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Abstract: Feature selection plays a crucial role in establishing an effective speech emotion recognition
system. To improve recognition accuracy, people always extract as many features as possible
from speech signals. However, this may reduce efficiency. We propose a hybrid filter–wrapper
feature selection based on a genetic algorithm specifically designed for high-dimensional (HGA)
speech emotion recognition. The algorithm first utilizes Fisher Score and information gain to
comprehensively rank acoustic features, and then these features are assigned probabilities for
inclusion in subsequent operations according to their ranking. HGA improves population diversity
and local search ability by modifying the initial population generation method of genetic algorithm
(GA) and introducing adaptive crossover and a new mutation strategy. The proposed algorithm
clearly reduces the number of selected features in four common English speech emotion datasets. It
is confirmed by K-nearest neighbor and random forest classifiers that it is superior to state-of-the-art
algorithms in accuracy, precision, recall, and F1-Score.

Keywords: feature selection; speech emotion recognition; genetic algorithm; high-dimensional

1. Introduction

Human communication relies heavily on speech signals [1]. Therefore, speech emotion
recognition (SER) poses a compelling challenge in human–computer interaction due to
its multifaceted nature, particularly when the recognition is merely based on speech
signals [2,3]. Speech carries linguistic information related to emotions, as well as implicit
knowledge that can be extracted through speech processing methods [1,4].

SER primarily analyzes audio features without linguistic information to judge a
person’s emotional state [5,6]. In acoustics, speech processing techniques provide valuable
information, which mainly comes from prosodic and spectral features.

Feature fusion improves the classification accuracy of SER systems; nevertheless, it
increases the computational cost of classifiers. The reason is that certain features have a
significant impact, while others may be completely useless for emotion recognition. Feature
selection methods simplify the task of selecting the most relevant features for classification
algorithms [7,8]. These methods mainly eliminate the loss and overfitting problems caused
by the curse of dimensionality, and improve the model’s generalization. Feature selection
is the most effective way to enhance the accuracy of SER systems, and it decreases their
computation time and memory.

Feature selection reduces the number of features by removing irrelevant and redundant
ones [9,10]. However, it is computationally difficult and NP-hard to search the entire feature
space. Metaheuristic algorithms provide a robust and flexible approach to solving complex
optimization problems [11–13]. Due to their global search ability, adaptability, and potential
for parallelization, they are a powerful tool for finding near-optimal solutions in feature
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selection [14,15]. Genetic algorithm (GA) is a popular optimization technique inspired by
the processes of natural selection and genetics, and it finds available solutions to complex
issues by mimicking biological evolution [16,17]. A chromosome represents a potential
solution of an optimization problem, and it is encoded as a binary string. Feature selection
is a binary optimization, so GA is specifically suited for this task.

In GA, crossover and mutation play pivotal roles, as they determine how the next
generation is produced. Researchers create various crossover and mutation operators that
are designed to work with specific chromosome representations for optimization problems.
Guan et al. introduced the crossover elitist preservation mechanism in which elite solutions
are preserved during crossover to promote the retention of valuable genetic material [18].
Faraji and Naji utilized the newly developed crossover architecture that enables parallel
crossover operations across multiple individuals within the population [19]. Kaya explained
the significant role of crossover operators in GAs and emphasized their importance in
facilitating the exploration and exploitation of solution space [20]. Zhang et al. introduced
a new crossover mechanism tailored specifically for the Steiner tree problem [21]. This
mechanism exploits the problem’s characteristics and improves the convergence speed
and solution quality of GA. Duan and Zhang proposed a precise mutation strategy that is
integrated into GA and particle swarm optimization (PSO) [22]. This mutation enhances the
exploration and exploitation of computationally expensive scenarios. Wang et al. divided
the population into two groups, and each group was then subjected to a mutation operator
with unique properties [23]. They employed the advantages of these mutation operators to
enhance the search process’s effectiveness and efficiency.

