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Abstract: Contrastive-based clustering models usually rely on a large number of negative pairs to
capture uniform representations, which requires a large batch size and high computational com-
plexity. In contrast, some self-supervised methods perform non-contrastive learning to capture
discriminative representations only with positive pairs, but suffer from the collapse of clustering.
To solve these issues, a novel end-to-end self-supervised clustering model is proposed in this paper.
The basic self-supervised learning network is first modified, followed by the incorporation of a
Softmax layer to obtain cluster assignments as data representation. Then, adversarial learning on
the cluster assignments is integrated into the methods to further enhance discrimination across
different clusters and mitigate the collapse between clusters. To further encourage clustering-oriented
guidance, a new cluster-level discrimination is assembled to promote clustering performance by
measuring the self-correlation between the learned cluster assignments. Experimental results on
real-world datasets exhibit better performance of the proposed model compared with the existing
deep clustering methods.

Keywords: deep clustering; contrastive learning; self-supervised learning; adversarial learning;
self-correlation

1. Introduction

As an effective machine learning technique, clustering plays an important role in data
mining [1–3], statistical analysis [4–6], and pattern recognition [7–9]. It aims to partition
the data into different clusters according to the similarity between the data samples [10].
Therefore, various clustering methods have been developed over the past decades to
extract the inherent features and structures of the data [11,12]. In the current era of big
data, more and more high-dimensional data pose huge challenges to traditional clustering
due to insufficient representability. For this reason, some dimensionality reduction [13]
and representation transformation [14] techniques have been widely studied to map the
original data into a new feature space, where the data representation is easier to separate
by the existing classifiers. Nevertheless, limited to their high computational complexity,
the traditional data transformation methods [15–17] fail to process large-scale and high-
dimensional data. Although some random feature [18] methods and random projection [19]
methods can yield a low-dimensional representation and a better approximation of user-
specified kernel, the representation ability of features learned from these shallow models is
generally limited.

In recent decades, deep learning [20] based on neural networks has been widely
studied to discover good representation of the data. Meanwhile, the optimization of the
deep neural network along with unsupervised clustering has exhibited great promise and
excellent clustering performance, which is referred to as deep clustering [21]. Most deep
clustering methods can be categorized as either generative models [22] or discriminative
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models [23]. Generative models aim to learn the embedding representation or distribution
of the original data through the generative process. The clustering then processes the
learned distribution or representation in a simultaneous (end-to-end) or asynchronous
fashion. Some of the prominent techniques that have a significant impact are deep clustering
methods based on autoencoder (AE) [24], deep clustering methods based on variational
autoencoder (VAE) [25], and deep clustering methods based on generative adversarial
network (GAN) [26]. However, these clustering methods, which rely on generative models,
necessitate complex data generation procedures, which can be computationally expensive
and may not be necessary for both clustering and representation learning purposes.

Different from generative models, discriminative models, such as contrastive learning-
based methods, remove the costly generation step and directly discriminate the representa-
tion by learning the decision boundary. As the most representative contrastive learning
method, Simple Framework for Contrastive Learning of Representations (SimCLR) [27]
exploits the representation between different views of samples, wherein the similarities
between different views of one sample (positive pairs) are maximized and those between
different samples (negative pairs) are minimized. Based on this idea, some two-step
clustering models have been designed. Supervised Contrastive Learning for Pretrained
Visual Representations (SCAN) [28] mines the nearest neighbors of each image as prior
guidance to optimize the cluster network, while Semantic Pseudo-labeling for Image Clus-
tering (SPICE) [29] and Robust learning for Unsupervised Clustering (RUC) [30] generate
pseudo-labels via self-learning methods to guide the clustering. These methods employed
a two-stage operation where the clustering and the representation learning were decoupled.
They focus more on the optimization of the neural networks to achieve more discriminative
representations but suffer from a lack of clustering-oriented guidance, which results in
suboptimal clustering performance.

