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Abstract: Magnetic resonance imaging (MRI) faces ongoing challenges associated with prolonged
acquisition times and susceptibility to motion artifacts. Compressed Sensing (CS) principles have
emerged as a significant advancement, addressing these issues by subsampling k-space data points
and enabling rapid imaging. Nevertheless, the recovery of intricate details from under-sampled
data remains a complex endeavor. In this study, we introduce an innovative deep learning approach
tailored to the restoration of high-fidelity MRI images from under-sampled k-space data. Our method
employs a cascaded reconstruction strategy that progressively restores hierarchical features and fuses
them to achieve the final reconstruction. This cascade encompasses low, intermediate, and high orders
of reconstruction, which is followed by a return through intermediate and low orders. At distinct
reconstruction stages, we introduce a novel reconstruction block to recapture diverse frequency
information crucial for image reconstruction. The other core innovation of our proposal lies in a
fusion algorithm that harmonizes results from various reconstruction tiers into the final MRI image.
Our methodology is validated using two distinct datasets. Notably, our algorithm achieves impressive
PSNR values of 32.60 and 31.02 at acceleration factors of 4× and 8× in the FastMRI dataset along
with SSIM scores of 0.818 and 0.771, outperforming current state-of-the-art algorithms. Similarly, on
the Calgary–Campinas dataset, our algorithm achieves even higher PSNR values, reaching 37.68
and 33.44, which is accompanied by substantial SSIM scores of 0.954 and 0.901. It is essential to
highlight that our algorithm achieves these remarkable results with a relatively lower parameter count,
underscoring its efficiency. Comparative analyses against analogous methods further emphasize the
superior performance of our approach, providing robust evidence of its effectiveness.

Keywords: MRI reconstruction; compress sensing; deep learning; cascaded reconstruction; transformer-
based fusion

1. Introduction

Magnetic resonance imaging (MRI) has evolved into a potent diagnostic tool, offering
non-invasive structural and functional visualization without the need for radiation expo-
sure [1]. However, the inherent nature of magnetic signal acquisition prevents the direct
acquisition of spatial domain images, transforming the imaging process into a sequential
filling of sample points in the frequency domain, specifically k-space, followed by Fourier
transformation to compute the final image. Consequently, the sequential nature of MRI
signal acquisition leads to prolonged scan times and the potential for motion artifacts.
These factors limit its broader application and introduce risks.

To tackle this issue, strategies such as under-sampling of the k-space have been
adopted, resulting in significant reductions in acquisition time [2]. Various methodologies
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optimize under-sampling based on signal and noise characteristics, ensuring maximal
preservation of image details while minimizing artifacts during the reconstruction process.
Advanced reconstruction algorithms further elevate image quality. The theoretical foun-
dation for such approaches is provided by Compressed Sensing (CS) theory [3], enabling
more aggressive acceleration. Despite the gains in reducing acquisition time and enhancing
MRI efficiency, ongoing innovation remains crucial to balancing efficiency and diagnostic
accuracy [4].

Traditional CS methods iteratively infer unknown k-space signals based on existing
ones and sparse restrictions. Recent advancements in deep learning have spurred the
adoption of artificial neural networks to represent the reconstruction process and parameter
learning through backpropagation. The amalgamation of under-sampling the k-space and
advanced neural networks reconstruction algorithms generates high-quality images from
limited data. This integration enhances temporal and spatial resolution, paving the way for
improved clinical diagnosis and research.

However, within the current landscape of deep learning methodologies, particularly
when dealing with high acceleration rates, there exists a prominent issue stemming from the
inadequate utilization of diverse frequency information across different feature hierarchies.
This shortfall often leads to the undesirable outcome of generating overly smoothed images.
To address this limitation, we present a novel strategy termed “progressive feature recon-
struction”. This strategy operates by selectively unlocking distinct channels for frequency
capture across different feature orders. Moreover, the allocation of high and low-frequency
channels is dynamically optimized throughout the varying reconstruction stages. By doing
so, our approach aims to rectify the shortcomings of prevailing methods by enabling a more
nuanced and accurate depiction of frequency characteristics within reconstructed images.

In addition, addressing the challenge of multiple reconstruction outcomes demands
an effective fusion strategy. Existing approaches, such as direct concatenation followed by
1 × 1 convolutional dimension reduction, or concatenating and subsequently utilizing re-
finement modules for final reconstruction, may impose constraints on feature relationships
and result in information loss. To overcome this issue, we introduce a Transformer-based fu-
sion algorithm that efficiently leverages information from diverse reconstruction outcomes,
enabling adaptive fusion. Integrating this fusion algorithm with the results of progressive
feature reconstruction, our approach showcases exceptional performance when compared
to eight existing algorithms on two publicly available datasets and one proprietary dataset.

In summary, the proposed innovation in MRI reconstruction can be highlighted
as follows:

1. Progressive Feature Reconstruction: Our approach introduced an innovative tech-
nique for MRI reconstruction. It efficiently captured diverse frequency information
across feature orders, effectively mitigating over-smoothing issues.