Based on the above analysis, we observe that existing GA algorithms primarily
improve their performance through crossover and mutation. However, when dealing with
high-dimensional features, they become time-consuming and ineffective. Consequently, we
utilize a hybrid filter–wrapper model to address these issues, and the main contributions
of this paper are summarized as follows:

1. We propose a novel feature selection based on filter and wrapper methods.
2. We bring an improved GA algorithm with adaptive crossover and novel initialization.
3. We validate the proposed algorithm on four English emotion speech datasets.

The structure of this paper is organized as follows. Section 2 introduces the related
works of SER. Section 3 describes the proposed algorithm. Section 4 includes experimental
results and discussions, and Section 5 provides the conclusions.

2. Related Works

Human speech often blends a person’s emotions with sentence structure and meaning.
SER categorizes speakers’ emotions by studying their recorded speech. In this section, we
will provide an overview of the primary research in the field of SER.

Sun et al. proposed a SER model based on GA [24]. To fully express emotional
information, acoustic features are extracted from speech signals. The Fisher Score selects
high-ranking features and removes unnecessary information. In the feature fusion stage,
GA adaptively searches for the best feature weights. Finally, decision tree (DT) and fused
features establish an SER model. Mao et al. proposed a hierarchical SER method based
on improved support vector machine (SVM) and DT [25]. DT is established according
to the confusion among emotions. In addition, a neural network filters the original
features. GA is utilized to select the remaining features for each classification in DT
while synchronously optimizing SVM’s parameters. Kanwal and Asghar proposed a
feature optimization method using cluster-based GA for SER [26]. Instead of randomly
selecting a new generation, clustering is utilized during fitness evaluation to detect outliers
and exclude them from the next generation. Two mel-frequency cepstral coefficients
(MFCCs) improve the performance of SER systems [27]. Several effective feature subsets are
determined through a fast correlation-based filter feature selection. Finally, a fuzzy neural
network (FAMNN) recognizes emotions from speech. At the same time, GA determines
the optimal values of the selection and alert parameters, and the learning rate of FAMNN.
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Shahin et al. proposed an automatic SER method based on gray wolf optimizer (GWO) [28].
Speech signal data are processed by feature extraction and then passed to GWO to remove
irrelevant and redundant features. Emotion recognition systems that are both accurate and
robust can be achieved by employing correlated and meaningful acoustic features. This is
because GWO effectively explores feature space and finds the optimal feature set with rich
sentiment classification patterns.

Huang and Epps investigated the effectiveness of partitioning speech signals into
small segments and extracting acoustic features from each segment [29]. These features
acquire specific emotional cues present in different parts of speech and provide a more
detailed representation of emotional dynamics in continuous speech. Özseven proposed
a novel feature selection method that identifies the most informative and discriminative
features from speech signals [30]. The novel feature selection method enhances the accuracy
and efficiency of SER systems. Dey et al. combined golden ratio optimization (GRO) and
equilibrium optimization (EO) to design a new hybrid metaheuristic feature selection
algorithm for SER in audio signals [31]. They use the sequential single point flip (SOPF)
technique to search for the nearest neighbors of the final candidate solutions. To address the
issue of high-dimensional emotional features in SER, Ding et al. utilized the characteristics
of biogeography-based optimization algorithm (BBO) and SVM to obtain features with rich
emotional information [32].

Drawing from previous research, we employ a metaheuristic algorithm to choose
relevant features in speech emotion recognition. The algorithm aims to enhance classification
accuracy by reducing the number of features. The distinct advantages and robust search
ability of GA (as explained in Section 1) drive our suggestion to adopt it as a feature
selection method in SER.

3. Materials and Methods

The proposed system involves emotional databases, feature extraction, and feature
selection.

