
Citation: Volos, C. Dynamical

Analysis of a Memristive Chua’s

Oscillator Circuit. Electronics 2023, 12,

4734. https://doi.org/10.3390/

electronics12234734

Academic Editor: Paris Kitsos

Received: 27 October 2023

Revised: 16 November 2023

Accepted: 20 November 2023

Published: 22 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamical Analysis of a Memristive Chua’s Oscillator Circuit
Christos Volos

Laboratory of Nonlinear Systems, Circuits & Complexity (LaNSCom), Department of Physics,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; volos@physics.auth.gr

Abstract: In this work, a novel memristive Chua’s oscillator circuit is presented. In the proposed
circuit, a linear negative resistor, which is parallel coupled with a first-order memristive diode bridge,
is used instead of the well-known Chua’s diode. Following this, an extensive theoretical and dynami-
cal analysis of the circuit is conducted. This involves numerical computations of the system’s phase
portraits, bifurcation diagrams, Lyapunov exponents, and continuation diagrams. A comprehensive
comparison is made between the numerical simulations and the circuit’s simulations performed
in Multisim. The analysis reveals a range of intriguing phenomena, including the route to chaos
through a period-doubling sequence, antimonotonicity, and coexisting attractors, all of which are
corroborated by the circuit’s simulation in Multisim.
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1. Introduction

The exploration of chaos has captivated the research community since the late 19th
century, sparked by Henry Poincaré’s groundbreaking observations in 1889 [1]. However,
the formalization of chaos theory gained substantial momentum after the decade of the
1960s, driven by the examination of evolving physical systems [2,3]. Later, numerous re-
searchers asserted that chaos manifests across diverse disciplines, encompassing chemistry,
biology, economics, mechanics, and more [4–9].

Beginning in 1983, there was a notable upswing in the study of nonlinear dynamics
and chaos by using electronic circuits, initiated by Chua’s design and implementation of the
first autonomous chaotic electronic circuit [10–13]. However, the implementation of chaotic
circuits was made possible by earlier advancements in the design and realization of nonlin-
ear resistors with negative slopes, including the transitron, kallirotron, dynatron [14], and
others [15,16], crucial elements in the design of these nonlinear circuits. The introduction
of the transistor in 1947 prompted investigations into solid-state negative resistors [17]. In
1958, Esaki unveiled the tunnel diode, followed by the Gunn diode eight years later [18,19].
Nonetheless, the advent of operational amplifiers empowered scientists to effortlessly
realize nonlinear electrical elements with current versus voltage piecewise-linear functions.

Esteemed as a paradigm, Chua’s circuit represents the pioneering chaotic circuit, sys-
tematically deriving chaos, undergoing physical validation and meticulous scrutiny [11,12].
To elaborate, for a span of three decades, Chua’s circuit remained the simplest chaotic
circuit, encompassing merely five components: a resistor, an inductor, two capacitors, and
a nonlinear element referred to as a Chua’s diode. The resistor, inductor, and capacitors
are conventional components, while the design and implementation of the nonlinear el-
ement can vary, contingent upon its intended application. Later, with the inclusion of
the minor ohmic resistance RL of the inductor, the recognizable form of Chua’s oscillator
circuit emerged.

The circuit’s implementation of Chua’s oscillator offers versatility, allowing for various
approaches. Since all the linear components (resistors, capacitors, inductors) are commer-
cially available, attention is directed toward realizing the nonlinear element. Initially, Chua
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designed Chua’s diode, as a standard voltage–current nonlinear circuit element, by con-
necting two negative impedance converters in parallel. Presently, diverse implementations
utilizing operational amplifiers [20,21], diodes [22], transistors [23], and transconductance
amplifiers [24] have been proposed.