2. Transformer-Based Fusion: We proposed an efficient fusion method utilizing Transformers,
optimizing the integration of reconstruction outcomes from different feature orders.

3. Enhanced Performance: Through the integration of progressive feature reconstruction
and Transformer-based fusion, our method consistently achieved outstanding results
across diverse datasets, even in scenarios with limited data samples.

2. Related Works

In the realm of deep learning, certain models were intricately designed by drawing
inspiration from optimization algorithms employed in compressed sensing (CS). These
innovative approaches entailed the replacement of components within optimization algo-
rithms with neural networks. Notably, the Alternating Direction Method of Multipliers
(ADMM-Net) [5] meticulously fine-tuned the learning parameters of the ADMM frame-
work during training, whereas the Iterative Soft Thresholding Algorithm (ISTA-Net) [6]
adroitly substituted the design parameters within the ISTA algorithm with neural net-
works. Moreover, the IFR-Net [7] effectively achieved trainable regularization and feature
refinement through the deliberate unfolding of the iterative feature refinement process.
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Convolutional neural networks based on deep learning extract prior knowledge from
training data and combine the concept of sparse regularization for MRI reconstruction.
Prominent instances included variational autoencoders [8], generative adversarial networks
(GANs) [9–14], and various other generative models [15,16]. Iterative models constituted
another category, where many deep learning methods embraced iterative updates for
MRI reconstruction. Notable models included unfolded networks [17], recurrent neural
networks (RNNs) [18], and iterative inversion models [19]. For instance, CRNN [18] and
CSDL-Net [20] combined traditional iterative algorithms with recurrent hidden connec-
tions to cyclically enhance reconstruction stages, capturing spatiotemporal dependencies
and bolstering reconstruction accuracy. Similarly, PC-RNN [21] employed multiple con-
volutional recurrent neural network (ConvRNN) modules to iteratively learn features
at different scales, culminating in a convolutional neural network (CNN) module that
orchestrated pyramid-style image reconstruction for improved results. MEDL-Net [22] and
ReconResNet [23] utilized regularization learning for MRI reconstruction.

Moreover, the transformative Transformer architecture, renowned in natural language
processing and computer vision, demonstrated its prowess in MRI reconstruction [24–28].
The Transformer’s design characteristics facilitated the modeling of long-range feature
dependencies and the parallel processing of spatiotemporal correlations. DSME-Net [24]
employed bidirectional alternating connections for enhanced information exchange, while
T2-Net [29] and MHAN [30] addressed joint MRI reconstruction and super-resolution.
KTMR [31] used SwinIR [27] as their core architecture, and SwinGAN [28] creatively
utilized a dual-domain GAN to accelerate MRI reconstruction and overcome limitations
in structural detail preservation found in traditional methods. RNLFNet [26] combined a
self-attention mechanism with Fourier transform to capture long-range spatial correlation
in the frequency domain.

Our approach introduced a novel strategy of progressive feature reconstruction com-
bined with a Transformer-based fusion approach, achieving enhanced MRI reconstruction
performance by effectively capturing diverse frequency information and optimally inte-
grating reconstruction outcomes.

3. Materials and Methods

We present our method for MRI reconstruction in this section. We first formalize the
inverse problem of MRI reconstruction, providing a mathematical representation of the
problem. Building upon this formalization, we then introduce the overall architecture of
our method.

3.1. Problem Formulation

The fundamental problem of MRI reconstruction is to reconstruct clear MR images
from under-sampled k-space. The under-sampled k-space can be formulated as follows:

y = Ax + ε, (A = M⊗ F) (1)

In the formulation, A represents the combination of the under-sampling matrix M and
the Fourier transform matrix F. The matrix M represents the under-sampling pattern applied
during the data acquisition process. The variable ε represents the noise present during the
acquisition. Finally, x represents the desired clear MR image that we aim to reconstruct,
and y represents the under-sampled k-space data obtained from the acquisition process.

However, the inverse process of the above formulation is ill-posed. To address this
underdetermined inverse problem, deep learning-based MRI reconstruction typically in-
corporates a deep convolutional neural network with learnable parameters θ to learn the
mapping between zero-filled images and fully sampled images. The formulation can be
expressed as follows:

argmin
x

1
2
‖ Ax− y ‖2

2 +λ ‖ x− fcnn(I|θ ) ‖2
2 (2)
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In Equation (2), our network serves as the fcnn for an end-to-end mapping. Further
details will be elaborated in subsequent departments.