3.1. Emotional Databases

This study employs eNTERFACE05, the Ryerson audio-visual database of emotional
speech and song (RAVDESS), the Surrey audio-visual expressed emotion (SAVEE) database,
and the Toronto emotional speech set (TESS) to implement emotion recognition.
eNTERFACE05 offers multimodal emotional speech and facial expressions, and RAVDESS
provides a diverse set of acted emotions in speech and song. SAVEE contains English
speakers expressing various emotions, while TESS focuses on North American English
speakers’ emotional speech. These databases can complete comprehensive assessments
across emotions, patterns, and cultural backgrounds.

1. eNTERFACE05

eNTERFACE05 contains audio recordings of speakers uttering scripted sentences
or engaging in spontaneous conversations while expressing different emotions. These
emotional states include happiness, sadness, anger, and neutral, among others.

2. RAVDESS

The database consists of 24 skilled actors who deliver statements with the same
words but varying emotions, including anger, fear, calm, happiness, sadness, surprise,
and disgust. There are two different levels of intensity for each emotion, as well as an
additional neutral expression.

3. SAVEE

SAVEE contains recordings of emotional speech from actors portraying anger,
happiness, sadness, fear, disgust, surprise, and neutral expressions. Each emotion is
recorded in different intensity levels. The dataset contains recordings of four male native
English speakers, one of whom is a postgraduate student, while the rest are researchers at
the University of Surrey.
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4. TESS

TESS contains a diverse range of emotional expressions, including but not limited
to emotions like happiness, sadness, anger, fear, disgust, and surprise. Each recording is
labeled with the corresponding emotional category, so it is suitable for supervised machine
learning tasks.

3.2. Feature Extraction

Pre-emphasis, framing, and windowing are fundamental signal processing techniques
commonly used in speech and audio analysis. The Hamming window splits speech signals
into frames of 25 ms with an overlap of 10 ms, and the pre-emphasis filter coefficient is set
to 0.97. These techniques work together to enhance the quality of audio signals and provide
a more suitable representation for subsequent processing steps. Specifically, pre-emphasis
boosts the higher frequencies; framing segments signals for analysis; windowing minimizes
spectral leakage.

In this study, we employ the OpenSmile toolkit to gather acoustic features, which are
part of the standard set used in the computational paralinguistics challenge at INTERSPEECH
2010. A total of 1582 features are extracted from this toolbox, and Table 1 provides further
details.

Table 1. Summary of acoustic features.

Acoustic Features Numbers

Loudness 42
MFCC coefficients 630
Logarithmic power of mel-frequency bands 336
Line spectral pair frequencies 336
Envelope of smoothed fundamental frequency contour 42
Voicing probability of the final fundamental frequency candidate 42
Smoothed fundamental frequency contour 40
Local jitter 38
Differential jitter 38
Local shimmer 38

3.3. Improved Genetic Algorithm for Feature Selection

In the proposed algorithm, as shown in Figure 1, we first rank acoustic features from
Fisher Score and information gain, and then the feature space is divided according to the
ranking. Finally, the genetic algorithm for high dimensionality (HGA) implements feature
selection on classifiers.
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Figure 1. The flowchart of the proposed algorithm.

3.3.1. Filters

1. Fisher Score

Fisher Score, also known as Fisher discriminant analysis or Fisher’s linear discriminant,
is a statistical method in machine learning and pattern recognition. It finds a linear
combination of features in a dataset which maximizes the separation among different classes.

Suppose ni is the number of samples contained in the i-th class, and ur
i and (σr

i )
2 are

the mean and variance of the r-th feature of the i-th class. The Fisher Score of the r-th
feature is calculated as follows:

Fr =
∑C

i=1 ni(ur
i − ur)

∑C
i=1 ni(σ

r
i )

2
(1)

It is important to minimize the variation in a feature when considering data samples
from the same category. On the other hand, we aim to maximize the variation when
comparing a feature across different categories.