Recently, more contrastive learning-based models have been constructed to excavate
representation and perform clustering in an end-to-end fashion. Among these methods,
Contrastive Clustering (CC) [31] performs both instance-level contrastive learning for ex-
ploiting the discriminative representations and clustering-level contrastive learning for
separating different clusters. Following this idea, Graph Contrastive Clustering (GCC) [32]
proposes a graph Laplacian-based contrastive loss to enhance the discriminative and
clustering-specific characteristics of features. To further improve the quality of learned
representations, Cross-instance guided Contrastive Clustering (C3) [33] takes into account
the cross-sample relationships, thereby increasing the number of positive pairs and re-
ducing the impact of false negatives. Even though the contrastive models above yield
excellent clustering results, they usually rely on a large number of negative pairs to capture
the uniform representations, which requires a large batch size and high computational
complexity. Moreover, different instances from the same cluster are regarded as negative
pairs and wrongly pushed away, which may inevitably lead to the cluster collision issue.

Different from these traditional contrastive learning-based models, some self-supervised
methods, such as Bootstrap Your Own Latent (BYOL) [34], perform non-contrastive learning
to capture discriminative representations only with positive pairs. However, the absence of
negative pairs in contrastive learning hinders the ability of self-supervised representation
learning methods to achieve uniform representations across clusters, which may lead to the
issue of the collapse of clustering [35], i.e., assigning all data samples into fewer clusters
than desired. Therefore, it is crucial to introduce an effective clustering enhancement
method to improve the quality of the clustering assignment.

To solve these issues, a novel end-to-end Self-supervised Clustering model based on
BYOL network structure with Instance-level and Cluster-level discriminations (BSC-IC) is
proposed in this paper to perform clustering and representation learning simultaneously
only with positive pairs. Taking inspiration from the concept of “cluster assignments as
representations” [36], we enhance the original BYOL network by incorporating a Softmax
layer to convert representations into cluster assignments. Subsequently, we also integrate
adversarial learning [37] into cluster assignments not only to improve discrimination
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among clusters but also to mitigate the issue of collapsed clusters. To mitigate the high
interdependence between the target and online networks in BYOL, we propose a novel self-
enhancement loss. This loss evaluates the similarity of cluster assignments among positive
pairs within a mini-batch across the online network itself. To further enhance the clustering-
oriented guidance. A new cluster-level discrimination is integrated into the discriminative
network to promote clustering performance by measuring the self-correlation between the
learned cluster assignments.

The rest of this paper is organized as follows. The related work is presented in Section 2.
The contrastive clustering model with instance-level and cluster-level discrimination is
designed in Section 3. Experiments are performed in Section 4. The ablation study and its
analysis are provided in Section 5. Conclusions are given in Section 6.

2. Related Work
2.1. Contrastive Clustering

CC [31] is a contrastive learning-based clustering method that aims to discover mean-
ingful groups or patterns in a given dataset by emphasizing the dissimilarity or contrast
between data points. In CC, instance-level and cluster-level contrastive learning are respec-
tively conducted in the row and column spaces by maximizing the similarities of positive
pairs while minimizing those of negative ones. However, this method usually relies on a
large number of negative pairs to capture the uniform representations, which requires a
large batch size and high computational complexity.

2.2. Bootstrap Your Own Latent

BYOL [34] is a self-supervised deep learning method used for representation learning.
It is designed to learn meaningful representations from unlabeled data, allowing the model
to capture useful patterns and information without the need for negative samples. BYOL
consists of two identical neural networks called the online network and the target network.
From an augmented view of a data sample, BYOL trains the online network to predict
the representation of the target network from a different augmented view of the same
data sample.