3.2. Progressive Feature Reconstruction and Fusion Network

Our network comprises two major components: the Progressive Feature Reconstruc-
tion Module and the Fusion Module. The design of our Progressive Feature Reconstruction
Module is inspired by the successful UNet architecture, aiming to progressively extract
and reconstruct features at different scales for high-fidelity MRI restoration. Upon the
introduction of zero-filled images into the network, an initial convolutional layer extracts
shallow-level features. Subsequently, the Reconstruction Module operates on these shallow-
level features to effectuate the reconstruction process.

f ea = lrelu(conv(X)) (3)

Within the Reconstruction Module, the shallow-level features sequentially traverse
through five distinct reconstruction blocks. These blocks correspond, respectively, to low-
order reconstruction, intermediate-order reconstruction, high-order reconstruction, another
intermediate-order reconstruction, and finally low-order reconstruction. At the end of each
reconstruction block, we add a data consistency layer to correct the data reconstruction.
This sequence yields five sets of distinct reconstruction features. After concatenating these
features along the channel dimension, they are channeled into the Multi-Order Fusion
Transformer for adaptive integration.

L1, M1, H, M2, L2 = Recon( f ea) (4)

The H-Recon block acts as a bottleneck, which is chosen for computational efficiency
and parameter considerations. This decision is made to strike a balance between efficiency
and performance. Repeating intermediate and low-level feature reconstructions enhances
the integration of high-level semantic information.

The Fusion Transformer orchestrates a dynamic fusion process, harmonizing the
amalgamated channel-enriched reconstruction features. This transformation culminates in
the generation of the final high-definition MRI reconstruction.

Y = MOFT(L1, M1, H, M2, L2) (5)

Our network architecture embodies a coherent sequence wherein initial feature ex-
traction, hierarchical reconstruction, and adaptive fusion sequentially coalesce to yield
high-quality reconstructed MRI images. Its computation follows Algorithm 1.

Algorithm 1 MRI reconstruction using our algorithm

Input: Under-sampled k-space k0, Under-sampled Mask M.
Compute X through k0 using F−1;
Compute fea through X using Equation (3);
//Progressive Feature Reconstruction
for fea in [L1-Recon, M1-Recon, H-Recon, M2-Recon, L2-Recon] do

Compute fea through fea using Equation (6);
Apply DC on fea using Equation (14);
Save fea as L1/M1/H/M2/L2

end
//Multi-Order Fusion Transformer mechanism
Compute Q1, K1, and V1 using Equation (8);
Compute x using Equations (9) and (10);
Apply DC on x using Equation (14);
Compute Q2, K2, and V2 using Equation (11);
Compute Y using Equations (12) and (13);
Apply DC on Y using Equation (14);
Obtain Y.
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3.3. L-Recon (M-Recon/H-Recon)

The entire reconstruction process is partitioned into five distinct reconstruction blocks;
across these reconstruction blocks, a consistent core architecture is employed with the key
distinction lying in the utilization of varying up and down-sampling ratios for different-
order reconstruction blocks.

In the low-order reconstruction block, an initial convolution facilitates a two-fold
down-sampling, which is followed by channel expansion. Subsequently, attention oper-
ations are executed, culminating in the reconstruction process. The final output is then
restored to the original dimensions through transpose convolution. Similarly, within the
intermediate-order reconstruction block, the initial convolution enacts a four-fold down-
sampling, and the high-order reconstruction block commences with an initial convolution
inducing an eight-fold down-sampling, which is again followed by transpose convolution
for dimension restoration after the reconstruction phase.

f ea = Upi(FeaRecon(Downi( f ea))), i = 2, 4, 8 (6)

Owing to the necessity of addressing the specificities of different orders, attention op-
erations in each reconstruction block comprise two integral components: a high-frequency
feature extractor (HFE) and a low-frequency feature extractor (LFE). Upon entering the
reconstruction block, features that have undergone down-sampling and channel dimension
augmentation are partitioned into distinct channel subsets. This process is intrinsically
guided by the unique characteristics of each channel, emphasizing an intelligent and auto-
mated extraction process rather than manual segmentation. One subset of channel features
is routed to the high-frequency feature extractor, while the other subset enters the low-
frequency feature extractor. Following attention operations and channel-wise integration,
feature optimization is achieved via a deep separable convolution layer. Subsequently, the
reconstructed outcome is refined through normalization layers and Multi-Layer Perceptron
(MLP) operations.

FeaRecon( f ea) = {(HFE, LFE), LN, MLP} (7)

Considering the intrinsic characteristics of high-frequency information within images,
the high-frequency feature extractor is composed of both max-pooling and parallel con-
volution layers. Similarly, for the low-frequency information that pertains to regions with
gradual variations in grayscale values across a broader range, the low-frequency feature
extractor integrates self-attention mechanisms. Recognizing that features from different
orders contain varying degrees of high and low-frequency content, we have devised a dy-
namic channel segmentation strategy, channeling subsets of features into distinct-frequency
feature extractors.

In the context of the low-order feature reconstruction block, where high-frequency
information is prominent, the channel count directed to the high-frequency feature extractor
surpasses that allocated to the low-frequency counterpart. Conversely, in the high-order
feature reconstruction block, the number of channels directed to the high-frequency feature
extractor is lower compared to the channels routed to the low-frequency feature extractor.
In the intermediate-order feature reconstruction block, the allocation is balanced between
the two.