Moreover, in 2007, researchers at Hewlett-Packard successfully developed a solid-
state thin-film two-terminal memristor [25]. Four decades earlier, Leon Chua had also
introduced the memristor as one more of the fundamental circuit elements, alongside the
traditional trio of elements—the resistor, inductor, and capacitor. This fourth element is
defined in terms of a nonlinear constitutive relation between two key circuit variables:
charge and magnetic flux [26]. After this milestone, a considerable number of publications
have showcased significant discoveries related to memristor models, fabricated materials,
and techniques as well as substantial applications of memristors. These applications
include adaptive filters [27], high-speed low-power processors [28], neural networks [29,30],
associative memory [31–33], programmable analog integrated circuits [34] and more. It is
noteworthy that the inherent nonlinear characteristic of memristors can be leveraged to
devise innovative chaotic systems with intricate dynamics [35,36].

In this direction, the memristor can be used instead of Chua’s diode in the design of
chaotic circuits. Therefore, derived from Chua’s circuit, Muthuswamy’s chaotic circuit was
achieved by using a flux-controlled memristor instead of Chua’s diode [37]. Similar to this
circuit, several other chaotic circuits based on memristors are devised by using, instead of
the Chua’s diode, a memristor’s emulator characterized by smooth piecewise-quadratic
nonlinearity [38], non-smooth piecewise linearity [35], or smooth cubic nonlinearity [39].
Also, in 2012, Buscarino et al. introduced a memristive Chua’s oscillator, in which two HP
memristors are connected in anti-parallel, as its nonlinear resistor [40].

Furthermore, in 2014, Bao et al. introduced a first-order generalized memristor em-
ulator, implemented by using a first-order memristive circuit featuring an RC filter and
a parallel diode bridge [41]. This memristor emulator has been used, as a nonlinear resistor,
in a variety of chaotic circuits [42–45]. Also, in 2021, Kengne et al. studied the dynamics
of a generalized memristive diode-bridge-based jerk circuit, in which symmetry could
be varied, and a plethora of nonlinear and complex behaviors were revealed [46]. These
include the coexistence of symmetric and asymmetric attractors, coexisting symmetric and
asymmetric bubbles of bifurcation, and symmetric and asymmetric double-scroll chaotic
attractors. Also, in the same year, Xu et al. proposed a similar jerk circuit with the spe-
cific memristive diode-bridge emulator, in which asymmetric coexisting bifurcations and
multi-stability phenomena were observed [47]. In 2022, Wu et al. used the aforementioned
memristor emulator, in which a DC offset had been added to one of the branches of the
memristive diode-bridge [48]. In this way, they observed that the symmetry of the two
unstable index-2 saddle-foci equilibrium points had been broken, leading to the emergence
of complex asymmetric kinetic behaviors with multi-stability in the proposed oscillator.
Furthermore, in the same year, Ramadoss et al. studied the impact of a broken symmetry on
the dynamics of the Shinriki oscillator. The broken symmetry was caused by the memristive
diodes bridge with an asymmetric pinched hysteresis loop designed by selecting two pairs
of semiconductor diodes with different electrical properties [49]. As a consequence of this
broken symmetry, up to four coexisting asymmetric chaotic and periodic attractors are
reported following changes in both initial conditions and parameters.

Additionally, this specific memristor emulator has been used instead of the Chua’s
diode in the well-known canonical Chua’s circuit [50] and in a non-autonomous Chua’s
circuit [51]. Also, in 2016, a novel memristive Chua’s circuit was proposed, which is
constructed by connecting the generalized memristor emulator between a passive LC
oscillator and an active RC filter [52]. This circuit has rich dynamical behavior, as it can
generate hidden attractors and coexisting hidden attractors in a narrow parameter region.
Moreover, in 2015, Chen et al. introduced a novel memristive chaotic circuit, formulated
by using, instead of the nonlinear element in Chua’s circuit, the generalized memristor
emulator of Bao et al. [53].
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In this work, the Chua’s diode in a Chua’s oscillator circuit is replaced with the
generalized memristor developed by Bao et al. [41], marking the first instance of such
substitution. Considering the resistance RL of the inductor in this particular circuit, in
comparison to the simplified Chua’s circuit examined in [53], a different chaotic dynamical
system with interesting phenomena is revealed. Additionally, it enables the examination
of the impact of this parasitic resistance to the system’s behavior. Also, in this work,
a different diode model, with a smaller saturation current, with regard to [50–53], has been
used in order to investigate the circuit’s dynamics in other ranges of parameters. Finally, as
mentioned, intriguing phenomena related to chaos theory have been exposed, including the
route to chaos through the period-doubling sequence, the occurrence of antimonotonicity,
and the manifestation of coexisting attractors.