2. Information gain

Information gain calculates the reduction in uncertainty or entropy achieved by
considering a particular feature in a dataset. The information entropy of a random variable
X is computed in the following manner:

H(X) = −∑
x

p(x)logp(x) (2)
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where p(x) represents the probability distribution of X. The joint entropy H(X, Y) of two
random variables, X and Y, is defined as follows:

H(X, Y) = −∑
x

∑
y

p(x, y)logp(x, y) (3)

where p(x, y) represents the probability distribution of X and Y. Equation (4) is the
conditional entropy H(X|Y).

H(X|Y) = H(X, Y)− H(Y) (4)

Features with higher information gain are more influential in separating and categorizing
data. Fisher Score and information gain rank features. Subsequently, the TOPSIS (Technique
for Order Preference by Similarity to Ideal Solution) method is used for a comprehensive
evaluation of each feature.

3.3.2. Feature Space Division

According to the filtering ranking of features, the whole feature space is divided into
four parts, as shown in Figure 2.

FS1
(1%)

Feature space

FS2
(10%)

FS3
(40%)

FS4
(Others)

Figure 2. Feature space division.

The top-ranking features (FS1) make up 1% of the space. These features are the most
important, so they have the highest probability of being selected. The probabilities of
features in other spaces gradually decrease, as shown in Equation (5):

r(i) =


0.9 i f (i ∈ FS1)
0.6 i f (i ∈ FS2)
0.1 i f (i ∈ FS3)
0.01 i f (i ∈ FS4)

(5)

3.3.3. Improved Genetic Algorithm

Crossover and mutation play important roles in GA, as they involve mixing and
matching genes to create new generations of potential solutions. They expand the scope
and explore various possibilities for solving a problem. While many studies have been
conducted in this area, it is still a challenge to determine which crossover and mutation
methods to use in a given situation. In this study, our objective is to provide insights into
selecting the appropriate method for emotion recognition problems, and we improve GA
from initialization, crossover, and mutation.

1. Initialization

When randomizing the initial population, features with high importance are more
likely to be selected, while those with a low ranking have a low probability of being chosen.
The initialization of HGA relies on the feature ranking, as depicted in Equation (6).

X j
i =

{
1 i f (r(i) > rand)
0

(6)
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where X j
i represents the position of chromosome i in the j-th dimension.

2. Crossover

Crossover is an evolutionary method that utilizes two or more solutions to generate
a new one. Original solutions are called parents, and new individuals are known as
children. One of the simplest crossover methods is the 1-point crossover. It selects a
cut-off point along the parents’ genetic representation and swaps the segments before and
after this point to produce two children. Each child inherits at least one element from
their parents. Multiple cut-off points can be produced in the same manner. Instead of
choosing cut-off points, it is possible to determine the probability of swapping several of
the parents’ elements.

Individuals in the population are randomly paired, and excellent individuals act
as parents to generate offspring through crossover. An adaptive crossover operator is
utilized in HGA. The features in FS1, FS3, and F4 have a higher/lower probability of being
selected. FS2 is an area that requires exploration; therefore, a multi-point crossover strategy
is adopted to expand search range and increase population diversity. As indicated in line 3
of Algorithm 1, the crossover rate of FS2 decreases with the execution of the algorithm. To
illustrate this concept, let us consider the following example, shown in Figure 3. In FS1 and
FS3, there are no crossover chromosomes in parent1 and parent2. In FS2 and FS4, parents
adopt 2- and 1-point crossovers, respectively.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 ... f51 f52 ... f100

FS1 FS2 FS3 FS4

1 0 1 1 0 0 0 1 0 1 0 0 ... 1 0 ... 0Parent1

0 0 1 0 1 0 0 1 1 1 0 1 ... 0 0 ... 1Parent2

1 0 1 0 0 0 0 1 1 1 0 0 ... 1 0 ... 1Child1

0 0 1 1 1 0 0 1 0 1 0 1 ... 0 0 ... 0Child2

Crossover

Figure 3. The example of adaptive crossover.