In essence, this modular approach provides adaptability across diverse reconstruc-
tion stages, integrating high and low-frequency information effectively. The tailored
architecture and distinct sampling strategies for varying orders contribute to a comprehen-
sive hierarchical feature extraction, ultimately enhancing the quality and accuracy of the
reconstruction process.

3.4. Multi-Order Fusion Transformer (MOFT)

In the context of multi-level MRI image reconstruction, a novel approach entails the
aggregation of reconstruction features from distinct stages, namely L1, M1, H, M2, and L2.
Firstly, these features are then fed into a Multi-Order Fusion Transformer (MOFT). Notably,
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the features originating from the low-order reconstructions, L1 and L2, undergo channel
dimension reduction via 1× 1 convolutions. Subsequently, they are down-sampled through
average pooling, generating constituents for the attention mechanism’s V1 component.
Correspondingly, the intermediate-order reconstruction features M1 and M2 also undergo
1 × 1 convolution-based channel compression, which is followed by down-sampling
through average pooling, serving as sources for the attention mechanism’s Q1 component.
The high-order reconstruction feature H, on the other hand, is directly down-sampled
through average pooling, contributing to the attention mechanism’s K1 component. Upon
completion of the attention mechanism, the resultant attention outcomes are up-sampled
and added to the concatenated features L1, M1, H, M2, and L2, which have undergone
channel reduction via 1 × 1 convolutions.

Q1 = WQ(cat(M1, M2))
K1 = WK(H)
V1 = WV(cat(L1, L2))

(8)

Upon completion of the attention mechanism, the resultant attention outcomes are
up-sampled and added to the concatenated features L1, M1, H, M2, and L2, which have
undergone channel reduction via 1 × 1 convolutions. This summation is then processed
through normalization and MLP, marking the first phase of fusion.

x = MCA(Q1, K1, V1) + conv(L1, M1, H, M2, L2) (9)

x = MLP(LN(x)) + x (10)

where MCA is multi-head cross-attention.
Subsequently, this outcome undergoes further down-sampling to serve as the founda-

tion for generating the V2 component in the second fusion step. The Q2 and K2 components
are generated from the features L1, M1, H, M2, and L2, with L1, M1, and H contributing to
Q2 and H, M2, and L2 contributing to K2.

Q2 = WQ(cat(L1, M1, H))
K2 = WK(cat(H, M2, L2))
V2 = WV(x)

(11)

Following the attention mechanism in the second fusion step, the resultant attention
outcomes are up-sampled and combined with the output of the initial fusion stage. Sub-
sequent processing includes normalization and MLP operations in a sequential manner,
ultimately yielding the fused output as the final reconstructed result.

x = MCA(Q2, K2, V2) + x (12)

Y = MLP(LN(x)) + x (13)

The advantages of this fusion approach stem from its adaptive amalgamation of
reconstruction outcomes across different orders, which is enacted through a two-fold fu-
sion strategy. The two-phase fusion framework introduces a deliberative and graduated
approach to feature fusion. This method not only capitalizes on the diversity of reconstruc-
tion features derived from disparate stages but also affords a flexible mechanism for the
sequential selection of fusion tiers.

3.5. Data Consistency Layers (DC Layers)

In the context of MRI image reconstruction, the Data Consistency (DC) layer serves as
a pivotal technique employed to ensure alignment between the reconstructed image and
observed data. This layer is integrated into both our reconstruction modules and fusion
modules within the architecture. Leveraging the Fourier Transform (F) and its inverse
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(F−1), the DC layer operates in the frequency domain. More precisely, the computation of
the DC layer is defined as follows:

xDC = F−1(k0 + (1−M)⊗ F(x)) (14)

where k0 represents the acquired under-sampled data, and M represents the under-sampling
pattern applied during the data acquisition process.

By incorporating the DC layer, our algorithm can systematically compare the recon-
structed image against the observed data within each reconstruction module. Based on this
comparison, adjustments are made to the reconstructed image, thereby enhancing both its
accuracy and consistency.

4. Results

In this section, we present the experimental details, reconstruction results and metric
comparisons across two datasets as well as four ablation studies on our architecture.

4.1. Details of the Experiments
4.1.1. Architecture Specification

In Figure 1, some parameters of the architecture were not explicitly provided, and we
clarified them in this section. Firstly, in Figure 1a, we set the number of reconstruction blocks
n to 6, and this choice was explained in the subsequent ablation study. In Figure 1b, for
different stages of the reconstruction process, the channel expansion during the initial down-
sampling and the subsequent allocation of channels to different frequency feature extractors
varied. In the Low-Order Feature Reconstruction Block (L-Recon), we had 24 channels
for channel expansion. Due to the higher content of high-frequency information in low-
order features, 16 channels were allocated to the low-frequency feature extractor, while
eight channels were allocated to the high-frequency feature extractor. In the Middle-Order
Feature Reconstruction Block (M-Recon), we used 48 channels for channel expansion since
the high and low-frequency information content was balanced at this stage. Therefore,
both the low-frequency and high-frequency feature extractors had 24 channels each. In
the High-Order Feature Reconstruction Block (H-Recon), we employed 96 channels for
channel expansion. Because low-order features contained more low-frequency information,
64 channels were allocated to the low-frequency feature extractor, while 32 channels were
allocated to the high-frequency feature extractor. Based on the above content, its summary
is shown in Table 1.