The rest of the paper is structured as follows. In Section 2, the memristor’s emulator,
as well as Chua’s oscillator circuit, which contains this nonlinear element, are presented.
In Section 3, the 4-dimensional nonlinear dynamical system that describes the proposed
circuit is investigated theoretically. Section 4 presents the comprehensive simulation results
that elucidate the circuit’s behavior concerning various parameters. These results are
derived from both the numerical integration of the dynamical system as well as the circuit’s
simulation using Multisim. Lastly, Section 5 concludes the paper with summaries and
reflections on potential avenues for future research.

2. The Memristive Chua’s Oscillator

This section presents in detail the memristive Chua’s oscillator circuit. The memristor’s
emulator, which is based on a parallel RC filter with a diode bridge, is presented and its
behavior is studied through Multisim simulations. Furthermore, the proposed circuit is
presented, in which the aforementioned memristor’s emulator that is connected in parallel
to a negative resistor has been used instead of the Chua’s diode.

2.1. The Memristor’s Emulator

In the proposed circuit, the generalized memristor, which has been presented by Bao
et al., is used [41]. A memristor emulator of this kind is composed of a first-order parallel
RC filter with a diode bridge, illustrated in Figure 1, and is mathematically represented by
the following set of equations:

iM = G(υC, υM)υM = 2ISe−ρυC sin h(ρυM), (1)

dυC
dt

=
2IS[e−ρυC cosh(ρυM)− 1]

C
− υC

RCC
, (2)

where iM and υM are the flowing current and the input voltage of the memristor’s emulator,
and υC is the state variable corresponding to the voltage of the capacitor C. Furthermore,
ρ = 1/(2nVT), while the parameters n, VT , IS represent the emission coefficient, the thermal
voltage, and the reverse saturation current of the diodes that have been used. Also, the
memristor’s emulator, which is described by Equations (1) and (2), is a member of the family
of extended memristors, based on the definition that Chua was given in [54]. According
to this definition, any memristor can be considered as an extended memristor, if it can be
described as follows:

dx
dt

= F(x, υ), (3)

iM = G(x, υ)υM, (4)

where x is, in general, the n-order state vector, F is the state function, and G is the memduc-
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tance function, respectively. In the case of the memristor’s emulator of Equations (1) and (2),
the memductance is as follows:

G =
iM
υM

=
2ISe−ρυC sinh(ρυM)

υM
(5)
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displays the three distinctive features essential for identifying memristors [54]. Figure 2 
depicts the Multisim-simulated pinched hysteresis loops of the proposed memristor for 
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Figure 1. The memristor’s emulator. (a) The schematic and (b) the graphical symbol of the memristor.

Therefore, it is a voltage-controlled memristor. In Table 1, the memristor’s emulator
parameters are listed.

Table 1. The memristor’s emulator parameters.

Parameters Significations Values

IS Saturation current of 1N4149 diode 0.1 pA
VT Thermal voltage of 1N4149 diode 27 mV
n Emission coefficient of 1N4149 diode 1
C Capacitance 1 µF

RC Resistance 500 Ω

When sinusoidal voltage stimuli are applied, the proposed memristor’s emulator
displays the three distinctive features essential for identifying memristors [54]. Figure 2
depicts the Multisim-simulated pinched hysteresis loops of the proposed memristor for
various values of frequencies (Figure 2a) and amplitudes (Figure 2b) of the sinusoidal
voltage stimulus.
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ent sinusoidal voltage stimuli υM = Vm sin(2π f t), by using (a) Vm = 2 V, with different frequencies f
and (b) f = 1000 Hz, with different voltage amplitudes Vm
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2.2. The Proposed Circuit

The proposed memristive circuit consists of two capacitors (C1 and C2) coupled via
a linear resistor R, a parallel branch in the capacitor C2, which has an inductor L, which is
connected in series with a small resistor RL and the nonlinear element that is connected
in parallel to the capacitor C1. In this work, the memristor’s emulator consisting of the
first-order parallel RC filter with the diode bridge, which is connected in parallel with
a linear negative resistor −RN, has been used as the nonlinear element. Thus, Figure 3
depicts the proposed memristive circuit, and its parameters are outlined in Table 2.
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Table 2. The circuit’s parameters.