3. BSC with Instance-Level and Cluster-Level Discriminations

The contrastive-based clustering models usually rely on a large number of negative
pairs to capture uniform representations, which requires a large batch size and high com-
putational complexity. In contrast, some self-supervised methods perform non-contrastive
learning to capture discriminative representations with only positive pairs but suffer from
the collapse of clustering. To solve these issues, a novel end-to-end Self-supervised Clus-
tering model based on BYOL network structure with Instance-level and Cluster-level
discriminations (BSC-IC) is designed in this section. Figure 1 illustrates the framework of
the BSC-IC model, which consists of three joint learning components: the self-supervised
learning network, the instance-level discriminative network, and the cluster-level dis-
criminative network. The self-supervised learning network adopts a similar structure to
BYOL to capture the good cluster assignments of the data with only positive pairs, which
includes an online-target network and a target network. A little different from BYOL, the
Softmax layer is equipped to convert the representation to the cluster assignment. The
novel instance-level discriminative network and cluster-level discriminative network are
designed to provide clustering-oriented guidance for self-supervised learning.
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Figure 1. The framework of the proposed BSC-IC model.

3.1. The Self-Supervised Learning Network for Representation Capturing

The self-supervised learning network in BSC-IC is designed for representation learning,
and contains an online network and a target network. The online network with parameters
ξ is defined by an encoder, fξ , to extract the representation features, which is followed by a
Softmax layer, Sξ , to convert the representation to the cluster assignment of the input data.
The target network has the same architecture as the online network but adopts a different
set of parameters, θ.

In detail, given a set of data X = {xi|1 ≤ i ≤ N } ∈ RN×D in a mini-batch, N is
the batch size and D is the dimension of the data. Data augmentations are first con-
ducted to obtain two augmented views of the original data Xa = {xa

i |1 ≤ i ≤ N } and
Xb = {xb

i |1 ≤ i ≤ N } as positive pairs. The first augmented view Xa then feeds into the
online network to outputs the cluster assignment Za = {za

i |1 ≤ i ≤ N } ∈ RN×K. Simul-
taneously, the second augmented view Xb is fed into the target network to generate the
cluster assignment Ẑb = {ẑb

i |1 ≤ i ≤ N } ∈ RN×K, where K is the number of clusters.
Self-supervised learning is then performed to maximize the similarity of positive pairs

and realize the mutual optimization between the target and online networks. Unlike the
cosine distance metric used in BYOL, the similarity of cluster assignments for positive pairs
is measured using Kullback–Leibler (KL) divergence. The KL divergence is more suitable
for capturing the difference between probability distributions. The loss for the mutual
improvement in the self-supervised learning network is defined as (1).

Lmi = KL(Za, Ẑb) (1)

In order to calculate the overall mutual-improvement loss of BSC-IC, we symmetrize
the loss Lmi by separately inputting Xa into the target network and inputting Xb into the
online network to compute L̃mi = KL(Zb, Ẑa). Finally, the overall mutual-improvement
loss of BSC-IC is denoted as (2).

LBSC−IC
mi = Lmi + L̃mi=KL(Za, Ẑb)+KL(Zb, Ẑa) (2)

The self-supervised learning network above is made up of two highly interdepen-
dent networks, in which the poor optimization of any network can deteriorate the whole
structure. Particularly, the subsequent clustering may corrupt the quality of representation
space and destroy the preservation of local structure. Moreover, to break the highly mutual
interdependence across online and target networks, we define a novel loss, named the
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self-improvement loss, as (3) to evaluate the similarity of the cluster assignments between
positive pairs of the online network itself.

LBSC−IC
si = KL(Za, Zb) (3)

where Za and Zb indicate the cluster assignments obtained by the online network itself
from two augmented views, respectively.

3.2. The Instance-Level Discriminative Network for Data Clustering

To alleviate the collapse of clustering, the instance-level discriminative network D(·)
with parameters η in BSC-IC is constructed to provide clustering-oriented guidance for the
self-supervised learning network.

Given the data X in a mini-batch, we input their two augmented views Xa and Xb to
the online network, and obtain the corresponding cluster assignments Za and Zb. Then, a
one-hot-style prior distribution P ∼ Cat(K, p = 1/K ) is imposed on the learned cluster
assignments Z (the alternative to Za or Zb), and the adversarial learning between Z and P
is conducted to make Z closer to the form of one-hot, so as to enhance the discrimination of
clusters and alleviate the collapse problem. Referring to the WGAN-GP method [38], the
adversarial losses of the instance-level discriminative network for the generator LBSC−IC

Adv-G
and the discriminator LBSC−IC

Adv-D are defined as (4) and (5), respectively.