4.1.2. Datasets

To evaluate the performance of the proposed method, we tested it on two publicly
available datasets (FastMRI knee dataset [32,33] and Calgary-Campinas brain dataset [34]).

The FastMRI dataset, a product of a collaboration between the Department of Radi-
ology at the NYU School of Medicine, NYU Langone Health, and Facebook AI Research
(FAIR), was created with the goal of advancing imaging technologies in clinical practice
to enhance human health. It aimed to accelerate magnetic resonance imaging (MRI) scans
by up to ten-fold using artificial intelligence. This dataset included fully sampled knee
joint MRI data acquired on 3 and 1.5 Tesla magnets. The training set of the FastMRI knee
dataset comprised 973 volumes (34,742 slices), with a validation set containing 199 volumes
(7135 slices), all with an acquisition matrix size of 320 × 320.

The Calgary-Campinas public brain magnetic resonance (MR) images dataset resulted
from a collaborative effort between the Vascular Imaging Lab at the University of Calgary
and the Medical Image Computing Lab at the University of Campinas (UNICAMP). It
provided 3D brain data, specifically 167 three-dimensional (3D), T1-weighted, gradient-
recalled echo, 1 mm isotropic sagittal acquisitions obtained from a clinical MR scanner
(Discovery MR750; General Electric Healthcare, Waukesha, WI, USA). The training set
of the Calgary-Campinas clinical brain dataset comprised 25 volumes (4524 slices), and
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the validation set consisted of 10 volumes (1700 slices) with an acquisition matrix size of
256 × 256.
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Figure 1. The overall architecture. (a) Progressive Feature Reconstruction and Fusion Network
consists of two main components: the Progressive Feature Reconstruction Module (L-Recon/M-
Recon/H-Recon) and the Fusion Module (MOFT). The Progressive Feature Reconstruction Module
generates five sets of different reconstruction outputs in sequence, which are then fed into the
Fusion Module for adaptive fusion to produce high-quality MRI images. (b) Architecture of the
Reconstruction Module (L-Recon/M-Recon/H-Recon). Depending on the reconstruction of features at
different orders, initial down-sampling is performed to varying dimensions, dynamically distributing
different channel subsets to feature extractors of distinct frequencies to achieve feature extraction and
reconstruction (“↓” represents downsampling and “↑” represents upsampling). (c) Architecture of the
Fusion Module (MOFT). The reconstruction outputs from the Reconstruction Module are fused using
a designed two-stage fusion framework, emphasizing and coordinating the salient characteristics of
each reconstruction stage, ultimately achieving collaborative fusion of image features.

Table 1. Channel expansion and allocation in different reconstruction stages during initial down-
sampling process.

L-Recon M-Recon H-Recon

Total number of channels (c) 24 48 96
High-freq components (c1) 16 24 32
Low-freq components (c2) 8 24 64

We employed under-sampled k-space data as the input to our algorithm. Given
that k-space data are represented in a complex form, we handled the real and imaginary
components as distinct channels within our model.

4.1.3. Details of the Training

In our training setup, we implemented acceleration factors of 8× and 4× along the
phase encoding direction in k-space. We retained 4% and 8% of the central lines while
randomly sampling the peripheral region of k-space for under-sampling. The under-
sampling process was directly applied to the raw k-space data, which was followed by
the application of the inverse Fourier transform to convert the k-space signals into the
image domain.
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For optimization, we employed the Adam optimizer with default settings of 0.9 and
0.999. The initial learning rate was set to 0.0004, and the total number of training epochs
was 50. To ensure training stability, a learning rate decay strategy was utilized, reducing the
learning rate by a factor of 0.9 every 5 epochs. Depending on the specific dataset, various
batch sizes were employed with a standard choice being 8. During training, the L1 loss
function was employed, providing robustness to outliers. The experiments were conducted
on a computational cluster featuring four NVIDIA Tesla V100 GPUs.

4.1.4. Comparative Algorithms

We conducted a comprehensive comparative analysis involving eight advanced deep
learning algorithms. These algorithms included UNet (2017) [35] based on convolutional
neural networks, KIKI-Net (2018) [36], which employed cross-domain reconstruction strate-
gies, PD-Net (2018) [11], the Learned Primal-Dual algorithm for tomographic reconstruction,
the state-of-the-art iterative reconstruction method Cascade-net (2017) [37], CRNN-MRI
(2018) [18], CSDL-Net (2022) [20], and Transformer-based models like DuDReTLU-net
(2023) [38] and KTMR (2023) [31]. Notably, DuDReTLU-net was purposefully designed
to address dynamic MRI reconstruction challenges, incorporating convolutional modules
tailored to our specific reconstruction task. All code implementations for the compared
methods were either obtained from the authors’ websites or meticulously recreated in
adherence to the original papers. This algorithm was applicable to multi-channel input
MRI reconstruction, including 3D reconstruction, dynamic reconstruction, and more. As a
comparative algorithm for multi-channel input, this algorithm only required a change in
input dimensions to adapt. To achieve architectural versatility, the final fusion module was
switched to a refinement module. The refinement module was composed of convolutional
layers and activation functions.