Parameters Significations Values

L Inductance 15 mH
C1 Capacitance 8 nF
C2 Capacitance Variable
R Resistance Variable

RL Resistance 10 Ω
RN = R3 Linear resistance of the NIC 1400 Ω
R1 = R2 Other resistances of the NIC 1000 Ω

VS Voltage Supply ±15 V

The negative resistor −RN is realized using an op-amp-based negative impedance
converter (NIC), as depicted in Figure 4. The linear negative resistance of this NIC is
determined by solving the following equation:

υin

iin
=
−R1R3

R2
(6)
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When R1 = R2, the NIC circuit can be used as a negative resistance, with −RN = −R3.
For the simulation of the circuit in Multisim, the UA741 operational amplifier has

been chosen.
By solving the circuit of Figure 3 with the use of Kirchhoff’s laws and the mathematical

relationship of the memristor’s emulator described by Equations (1) and (2), the following
system of differential equations is derived:

C1
dυ1
dt = υ2−υ1

R + υ1
RN
− 2ISe−ρυC sinh(ρυ1)

C2
dυ2
dt = iL − υ2−υ1

R
L diL

dt = −υ2 − RLiL

C dυC
dt = 2IS[e−ρυC cosh(ρυ1)− 1]− υC

RC

(7)

where υ1, υ2, and υC are the voltages across the capacitors C1, C2, C, while iL is the current
flowing through the inductor L.

By setting as x = ρυ1, y = ρυ2, z = ρriL, w = ρυC, a = r
R , b = 2ρrIS, c = RL

r ,

d = C1
C2

, e = r
RC

, f = r
RN

, h = C1
C , r =

√
L

C1
, and τ = t/

√
LC1, the following system (8) in

normalized form is derived:
dx
dτ = a(y− x) + f x− be−wsinh(x)

dy
dτ = d[z− a(y− x)]

dz
dτ = −y− cz

dw
dτ = h{b[e−w cosh(x)− 1]− ew}

(8)

3. Theoretical Analysis

The theoretical analysis of the nonlinear dynamical system, which is described by
system (8), is presented in this section.

3.1. Dissipativity Analysis

The memristive Chua’s oscillator circuit of Figure 3 exhibits dissipative behavior
within certain parameter ranges. This dissipative nature can be deduced from the following:

∇V =
∂

.
x

∂x
+

∂
.
y

∂y
+

∂
.
z

∂z
+

∂
.

w
∂w

= −2a− e− c + f − b(h + 1)e−wcoshx (9)

Given that the hyperbolic cosine and the exponential function are both positive,
Equation (9) could be simplified as follows:

∇V ≤ −2a− e− c + f (10)

Considering the circuit’s parameters outlined in Tables 1 and 2, and by also using
C2 = 170 nF and R = 1450 Ω, it is observed that Equation (10) yields a negative value of
∇V ≤ −3.6565. This implies that all trajectories within the system will be constrained to
a certain subset with zero volume, and the asymptotic motion will converge toward an
attractor [55].