LBSC−IC
Adv-G = −Ez∼Z[D(z)] (4)

LBSC−IC
Adv-D = Ez∼Z[D(z)]−Ep∼P[D(p)] + δEr∼R(‖∇rD(r)‖2 − 1)2 (5)

where r = εp + (1− ε)z and ε ∼ U[0, 1]

where r = εp + (1− ε)z subject to ε ∼ U[0, 1] is a representation sampled uniformly along
straight lines between the prior distribution P and the soft assignments Z, (‖∇rD(r)‖2 − 1)2

is the one-centered gradient penalty that limits the gradient of the instance-level discrimi-
native network to be around 1, and δ is the gradient penalty coefficient.

Here, the adversarial loss for the generator LBSC−IC
Adv-G is designed to minimize the

Wasserstein distance between the generated assignments and the one-hot distribution,
which encourages the generator network to generate more sharp cluster assignments. In
contrast, the adversarial loss for the discriminator LBSC−IC

Adv-D is formulated to maximize the
Wasserstein distance between the generated assignments and the one-hot distribution. Both
adversarial losses train the model through the competitive process between the generator
and the discriminator.

3.3. Cluster-Level Discriminations Network for Clusters Enhancement

To further benefit from the strength of capturing clustering-oriented information, a
new cluster-level discrimination is integrated into the discriminative network to promote
clustering performance by measuring the self-correlation between the learned cluster
assignments.

Specifically, given a set of data X = {xi|1 ≤ i ≤ N } in a mini-batch, the online network
takes in two augmented views as input, denoted as Xa and Xb. Subsequently, the cluster
assignments Za ∈ RN×K and Zb ∈ RN×K are obtained, where N is the batch size and K
is the number of clusters. Each column of the cluster assignments can be regarded as the
representation of one cluster. Let ya

i and yb
i be the i-th column of Za and Zb for 1 ≤ i ≤ K,

and we combine ya
i with yb

i to form the same cluster pair (ya
i , yb

i ) and leave the other K−1
pairs as (ya

i , yb
j ) for ∀j 6= i to be different cluster pairs. A cluster-level similarity matrix
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Cclu = [cclu
ij ] with size K is defined in the column space of the cluster assignments, where

cclu
ij is measured by the cosine distance as (6)

cclu
ij =

(ya
i )

T(yb
j )

‖ya
i ‖2‖y

b
j ‖2

(6)

Then, the cluster-level discriminative loss LBSC−IC
clu is defined as (7).

LBSC−IC
clu = ∑

i
(1− cclu

ii )
2
+ λclu ∑

i
∑
j 6=i

(cclu
ij )

2
(7)

where the diagonal elements as cclu
ii are restricted to 1 to maximize the similarity between the

same clusters, the non-diagonal elements as cclu
ij for ∀i 6= j are restricted to 0 to minimize the

similarity between different clusters, and λclu is a positive constant to trade off two terms.

3.4. Training of the BSC-IC

Integrating the self-supervised learning network and the instance-level discriminative
network, the final loss function of BSC-IC is defined as (8).

LBSC−IC = LBSC−IC
Adv−G + αclu · LBSC−IC

clu + αsi · LBSC−IC
si + αmi · LBSC−IC

mi (8)

The parameters αclu, αsi, and αmi are used to balance the significance of different loss
terms. We use the adaptive moment estimation (Adam) to optimize the parameters of
both the self-supervised learning network and the instance-level discriminative network.
Notably, the self-supervised learning network is optimized specifically for minimizing
LBSC−IC in respect of the online network only while keeping the target network unchanged.
This is indicated by the stop-gradient operation in Figure 1. Consequently, Equation (9) is
only used to update the parameters of the online network ξ.

ξ = ξ − α
∂LBSC−IC

∂ξ
(9)

where α is the learning rate. Drawing inspiration from BYOL, the target network’s param-
eters θ are updated using a weighted moving average of the online parameters ξ. This
update process can be performed using Equation (10).