4.1.5. Evaluation Metrics

In the process of comparison, we assessed the performance using three key metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized
Mean Square Error (NMSE). These metrics provide a comprehensive evaluation of the
performance of our method and its competitors in the comparison process.

4.2. MRI Reconstruction Based on Two Datasets
4.2.1. FastMRI Knee MRI Reconstruction

During the reconstruction process of the FastMRI knee dataset, we employed the
official data preprocessing pipeline for data preparation and conducted MRI reconstruction
using acceleration factors of 4× and 8×. Subsequently, we conducted a comprehensive
comparative analysis with eight advanced algorithms. In the comparative results, our
approach outperformed these algorithms, exhibiting superior metrics such as higher PSNR
and SSIM values as well as lower NMSE values, which are elaborated in Table 2.

Table 2. Quantitative performance of testing methods on FastMRI dataset.

4× 8×
Algorithm PSNR SSIM NMSE PSNR SSIM NMSE

Unet 31.91 0.800 0.0347 29.73 0.742 0.0502
KIKI-Net 31.89 0.796 0.0348 29.27 0.722 0.0542

Cascade-net 31.97 0.801 0.0336 29.98 0.744 0.0480
CRNN-MRI 32.27 0.805 0.0328 29.86 0.743 0.0492

PD-Net 32.15 0.804 0.0331 30.18 0.745 0.0467
CSDL-Net 32.29 0.806 0.0327 30.40 0.753 0.0448

DuDReTLU-net 31.97 0.803 0.0337 29.97 0.744 0.0480
KTMR 32.13 0.804 0.0331 30.25 0.750 0.0465
Ours 32.60 0.818 0.0313 31.02 0.771 0.0413
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When analyzing the quantitative performance of various algorithms on the FastMRI
dataset, several noteworthy observations have emerged. The PD-Net and CSDL-Net algo-
rithms exhibited exceptional performance at the 4× subsampling rate, boasting impressive
PSNR values of 32.15 and 32.29, high SSIM scores of 0.804 and 0.806, and low NMSE values
of 0.0331 and 0.0327, respectively. Notably, our proposed algorithm, labeled as “Ours”,
shines across both subsampling rates. It excels, particularly at the 8× subsampling rate,
achieving the highest PSNR (31.02) and SSIM (0.771) among all algorithms, coupled with a
commendably low NMSE (0.0413), underscoring its excellence in high-resolution image
reconstruction. Meanwhile, CRNN-MRI performs well but falls slightly short in PSNR and
SSIM compared to CSDL-Net and “Ours” with slightly higher NMSE values. KTMR demon-
strates competitive performance at the 4× subsampling rate, albeit showing a marginal
decrease at the 8× rate, with relatively elevated NMSE values at both subsampling rates,
indicating potential for accuracy enhancement.

To visually illustrate the effectiveness of our approach, we present comparison results
for 4× and 8× acceleration rates in Figures 2 and 3. These figures clearly demonstrate
that our framework excels in preserving intricate structures, creating more natural and
intricate texture features, and producing clearer and more realistic reconstructed images
compared to other methods. Furthermore, our method excels in achieving high-fidelity
reconstructions even when dealing with highly under-sampled measurements. Figures 2
and 3 also display error maps corresponding to various comparative methods, highlighting
that our approach yields fewer errors at different under-sampling rates.
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Figure 2. The reconstruction results and error maps are compared among 8 algorithms under 4×
acceleration on the FastMRI dataset.
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4.2.2. Calgary-Campinas Brain MRI Reconstruction

The Calgary-Campinas dataset is a publicly available raw dataset of brain MRI. It
differs from the FastMRI dataset in that it contains a smaller number of data samples. The
purpose of using the Calgary-Campinas dataset was to validate the reconstruction capability
of models on different datasets and assess their fitting ability with fewer data samples. To
ensure consistency and reliability in the comparison results, we employed the same training
methodology, metric calculation, and error comparison as in the FastMRI dataset. During
the training process, we applied the same data preprocessing and model training parameter
settings as in the FastMRI dataset. By using the Calgary-Campinas dataset for validation,
we were able to comprehensively evaluate and compare the performance of our algorithm
on different datasets and verify its generalization ability with limited data samples.