3.2. Equilibrium Points

For the calculation of the equilibrium points of system (8), the circuit’s parameters are
depicted, as in Tables 1 and 2, while C2 = 170 nF and R = 1450 Ω, so that the circuit is in
a chaotic mode, as it will be presented in the next section.
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The equilibrium points of system (8) are determined by solving the following set
of equations: 

a(y− x) + f x− be−wsinh(x) = 0
d[z− a(y− x)] = 0
−y− cz = 0

h{b[e−w cosh(x)− 1]− ew} = 0

(11)

Therefore, the proposed system (8) has three equilibrium points. The first is the
obvious solution of system (11), which is S1 = (0, 0, 0, 0). The other two equilibrium points
must be found graphically due to the fact that system (11) has two functions that describe
the relation between the variables w and z, which are presented by Equations (12) and (13).

w =
b
e
(a− f − f ac)z

ab
cot h

(
−1 + ac

a
z
)
− b

e
(12)

w =
log
(

absin h
(
− 1+ac

a z
))

(a− f − f ac)z
(13)

In Figure 5, the graphical representation of the functions, which are described by the
aforementioned Equations (12) and (13) are depicted in red and blue color respectively, as
well as the intersection points that represent the two other equilibrium points S2 = (19.86231,
0.13985, −18.61333, 0.29136) and S3 = (−19.86231, −0.13985, 18.61333, 0.29136).
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3.3. Stability

The first step in the procedure of finding the stability of system (8) is to find the
Jacobian matrix described by Equation (14):

J =


f − a− k2 a 0 k1

ad −ad d 0
0 −1 −c 0

bhk1 0 0 −h(e + k2)

 (14)

where k1 = be−wsin h(x) and k2 = be−wcos h(x).
The next step is to find the eigenvalues λ at the equilibrium points, which are deter-

mined by solving the characteristic Equation (15).

det(λI− J) = 0 (15)
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Therefore, for the circuit’s parameters, which are chosen as in Tables 1 and 2, while
C2 = 170 nF and R = 1450 Ω, the following four eigenvalues for the three equilibrium points
(S1, S2, S3) that have been calculated in the previous subsection are determined.

S1 : λ1 = 0.1518, λ2,3 = −0.2849 ± 0.2104i, λ4 = −0.0219 (16)

S2,3 : λ1 = −1.1782, λ2,3 = −0.0411 ± 0.5665i, λ4 = −0.0286 (17)

Upon scrutiny of Equations (16) and (17), it becomes apparent that equilibrium point
S1 possesses two complex conjugate roots with negative real parts, in addition to a positive
real root and a negative real root. This configuration classifies S1 as an unstable saddle
point. Furthermore, equilibrium points S2 and S3 exhibit two complex conjugate roots
with negative real parts and two negative real roots, establishing them as stable saddle-foci
without the potential to generate attractors. However, the proposed circuit, with the chosen
parameters, exhibits chaotic behavior, as detailed in the subsequent section.

3.4. Symmetry

Additionally, the system remains unchanged under the transformation of the co-
ordinates from (x, y, z, w) to (−x, −y, −z, w). Consequently, if (x, y, z, w) constitutes
a solution of system (8), then (−x, −y, −z, w) is also a solution. Such symmetry provides
an explanation for the occurrence of coexisting attractors in the state space. In Figure 6,
the 3D symmetric periodic attractors produced by the numerical simulations of system
(8), under the aforementioned transformation, are displayed. Also, the respective symmet-
ric periodic attractors produced by Multisim’s circuit simulation, by changing the initial
voltage values of capacitors C1 and C2, are depicted in Figure 7.
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Figure 7. Symmetric periodic attractors from the Multisim, in the plane of υ1–υ2, for (υ1, υ2, iL, υL)

= (1 V, 1 V, 0 A, 0 V) and (υ1, υ2, iL, υL) = (−1 V, −1 V, 0 A, 0 V), with the circuit’s parameters of
Tables 1 and 2, while C2 = 50 nF and R = 1450 Ω.

4. Simulation Results

This section presents the simulation results from both the numerical integration of
system (8), using the fourth-order Runge-Kutta algorithm, and also from the simulation
of the proposed memristive Chua’s oscillator circuit with Multisim. Moreover, three
cases for examining the circuit’s dynamics are outlined. Specifically, by maintaining
a constant value for either the element R or C2, while the value of the other (C2 or R)
varies, intriguing phenomena associated with the circuit’s dynamics are observed. Also,
the circuit’s dynamical behavior in regard to the value of the capacitance C is examined in
the third case.