θ ← τθ + (1− τ)ξ (10)

where τ ∈ [0, 1] represent the target decay rate that controls the moving rate of parameters
updating.

Similar to the online network, Equation (11) is employed to update the parameters
of the instance-level discriminative network η. And the overall algorithm of BSC-IC is
presented in Algorithm 1.

η = η − α
∂LBSC−IC

Adv-D
∂η

(11)
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Algorithm 1 BSC-IC

Input: Input data X, the batch size N, the number of clusters K, the maximum iterations
MaxIter, the hyperparameters αmi, αsi and αclu.

for epoch ∈ {0, 1, ..., MaxIter} do
for each batch do

Calculate the mutual-improvement loss LBSC−IC
mi by (2), the self-improvement loss

LBSC−IC
si by (3), and the instance-level discriminative losses LBSC−IC

Adv-G by (4) and
LBSC−IC

Adv-D by (5), the cluster-level discriminative loss LBSC−IC
clu by eq (7);

Calculate the self-supervised learning network loss LBSC−IC by (8);
Update the parameter of online network ξ by (9);
Update the parameter of target network θ by (10);
Update the parameter of discriminative network η by (11);

end for
end for

Output: The online network as clustering network.

4. Experiments

In this section, we perform experiments on six well-known real-world datasets to
verify the efficiency of the presented model. All the datasets, methods of comparison,
evaluation metrics, implementation details, and experimental results are elaborated.

4.1. Datasets, Methods in Comparison, and Evaluation Metrics

For our evaluation, we assess the effectiveness of the proposed method using six image
datasets that are divided into two distinct categories. The first category consists of low-
detailed grayscale images like Fashion-MNIST and MNIST. Meanwhile, the second category
includes high-detailed color images, such as ImageNet-10, CIFAR-10, CIFAR-100, and Tiny-
ImageNet. Table 1 provides a concise description of these datasets.

Table 1. Brief description of datasets used in our experiments.

Datasets Samples Size Classes Image Size

MNIST 70,000 10 28 × 28 × 1
Fashion-MNIST 70,000 10 28 × 28 × 1

CIFAR-10 60,000 10 32 × 32 × 3
CIFAR-100 60,000 20 32 × 32 × 3

ImageNet-10 13,000 10 96 × 96 × 3
Tiny-ImageNet 100,000 100 64 × 64 × 3

Twenty-two mainstream clustering methods as the baseline are adopted for the
comparative analysis, including traditional distance-based clustering methods, like K-
means [39], SC [40], AC [41], and NMF [42]; deep generative clustering methods, such
as AE [43], DEC [44], JULE [45], DEPICT [46], DAC [47], VAE [48], and GAN [37]; and
contrastive-based clustering models, such as IIC [49], BYOL [34], DCCM [50], DCCS [51],
DHOG [52], GATCluster [53], DRC [54], PICA [55], CC [31], GCC [32], and C3 [33]. It is
important to mention that clustering results for the NMF, SC, AE, GAN, VAE, and BYOL
methods are obtained by applying k-means on the extracted image features.

Three metrics, i.e., the clustering accuracy (ACC), the normalized mutual information
(NMI), and the adjusted rand index (ARI), are utilized to evaluate the clustering perfor-
mance of different algorithms. For all metrics, a higher value is better. All clustering
algorithms are conducted on a computer with two Nvidia TITAN RTX 24G GPUs.

4.2. Implementation Details

Similar image augmentations as DCCS [51] and CC [31] are conducted first to obtain
the augmented samples. For low-detailed grayscale image datasets, cropping and horizon-
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tal flipping are employed as the augmentation strategies. For high-detailed color image
datasets, color distortion and grayscale conversion are incorporated. Specifically, the color
distortion method alters various attributes of the image, including contrast, saturation,
brightness, and hue, while the grayscale conversion step transforms the color image into a
grayscale format.