3. Mutation

Mutation changes a single individual in a population. It is frequently utilized for
local search or breaking local maxima through further improving a promising solution.
Minor adjustments to candidate solutions are employed to produce individuals that are
slightly different from their parents. The number of mutations is controlled by Equation (5).
Features in FS1, FS3, and FS4 have a large/small probability of being selected, resulting in
small mutation. Mutation occurs at the same rate as the original GA for features in FS2.
Algorithm 2 describes the detailed process of the mutation.
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Algorithm 1: Adaptive crossover

1 dim = length(x1);
2 [,̃ index] = sort(r);
3 x11 = x1(index(1:dim));
4 x21 = x2(index(1:dim));
5 y1 = x11;
6 y2 = x21;
7 y3 = zeros(1,dim);
8 y4 = zeros(1,dim);
9 split1 = round(0.01 × dim);

10 split2 = round(0.1 × dim);
11 split3 = round(0.4 × dim);
12 if rand() > 0.7 then
13 t = randi([1 split1]);
14 y1(1:split1) = [x11(1:t) x21(t + 1:split1)];
15 y2(1:split1) = [x21(1:t) x11(t + 1:split1)];
16 end
17 m = it/MaxIt;
18 mp = round(split2*(1 −m) / 4);
19 t = randi([split1 + 1 split2 − 1],1,mp);
20 [t1,index2] = sort([t split2]);
21 a = x11(split1 + 1:t1(1));
22 b = x21(split1 + 1:t1(1));
23 for i = 2 : length(t1) do
24 starti = t1(i − 1) + 1;
25 endi = t1(i);
26 if mod(i, 1) == 0 then
27 a = [a x21(starti:endi)];
28 b = [b x11(starti:endi)];
29 end
30 else
31 a = [a x11(starti:endi)];
32 b = [b x21(starti:endi)];
33 end
34 end
35 y1(split1 + 1:split2) = a;
36 y2(split1 + 1:split2) = b;
37 if rand() > 0.7 then
38 t = randi([split2 + 1 split3]);
39 y1(split2 + 1:split3) = [x11(split2 + 1:t) x21(t + 1:split3)];
40 y2(split2 + 1:split3) = [x21(split2 + 1:t) x11(t + 1:split3)];
41 end
42 if rand() > 0.7 then
43 t = randi([split3 + 1 dim]);
44 y1(split3 + 1:dim) = [x11(split3 + 1:t) x21(t + 1:dim)];
45 y2(split3 + 1:dim) = [x21(split3 + 1:t) x11(t + 1:dim)];
46 end
47 for i = 1 : dim do
48 y3(i) = y1(index(i));
49 y4(i) = y2(index(i));
50 end
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Algorithm 2: Mutation

1 for j = 1 : dim do
2 if if(r(j) == 0.9) then
3 if rand() < 0.3 × mu then
4 x(j) = 1 − x(j);
5 end
6 end
7 if if(r(j) == 0.6) then
8 if rand() < mu then
9 x(j) = 1 − x(j);

10 end
11 end
12 if if(r(j) == 0.1) then
13 if rand() < 0.3 × mu then
14 x(j) = 1 − x(j);
15 end
16 end
17 if if(r(j) == 0.01) then
18 if rand() < 0.01 × mu then
19 x(j) = 1 − x(j);
20 end
21 end
22 end

4. Experimental Results and Analysis

To validate the superiority of the proposed HGA, the classification performance is
compared with GA [24], GWO [28], and JAYA [33]. JAYA first uses ReliefF, correlation,
ANOVA (Analysis of Variance), information gain, and information gain rate to sort features,
and then employs TOPSIS to extract the top 10% of features to implement feature selection.
Table 2 offers the more details regarding the algorithms.

Table 2. The main parameter settings.

Algorithms Main Parameters

GA beta = 1; pC = 1; mu = 0.02;
GWO a = 2;
JAYA lb = 0; ub = 1; thres = 0.5; top 10% features;
HGA beta = 1; pC = 1; mu = 0.02;

The maximum number of iterations for the algorithms is set to 100, with 20 runs,
and the population size is 20. The Wilcoxon rank sum test and Frideman test are used
to determine if there are any significant differences in the experimental results obtained.
The significant level is selected as 0.05. If the p-value is less than or equal to 0.05, it represents
that an approach significantly outperforms other approaches with 95% confidence.