As shown in Table 3, our proposed algorithm stands out as a frontrunner at both
4× and 8× acceleration rates. It consistently achieves the highest PSNR, SSIM, and the
lowest NMSE values, demonstrating remarkable image quality and accuracy. CRNN-MRI
also impresses, displaying competitive PSNR and SSIM values at both acceleration rates
along with relatively low NMSE values, signifying its competence in preserving image
fidelity and structural features. Cascade-net and CSDL-Net perform exceptionally well at
the 4× acceleration rate, boasting high PSNR and SSIM values, although their performance
diminishes slightly at the 8× rate. Nevertheless, they maintain relatively low NMSE values,
suggesting robust accuracy. Unet, while excelling at the 8× rate, exhibits a minor decrease
in PSNR and SSIM at the 4× rate, coupled with a slightly higher NMSE, indicating an
improvement in performance under higher acceleration conditions.

Table 3. Quantitative performance of testing methods on Calgary-Campinas dataset.

4× 8×

Algorithm PSNR SSIM NMSE PSNR SSIM NMSE

Unet 34.76 0.925 0.0142 31.90 0.876 0.0267
KIKI-Net 35.84 0.934 0.0129 31.69 0.869 0.0283

Cascade-net 36.23 0.939 0.0105 31.86 0.875 0.0265
CRNN-MRI 36.87 0.945 0.0090 32.55 0.881 0.0234

PD-Net 36.28 0.939 0.0105 32.03 0.870 0.0262
CSDL-Net 36.49 0.940 0.0098 32.65 0.883 0.0229

DuDReTLU-net 34.74 0.923 0.0144 31.54 0.867 0.0292
KTMR 35.96 0.936 0.0108 31.93 0.867 0.0268
Ours 37.68 0.954 0.0077 33.44 0.901 0.0195

As shown in Figures 4 and 5, both in the error maps and the reconstructed images,
our algorithm demonstrates smaller errors and more accurate texture structures, which is
similar to the results observed in the FastMRI dataset.
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Figure 4. The reconstruction results and error maps are compared among 8 algorithms under 4×
acceleration on the Calgary-Campinas dataset.



Electronics 2023, 12, 4742 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

in PSNR and SSIM at the 4× rate, coupled with a slightly higher NMSE, indicating an 
improvement in performance under higher acceleration conditions. 

Table 3. Quantitative performance of testing methods on Calgary-Campinas dataset. 

 4× 8× 
Algorithm PSNR SSIM NMSE PSNR SSIM NMSE 

Unet 34.76 0.925 0.0142 31.90 0.876 0.0267 
KIKI-Net 35.84 0.934 0.0129 31.69 0.869 0.0283 

Cascade-net 36.23 0.939 0.0105 31.86 0.875 0.0265 
CRNN-MRI 36.87 0.945 0.0090 32.55 0.881 0.0234 

PD-Net 36.28 0.939 0.0105 32.03 0.870 0.0262 
CSDL-Net 36.49 0.940 0.0098 32.65 0.883 0.0229 

DuDReTLU-net 34.74 0.923 0.0144 31.54 0.867 0.0292 
KTMR 35.96 0.936 0.0108 31.93 0.867 0.0268 
Ours 37.68 0.954 0.0077 33.44 0.901 0.0195 

As shown in Figures 4 and 5, both in the error maps and the reconstructed images, 
our algorithm demonstrates smaller errors and more accurate texture structures, which is 
similar to the results observed in the FastMRI dataset. 

 
Figure 4. The reconstruction results and error maps are compared among 8 algorithms under 4× 
acceleration on the Calgary-Campinas dataset. 

 
Figure 5. The reconstruction results and error maps are compared among 8 algorithms under 8× 
acceleration on the Calgary-Campinas dataset. 

Unet KIKI-Net PD-NetCRNN-MRI TargetCascade-net CSDL-Net KTMRDuDReTLU-net OursZero-full

Im
ag

e
Er

ro
r

Im
ag

e
Er

ro
r

1

5

10
(10− 1)

Unet KIKI-Net PD-NetCRNN-MRI TargetCascade-net CSDL-Net KTMRDuDReTLU-net OursZero-full

Im
ag

e
Er

ro
r

Im
ag

e
Er

ro
r

1

5

10
(10− 1)

Figure 5. The reconstruction results and error maps are compared among 8 algorithms under 8×
acceleration on the Calgary-Campinas dataset.

4.3. Ablation Studies on Model Components

To mitigate potential experimental variability, we conducted our MRI reconstruction
ablation studies at a 4× acceleration factor on the FastMRI dataset, which was primarily
due to its distinction of containing the largest number of samples in both the training and
validation sets.

4.3.1. Effectiveness of MOFT

To affirm the effectiveness of the MOFT module, we conducted an ablation study.
In this investigation, we replaced MOFT with a Refinement Module (RM) as a substitute
for MOFT’s fusion effect, and we also compared the results with concatenation + 1 × 1
convolution as used in previous algorithms. Table 4 showcases the results with our MOFT
achieving the superior fusion results.

Table 4. Performance analysis of MOFT module.