ResNet-18 is employed to extract the representation for the self-supervised learning
network of BSC-IC. A Softmax layer is used to convert the representation into the cluster
assignment of data with a dimension of cluster number K. A three-layer fully connected
network is utilized as the instance-level discriminative network to divide the data samples
into different clusters, and the dimensions of various layers are set to K-1024-512-1.

The Adam optimizer with a learning rate of 0.0003 is adopted to simultaneously
optimize the self-supervised learning network and the discriminative network. The moving
average parameter τ in the self-supervised learning network is set to 0.99, the discriminative
network’s gradient penalty coefficient δ is set to 10, and the default batch size N is set to
64. The BSC-IC model involves three control parameters, which are utilized to trade off
the effects of different terms in the total loss function. The recommended values of various
parameters on different datasets are listed in Table 2.

Table 2. The recommended values of the parameters on different datasets.

Parameter MNIST, Fashion-MNIST CIFAR-10, CIFAR-100, ImageNet-10, Tiny-ImageNet

αsi 2 4
αmi 1 2
αclu 1 1

Table 3 lists the number of hyperparameters of different models. It can be seen that the
proposed BSC-IC model has fewer hyperparameters compared with other models, which
indicates a simpler model architecture and ease for parameter tuning in BSC-IC.

Table 3. The number of hyperparameters on different methods.

Methods Number of Hyperparameters

BSC-IC 3
DCCS 4
DCCM 4
GCC 3

GatCluster 4

4.3. Experimental Results

The clustering results of the testing algorithms on six datasets in terms of ACC, NMI,
and ARI are listed in Table 4, Table 5, and Table 6, separately, and reveal some interesting
observations. The best results are shown in bold.

Table 4. Clustering results of tested algorithms in term of ACC on six datasets.

Method MNIST Fashion-MNIST CIFAR-10 ImageNet-10 CIFAR-100 Tiny-ImageNet

K-means [39] 0.572 0.474 0.229 0.241 0.130 0.025
SC [40] 0.696 0.508 0.247 0.274 0.136 0.022
AC [41] 0.695 0.500 0.228 0.242 0.138 0.027

NMF [42] 0.545 0.434 0.190 0.230 0.118 0.029
AE [43] 0.812 0.563 0.314 0.317 0.165 0.041

DEC [44] 0.843 0.590 0.301 0.381 0.185 0.037
JULE [45] 0.964 0.563 0.272 0.300 0.137 0.033
VAE [48] 0.945 0.578 0.291 0.381 0.152 0.036
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Table 4. Cont.

Method MNIST Fashion-MNIST CIFAR-10 ImageNet-10 CIFAR-100 Tiny-ImageNet

DEPICT [46] 0.965 0.392 0.279 0.363 0.137 -
GAN [37] 0.736 0.558 0.315 0.346 0.151 0.039
DAC [47] 0.978 0.615 0.522 0.527 0.238 0.066
IIC [49] 0.992 0.657 0.617 0.701 0.257 -

BYOL [34] 0.985 0.703 0.658 0.834 0.334 0.053
DCCS [51] 0.989 0.756 0.656 0.737 0.315 0.106
DCCM [50] 0.982 0.753 0.623 0.710 0.327 0.108
DHOG [52] 0.954 0.658 0.666 - 0.261 -

GATCluster [53] 0.943 0.618 0.610 0.739 0.281 -
DRC [54] 0.961 0.694 0.727 0.884 0.367 -
PICA [55] 0.951 0.683 0.696 0.870 0.337 0.098

CC [31] 0.966 0.708 0.790 0.893 0.429 0.140
GCC [32] 0.987 0.768 0.856 0.901 0.472 0.138
C3 [33] 0.993 0.773 0.836 0.943 0.456 0.140

BSC-IC (ours) 0.996 0.782 0.753 0.901 0.403 0.157

Table 5. Clustering results of tested algorithms in term of NMI on six datasets.