4.1. First Case of the Study

In this case, the value of the resistor R is kept constant (R = 1450 Ω), while the value
of the capacitance C2 serves as the control parameter. The rest of the circuit’s parameters
have been chosen as depicted in Tables 1 and 2. Starting with low values of C2 = 50 nF, the
emergence of two symmetric limit cycles of period-1, as depicted in Figure 6, is observed.
With a further increase in the value of C2, a period-doubling sequences leading to chaos
becomes evident. This phenomenon is displayed clearly in the bifurcation diagram of
variable y versus the value of the capacitance C2 (Figure 8a). Also, in Figure 8b, the
respective diagram of the two largest Lyapunov exponents of system (8) is depicted, while
the other two Lyapunov exponents are omitted because they have both negative values.
From this diagram, which is produced by applying Wolf’s algorithm [56], the dynamical
behavior of the proposed system is confirmed. As the system is in chaotic regions, it
has the largest Lyapunov exponent with a positive value, while it is zero when it is in
the periodic regions, which is also observed inside the enlarged chaotic region of the
bifurcation diagram of Figure 8a. In Figure 9, the system’s double-scroll chaotic attractors,
for C2 = 170 nF, in various planes are presented. Furthermore, the respective circuit’s
chaotic attractors produced from the data, which are captured from Multisim, are depicted
in Figure 10. Finally, in Figure 11 two symmetric coexisting chaotic attractors, i.e., for
C2 = 75 nF, which are produced from both the numerical simulation of system (8) and from
Multisim, are presented.



Electronics 2023, 12, 4734 10 of 19

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

  
(a) (b) 

Figure 8. Circuit’s dynamics with C2 increasing, for R = 1450 Ω, while the rest of the parameters are 
chosen as in Tables 1 and 2. (a) Bifurcation diagram of the variable y, and (b) the diagram of the two 
largest Lyapunov exponents. 

  
(a) (b) 

(c) (d) 
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Figure 9. Circuit’s chaotic attractors, for R = 1450 Ω, C2 = 170 nF, (x, y, z, w)0 = (1, 2, 0.1, 3) and
the rest of the parameters as depicted in Tables 1 and 2. (a) x–y plane, (b) x–z plane, (c) x–w plane,
(d) y–z plane, (e) y–w plane, and (f) z–w plane.
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Figure 11. Symmetric coexisting chaotic attractors, for C2 = 75 nF, R = 1450 Ω, and the rest of the 
parameters as depicted in Tables 1 and 2, which are produced (a) from the simulation and (b) from 
Multisim. 

4.2. Second Case of the Study 
In this case, the capacitance C2 is held constant (C2 = 80 nF), while the resistance R 

plays the role of the control parameter. Also, to reveal the phenomenon of coexisting 
attractors, the continuation diagram has also been used. Figure 12 displays the 
continuation diagram concerning the resistance R. The continuation diagram, which is 
highlighted in red, differs from the corresponding bifurcation diagram, shown in black, 
based on the choice of initial conditions. Unlike the bifurcation diagram, where the initial 
conditions remain the same in each iteration, the continuation diagram utilizes the last 
values of the variables in each iteration as the initial conditions for the subsequent 
iteration. From the comparison of these two diagrams, coexisting attractors for various 
values of resistance R are revealed. Figure 13 illustrates three distinct pairs of attractors, 
for different initial conditions, corresponding to various values of the resistance R, 

Figure 10. Circuit’s chaotic attractors captured from the data produced from Multisim, for R = 1450 Ω,
C2 = 170 nF, (υ1, υ2, iL, υC)0 = (1 V, 1 V, 0 A, 0 V) and the rest of the parameters as depicted in Tables 1
and 2. (a) x–y plane, (b) x–z plane, (c) x–w plane, (d) y–z plane, (e) y–w plane, and (f) z–w plane.
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Figure 11. Symmetric coexisting chaotic attractors, for C2 = 75 nF, R = 1450 Ω, and the rest of
the parameters as depicted in Tables 1 and 2, which are produced (a) from the simulation and
(b) from Multisim.