PSNR SSIM NMSE

Cat + 1 × 1 32.40 0.809 0.0328
Refine Module 32.52 0.815 0.0319

MOFT 32.60 0.818 0.0313

4.3.2. Progressive Feature Reconstruction

We introduced a novel strategy termed “Progressive Feature Reconstruction.” It was
designed to address the prominent issue in current deep learning methods, particularly
when dealing with high acceleration rates, which is the underutilization of varying fre-
quency information across different feature hierarchies. To comprehensively validate the
effectiveness of the Progressive Feature Reconstruction Module, we conducted this ex-
periment. The experiment involves sequentially removing the middle and high-order
reconstruction blocks in the Progressive Feature Reconstruction Module to showcase the
advantages of progressive reconstruction. As our MOFT is designed for fusion across three-
order features, it is not applicable for fusion after removing certain-order reconstruction
blocks. Therefore, in this ablation study, we replaced MOFT in the network architecture
with the Refinement Module (RM) and compared the output results after inputting the
multi-order feature reconstructions obtained by concatenation. Table 5 presents the quality
evaluation results, demonstrating that employing features from all hierarchy levels for
progressive feature reconstruction yielded optimal results.
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Table 5. Ablation study on progressive feature reconstruction assessment (“
√

” represents the block
being retained in ablation studies, while “×” represents the block being removed in ablation studies).

L-Recon M-Recon H-Recon PSNR SSIM NMSE
√

× × 32.10 0.808 0.0330√ √
× 32.51 0.816 0.0318√

×
√

32.46 0.815 0.0320√ √ √
32.60 0.818 0.0313

4.3.3. Quantity of L-Recon (M-Recon/H-Recon)

To ensure our proposed architecture showcases optimal performance, we conducted an
ablation study by varying the number of L-Recon (M-Recon/H-Recon). We experimented
with n values ranging from 1 to 8, resulting in diverse experimental outcomes. The results
revealed that the optimal performance was achieved when n was set to 6 (as shown in
Figure 6). Consequently, we set n to 6 for our experiments.
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4.3.4. Channel Allocation Strategies for Frequency-Specific Feature Extraction

In this ablation study, we devised three distinct allocation strategies. The first strategy
entailed a dynamic optimization of channel allocation between high and low-frequency
components across various reconstruction modules. Specifically, in the lower-order re-
construction modules, channels allocated for high-frequency components were expanded,
while those designated for low-frequency components were reduced. This pattern was
reversed in the higher-order reconstruction modules. As shown in Figure 7, this design
comprehensively captured various frequency components within the images, leading to
outstanding reconstruction results.
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The second strategy focused on swapping the channel counts allocated to high-
frequency and low-frequency components between different reconstruction modules, serv-
ing as a comprehensive validation of the correctness of the first strategy. However, this
strategy produced the least favorable reconstruction results among the three methods.

The third strategy aimed to achieve a balance between high-frequency and low-
frequency components across different reconstruction modules. Its results, while not
as favorable as those of the first strategy, further underscored the effectiveness of our
dynamically designed approach.

5. Discussion

Regarding the future of MRI reconstruction, we envision significant advancements in
enhancing both temporal and spatial resolution. This will enable a clearer visualization
of biological tissues and dynamic processes. Our next steps involve the development of
personalized reconstruction methods tailored to individual physiological and pathological
characteristics, aiming for more precise and personalized medical imaging applications.
Additionally, we plan to integrate different modalities of MR images, including structural
and functional images, to offer a more comprehensive understanding of disease information.
The potential of multimodal fusion is substantial, providing clinicians with a more thorough
assessment of a patient’s health.

In our paper, we systematically compared various methods using a standardized
evaluation approach sourced from the official websites of the public datasets we utilized.
The evaluation metrics, including PSNR, SSIM, and NMSE, were selected to rigorously
assess the reconstructed images against ground truth images. The implementation was
consistent across evaluations using PyCharm (PyTorch 1.11.0).

Furthermore, our method extends beyond MRI reconstruction, demonstrating appli-
cability to tasks such as reconstructing spectroscopic images and addressing real-world
challenges like image denoising, dehazing, and deraining. The versatility of our frame-
work allows seamless integration into a unified application, promoting convenient and
widespread usage across different domains.

6. Conclusions

In summary, our research effectively addresses the persistent challenges encountered
in magnetic resonance imaging (MRI), such as prolonged acquisition times and susceptibil-
ity to motion artifacts. We have introduced an innovative deep learning approach tailored
to the restoration of high-fidelity MRI images from under-sampled k-space data, achieving
remarkable results.

Our cascaded reconstruction strategy, progressively reinstating hierarchical features
and employing a novel fusion algorithm, has demonstrated exceptional performance. The
dynamic optimization of channel allocation between high-frequency and low-frequency
components across diverse reconstruction modules has emerged as the most effective
approach, comprehensively capturing a wide spectrum of frequency components and
yielding outstanding reconstruction results.

Significantly, our algorithm surpasses state-of-the-art methods, delivering superior
PSNR values and substantial SSIM scores. Its application to both FastMRI and Calgary-
Campinas datasets underscores its versatility and efficacy. Importantly, as shown in
Figure 8, our method achieves these outstanding results with a relatively lower parameter
count, highlighting its efficiency. Comparative analyses against similar approaches furnish
robust evidence of our method’s superior performance.
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