Method MNIST Fashion-MNIST CIFAR-10 ImageNet-10 CIFAR-100 Tiny-ImageNet

K-means [39] 0.500 0.512 0.087 0.119 0.084 0.065
SC [40] 0.663 0.575 0.103 0.151 0.090 0.063
AC [41] 0.609 0.564 0.105 0.138 0.098 0.069

NMF [42] 0.608 0.425 0.081 0.132 0.079 0.072
AE [43] 0.725 0.561 0.239 0.210 0.100 0.131

DEC [44] 0.772 0.601 0.257 0.282 0.136 0.115
JULE [45] 0.913 0.608 0.192 0.175 0.103 0.102
VAE [48] 0.876 0.630 0.245 0.282 0.108 0.113

DEPICT [46] 0.917 0.392 0.237 0.242 0.094 -
GAN [37] 0.763 0.584 0.265 0.225 0.120 0.127
DAC [47] 0.935 0.632 0.396 0.394 0.185 0.190
IIC [49] 0.979 0.634 0.513 0.598 0.198 -

BYOL [34] 0.968 0.653 0.548 0.734 0.305 0.103
DCCS [51] 0.970 0.704 0.569 0.640 0.278 0.219
DCCM [50] 0.951 0.684 0.496 0.608 0.285 0.224
DHOG [52] 0.921 0.632 0.585 - 0.258 -

GATCluster [53] 0.896 0.614 0.475 0.594 0.215 -
DRC [54] 0.923 0.667 0.621 0.830 0.356 -
PICA [55] 0.891 0.653 0.591 0.802 0.310 0.277

CC [31] 0.932 0.675 0.705 0.859 0.431 0.340
GCC [32] 0.975 0.709 0.764 0.842 0.472 0.347
C3 [33] 0.978 0.715 0.743 0.905 0.435 0.335

BSC-IC (ours) 0.982 0.723 0.681 0.861 0.397 0.352

Table 6. Clustering results of tested algorithms in term of ARI on six datasets.

Method MNIST Fashion-MNIST CIFAR-10 ImageNet-10 CIFAR-100 Tiny-ImageNet

K-means [39] 0.365 0.348 0.049 0.057 0.028 0.005
SC [40] 0.521 0.382 0.085 0.076 0.022 0.004
AC [41] 0.481 0.371 0.065 0.067 0.034 0.005

NMF [42] 0.430 0.321 0.034 0.065 0.026 0.005
AE [43] 0.613 0.379 0.169 0.152 0.048 0.007

DEC [44] 0.741 0.446 0.161 0.203 0.050 0.007
JULE [45] 0.927 0.439 0.138 0.138 0.033 0.006
VAE [48] 0.884 0.542 0.167 0.203 0.040 0.006

DEPICT [46] 0.094 0.357 0.171 0.197 0.041 -
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Table 6. Cont.

Method MNIST Fashion-MNIST CIFAR-10 ImageNet-10 CIFAR-100 Tiny-ImageNet

GAN [37] 0.827 0.631 0.176 0.157 0.045 0.007
DAC [47] 0.949 0.502 0.306 0.302 0.088 0.017
IIC [49] 0.978 0.524 0.411 0.549 0.096 -

BYOL [34] 0.965 0.585 0.468 0.554 0.147 0.028
DCCS [51] 0.976 0.623 0.469 0.560 0.168 0.032
DCCM [50] 0.954 0.602 0.408 0.555 0.173 0.038
DHOG [52] 0.917 0.534 0.492 - 0.118 -

GATCluster [53] 0.887 0.522 0.402 0.552 0.116 -
DRC [54] 0.924 0.551 0.547 0.798 0.208 -
PICA [55] 0.854 0.545 0.512 0.761 0.171 0.040

CC [31] 0.931 0.565 0.637 0.822 0.266 0.071
GCC [32] 0.967 0.625 0.728 0.822 0.305 0.075
C3 [33] 0.973 0.629 0.703 0.860 0.274 0.064

BSC-IC (ours) 0.979 0.639 0.592 0.829 0.232 0.085

First and foremost, compared with the traditional distance-based clustering methods,
like K-means, AC, NMF, and SC, all the deep clustering methods show obvious advantages.
This emphasizes that deep clustering has the ability to enhance clustering performance by
the capturing semantic information of samples through deep neural networks.