4.2. Second Case of the Study

In this case, the capacitance C2 is held constant (C2 = 80 nF), while the resistance
R plays the role of the control parameter. Also, to reveal the phenomenon of coexisting
attractors, the continuation diagram has also been used. Figure 12 displays the continuation
diagram concerning the resistance R. The continuation diagram, which is highlighted in
red, differs from the corresponding bifurcation diagram, shown in black, based on the
choice of initial conditions. Unlike the bifurcation diagram, where the initial conditions
remain the same in each iteration, the continuation diagram utilizes the last values of the
variables in each iteration as the initial conditions for the subsequent iteration. From the
comparison of these two diagrams, coexisting attractors for various values of resistance
R are revealed. Figure 13 illustrates three distinct pairs of attractors, for different initial
conditions, corresponding to various values of the resistance R, affirming the presence of
coexisting attractors. Furthermore, the respective pairs of coexisting attractors produced
from Multisim are displayed in Figure 14. In Figure 12b, the spectrum diagram of the
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Lyapunov exponents (LE) is presented, confirming the chaotic nature of the system through
the positive values of the largest Lyapunov exponent.
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Figure 12. Circuit’s dynamics with R increasing, for C2 = 80 nF and the rest of parameters as depicted
in Tables 1 and 2. (a) Bifurcation and continuation diagrams of the parameter y, (b) the diagram of
the two largest Lyapunov exponents, and (c) the partial bifurcation and continuation diagrams.

Moreover, by analyzing the bifurcation diagram of Figure 12, we can observe the occur-
rence of antimonotonicity. This phenomenon, which was introduced by Dawson et al. [57],
is a phenomenon where the system is driven to chaotic behavior as the bifurcation parame-
ter increases. This transition initiates from a period-1 state, following a period-doubling
route toward chaos. Subsequently, it exits from the chaotic region, reverting to period-1,
through a reverse period-doubling sequence. Furthermore, primary bubbles of period-1
have also been revealed from the bifurcation and continuation diagrams of Figure 12c.
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Figure 13. Coexisting attractors, for C2 = 80 nF and the rest of the parameters as depicted in Tables 1 
and 2, while (a) R = 1454 Ω (one-scroll chaotic attractor with red color and period-1 limit cycle with 
blue color), (b) R = 1463 Ω (period-2 attractor with red color and period-1 limit cycle with blue color), 
and (c) R = 1470 Ω (period-1 attractor with red color and different period-1 limit cycle with blue 
color). 
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Figure 13. Coexisting attractors, for C2 = 80 nF and the rest of the parameters as depicted in
Tables 1 and 2, while (a) R = 1454 Ω (one-scroll chaotic attractor with red color and period-1 limit
cycle with blue color), (b) R = 1463 Ω (period-2 attractor with red color and period-1 limit cycle with
blue color), and (c) R = 1470 Ω (period-1 attractor with red color and different period-1 limit cycle
with blue color).
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4.3. Third Case of the Study 
In the third case, the effect of the capacitance C of the memristor’s emulator is studied. 

For this reason, the rest of the circuit’s parameters have been chosen as depicted in Tables 
1 and 2, while R = 1450 Ω and C2 = 80 nF. Figure 15a shows the bifurcation diagram of the 
variable y with respect to the value of capacitance C. This diagram reveals an intricate 
fractal-like behavior, in its transitions to and from chaos. As the value of the capacitance 
C increases, the system falls finally into a period-1 behavior, for C ≥ 965.15 nF. As in the 
previous cases, Figure 15b depicts the diagram of the two largest Lyapunov exponents 
with respect to the value of the capacitance C, which confirms the circuit’s dynamical 
behavior, as it is observed from the respective bifurcation diagram. Furthermore, in Figure 
16, the circuit’s attractors (periodic and chaotic), in the x–y plane, as they are produced by 
numerically solving system (8), for various values of the capacitance C, are presented. 
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Figure 15. Circuit’s dynamics with C increasing, for C2 = 80 nF, R = 1450 Ω, while the rest of the 
parameters are chosen as in Tables 1 and 2. (a) Bifurcation diagram of variable y and (b) the diagram 
of the two largest Lyapunov exponents. 

