liang, B. Fast and Accurate Object Detector for Autonomous Driving Based on Improved
YOLOv5. Sci. Rep. 2023, 13, 9711. [CrossRef]

64. Mahaur, B.; Mishra, K.K. Small-Object Detection Based on YOLOv5 in Autonomous Driving Systems. Pattern Recognit. Lett. 2023,
168, 115–122. [CrossRef]

65. Guo, Y.; Kang, X.; Li, J.; Yang, Y. Automatic Fabric Defect Detection Method Using AC-YOLOv5. Electronics 2023, 12, 2950.
[CrossRef]

66. Li, L.; Wang, Z.; Zhang, T. GBH-YOLOv5: Ghost Convolution with BottleneckCSP and Tiny Target Prediction Head Incorporating
YOLOv5 for PV Panel Defect Detection. Electronics 2023, 12, 561. [CrossRef]

67. Yücel, Z.; Akal, F.; Oltulu, P. Mitotic Cell Detection in Histopathological Images of Neuroendocrine Tumors Using Improved
YOLOv5 by Transformer Mechanism. Signal Image Video Process. 2023, 17, 4017–4114. [CrossRef]

68. Nguyen, H.-C.; Nguyen, T.-H.; Scherer, R.; Le, V.-H. Unified End-to-End YOLOv5-HR-TCM Framework for Automatic 2D/3D
Human Pose Estimation for Real-Time Applications. Sensors 2022, 22, 5419. [CrossRef] [PubMed]

69. Fathy, C.; Saleh, S.N. Integrating Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for Detecting
Weapons in Video Surveillance Systems. Sensors 2022, 22, 5075. [CrossRef] [PubMed]

70. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey.
Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]

71. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image
Augmentations. Information 2020, 11, 125. [CrossRef]

72. Mumuni, A.; Mumuni, F. Data Augmentation: A Comprehensive Survey of Modern Approaches. Array 2022, 16, 100258.
[CrossRef]

73. Glenn Jocher YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 8 November 2022).
74. Hnewa, M.; Radha, H. Object Detection Under Rainy Conditions for Autonomous Vehicles: A Review of State-of-the-Art and

Emerging Techniques. IEEE Signal Process. Mag. 2021, 38, 53–67. [CrossRef]
75. Poppinga, B.; Laue, T. JET-Net: Real-Time Object Detection for Mobile Robots. In Proceedings of the RoboCup 2019: Robot World Cup

XXIII; Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A., Eds.; Springer International Publishing: Cham, Switzerland,
2019; pp. 227–240.

76. Jiang, L.; Nie, W.; Zhu, J.; Gao, X.; Lei, B. Lightweight Object Detection Network Model Suitable for Indoor Mobile Robots. J.
Mech. Sci. Technol. 2022, 36, 907–920. [CrossRef]

77. Nilwong, S.; Hossain, D.; Kaneko, S.; Capi, G. Deep Learning-Based Landmark Detection for Mobile Robot Outdoor Localization.
Machines 2019, 7, 25. [CrossRef]

78. Hu, Y.; Liu, G.; Chen, Z.; Guo, J. Object Detection Algorithm for Wheeled Mobile Robot Based on an Improved YOLOv4. Appl.
Sci. 2022, 12, 4769. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.26555/jiteki.v5i2.14767
https://doi.org/10.4018/IJSSMET.304818
https://doi.org/10.3390/app121910167
https://doi.org/10.3390/s23052780
https://doi.org/10.1038/s41598-023-36868-w
https://doi.org/10.1016/j.patrec.2023.03.009
https://doi.org/10.3390/electronics12132950
https://doi.org/10.3390/electronics12030561
https://doi.org/10.1007/s11760-023-02642-8
https://doi.org/10.3390/s22145419
https://www.ncbi.nlm.nih.gov/pubmed/35891099
https://doi.org/10.3390/s22145075
https://www.ncbi.nlm.nih.gov/pubmed/35890755
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.3390/info11020125
https://doi.org/10.1016/j.array.2022.100258
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/MSP.2020.2984801
https://doi.org/10.1007/s12206-022-0138-2
https://doi.org/10.3390/machines7020025
https://doi.org/10.3390/app12094769

	Introduction
	Related Work
	Simultaneous Object Detection and Localization
	YOLO (You Only Look Once)
	Updating the Prediction Vector
	New YOLO Loss Function

	Datasets
	KITTI Dataset
	Custom Dataset

	Data Augmentation

	Results
	Discussion
	Conclusions
	References