Secondly, BSC-IC significantly outperforms most deep clustering methods on all six
datasets. This demonstrates the efficiency of self-supervised representation learning only
with positive pairs in our model, which helps to extract the similarities and dissimilarities
between different views of samples and capture important clustering-orientated informa-
tion. It is worth noting that GCC achieves the best performance on the CIFAR-10 and
CIFAR-100 datasets. But this relies on a large number of negative pairs to capture the uni-
form representations, which requires a large batch size, like 256, and high computational
complexity. In our model, a smaller batch size, like 64, and only positive pairs can also
achieve good clustering performance. Figure 2 shows the ACC curves obtained by CC,
GCC, and our model with different batch sizes on the CIFAR-10 and CIFAR-100 datasets.
It can be seen that the ACCs of CC and GCC drop sharply with the decrease in batch
size. Specifically, when the batch size changes from 256 to 64, the ACC of GCC drops by
approximately 18 percentage points on the CIFAR-10 dataset and 9 percentage points on
the CIFAR-100 dataset. Similarly, the ACC of CC drops by about 20 percentage points on
the CIFAR-10 dataset and 6 percentage points on the CIFAR-100 dataset. In contrast, our
model yields a more stable ACC without the influence of the value of the batch size.

Figure 2. The impact of batch size on accuracy in CIFAR-10 and CIFAR-100 datasets.
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5. Ablation Study and Analysis

The ablation study and analysis are carried out in this section to further understand
the effect of each term in the loss function, including the self-improvement term (denoted as
SI), the mutual-improvement term (denoted as MI), the instance-level discriminative term
(denoted as IL), and the cluster-level discriminative term (denoted as CL). The ablation
study of BSC-IC on the MNIST and ImageNet-10 datasets is presented in Table 7. The check
mark and the cross mark respectively represent the inclusion and exclusion of each terms.

Table 7. The results of the ablation study.

SI Term MI Term IL Term CL Term ACC on MNIST ACC on ImageNet-10

Baseline X X X X 0.996 0.901
1© X X × X 0.943 0.884
2© X X X × 0.995 0.853
3© X X × × 0.112 0.104
4© × X X X 0.979 0.751
5© X × X X 0.965 0.745
6© × × X X 0.105 0.103

In the discriminative network, the instance-level discriminative term focuses on opti-
mizing the assignment of instances within clusters, while the cluster-level discriminative
term aims to optimize the relationships between clusters. Together, they provide effective
clustering guidance for self-supervised learning. From 1© and 2© in Table 7, it can be seen
that the absence of any of them will lead to a suboptimal solution for cluster assignments.
The most fatal is that the absence of both of them will lead to a collapse of the clustering as
3© in 7.

In the self-supervised learning network, the self-improvement term aims to ensure
the stability of the network structure, while the mutual-improvement term provides the
alignment between positive pairs for the capture of uniform representations. Together,
they provide effective optimization over the online and target networks for the capture of
discriminative representations. From 4© and 5© in Table 7, it can be seen that the absence of
any of them will lead to a decrease in cluster accuracy. Moreover, the absence of both terms
as 6© will disrupt the optimization over the online and target networks and prevent our
method from performing clustering.

6. Conclusions

This paper develops a novel end-to-end self-supervised clustering model based on the
BYOL network structure method to jointly seek high-quality representation and perform
clustering. The basic self-supervised learning network is first modified, followed by the
incorporation of a Softmax layer to capture the cluster assignments as data representation.
The mutual-improvement loss and the self-improvement loss together provide effective
optimization over online and target networks in BYOL for the capture of discriminative
representations. Then, adversarial learning and self-correlation measuring are performed
on the learned cluster assignments to promote clustering. The instance-level discriminative
loss and the cluster-level discriminative loss together provide effective clustering guidance
for self-supervised learning. Experimental results on real-world datasets show the efficiency
of the proposed model.
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