Figure 14. Circuit’s coexisting attractors captured from the data produced by Multisim, for C2 = 80 nF
and the rest of parameters as depicted in Tables 1 and 2, while (a) R = 1454 Ω (one-scroll chaotic
attractor with red color coexists with period-1 limit cycle with blue color), (b) R = 1463 Ω (period-2
attractor with red color coexists with period-1 limit cycle with blue color), and (c) R = 1471 Ω (period-1
attractor with red color coexists with another period-1 limit cycle with blue color).

4.3. Third Case of the Study

In the third case, the effect of the capacitance C of the memristor’s emulator is studied.
For this reason, the rest of the circuit’s parameters have been chosen as depicted in Tables 1
and 2, while R = 1450 Ω and C2 = 80 nF. Figure 15a shows the bifurcation diagram of the
variable y with respect to the value of capacitance C. This diagram reveals an intricate
fractal-like behavior, in its transitions to and from chaos. As the value of the capacitance
C increases, the system falls finally into a period-1 behavior, for C ≥ 965.15 nF. As in the
previous cases, Figure 15b depicts the diagram of the two largest Lyapunov exponents with
respect to the value of the capacitance C, which confirms the circuit’s dynamical behavior,
as it is observed from the respective bifurcation diagram. Furthermore, in Figure 16,
the circuit’s attractors (periodic and chaotic), in the x–y plane, as they are produced by
numerically solving system (8), for various values of the capacitance C, are presented.
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Figure 15. Circuit’s dynamics with C increasing, for C2 = 80 nF, R = 1450 Ω, while the rest of the
parameters are chosen as in Tables 1 and 2. (a) Bifurcation diagram of variable y and (b) the diagram
of the two largest Lyapunov exponents.
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Figure 16. Circuit’s attractors, for R = 1450 Ω, C2 = 80 nF, (x, y, z, w)0= (1, 2, 0.1, 3), while the rest of 
the parameters are chosen as depicted in Tables 1 and 2, for (a) C = 15 nF (double-scroll chaotic 
attractor), (b) C = 55 nF (periodic attractor), (c) C = 200 nF (one-scroll chaotic attractor), (d) C = 730 

Figure 16. Circuit’s attractors, for R = 1450 Ω, C2 = 80 nF, (x, y, z, w)0 = (1, 2, 0.1, 3), while the rest of the
parameters are chosen as depicted in Tables 1 and 2, for (a) C = 15 nF (double-scroll chaotic attractor),
(b) C = 55 nF (periodic attractor), (c) C = 200 nF (one-scroll chaotic attractor), (d) C = 730 nF (periodic
attractor), (e) C = 930 nF (double-scroll chaotic attractor), and (f) C = 1000 nF (periodic attractor).
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5. Conclusions

In this work, a memristive circuit, which is based on Chua’s oscillator, was studied.
The specific circuit was designed by using, instead of Chua’s diode, a linear negative
resistor, which is coupled with a first-order memristive diode bridge. The study, which was
completed, included the analysis of the equilibrium points and their stabilities, as well as
the examination of the dynamical characteristics under variations in the circuit parameters
through the system’s numerical integration and Multisim simulations. Furthermore, the
theoretical analysis revealed that the circuit exhibits two stable conjugate saddle-foci and
an unstable saddle equilibrium point. Additionally, the memristive Chua’s oscillator circuit
demonstrated diverse dynamical behavior, as evidenced by both the system’s numerical
integration and the Multisim simulations. Intriguing phenomena were revealed, including
a route to chaos through the period-doubling sequence, coexisting attractors, and the
phenomenon of antimonotonicity. An extensive study of the phenomenon of the system’s
coexisting attractors, as well as the implementation of the proposed memristive circuit, has
been planned for future research, in order to examine its feasibility, as well as its use in
a real-world application, such as in a secure communication scheme.
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