4.1. Objective Function

In feature selection and SER, classification accuracy is the main indicator for evaluating
algorithms, so it is used as the objective function in the experiments, as shown in Equation (7).
We also compare the algorithms in precision, recall, F1-Score, the number of selected
features, and running time.

accuracy =
TP + TN

TP + TN + FP + FN
(7)
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precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1-Score =
2 ∗ TP

2 ∗ TP + FP + FN
(10)

4.2. Experimental Analysis

In this research, K-nearest neighbor (KNN) and random forest (RF) are utilized to
establish classification models in which the K is set to 5 and RF is constructed by 20 decision
trees, and 10-fold cross validation is adopted to evaluate the performance of the models.

4.2.1. Simulation Results on the KNN Classifier

Table 3 presents recognition accuracy (Accuracy) and the number of selected features
(Length) using the KNN classifier. From recognition accuracy, HGA outperforms GA
in eNTERFACE05, RAVDESS, and TESS, but it is inferior to GA in SAVEE. Through
the Wilcoxon rank sum test, it is found that they have similar experimental statistical
data in eNTERFACE05. The experimental results illustrate that HGA is superior to GA,
and the adaptive crossover and improved mutation help to advance speech emotion
recognition. GWO and JAYA have no similar experimental results with HGA, and they
perform worse than HGA. Although JAYA uses filter methods, it discards low-ranking
features. The experimental results indicate that low-ranking features also play an important
part in recognition, and the strategy of comprehensively considering features proposed in
this paper is effective. The Friedman test reveals that their average ranks are 1.75, 3.25, 3.75,
and 1.25, respectively, with p-values less than 0.05. The Wilcoxon rank sum test and the
Friedman test validate the superiority of HGA.

Table 3. The experimental results of the compared algorithms based on KNN.

Datasets
GA GWO JAYA HGA

Accuracy Length Accuracy Length Accuracy Length Accuracy Length

eNTERFACE05 0.4504 706.9 0.3632 1072.6 0.3674 35.9 0.4634 161.05
RAVDESS 0.4958 815.7 0.3708 1147.2 0.2741 59.5 0.5123 193.5

SAVEE 0.5507 763 0.5058 1115.3 0.4904 56.7 0.5364 181.8
TESS 0.8565 746.7 0.8270 1134.3 0.8002 94.8 0.9748 223.8

>/=/< 1/1/2 0/0/4 0/0/4 3/0/1
Rank 1.75 3.25 3.75 1.25

p-Value 1.69 × 10−2

JAYA only selects features from the top 10%, so it has the minimum number of features.
In contrast, GA and GWO implement selection on all features, and they have the highest
number of features. Although HGA operates on all features, it avoids selecting many
low-ranking features. HGA effectively balances emotional recognition accuracy and the
number of selected features.

Figure 4 displays the precision, recall, and F1-Score of the algorithms. The algorithms
have the best data in TESS. GA, GWO, and HGA have the worst performance in
eNTERFACE05, and JAYA performs the worst in RAVDESS. In SAVEE, GA outperforms
other algorithms, and HGA has obvious advantages in eNTERFACE05, SAVEE, and TESS.
HGA offers flexibility and robustness in SER and decreases feature space.
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Figure 4. The precision, recall, and F1-Score of the algorithms based on KNN.

Table 4 presents the running time of the algorithms. The execution time of feature
selection mainly depends on classifiers. The maximum time complexity of KNN is O(D ∗
N ∗ N), where D represents the number of samples and N is the number of features
used. Since JAYA uses the minimum number of features, it has the highest computational
efficiency. HGA has better efficiency than GA and GWO. TESS contains a large number of
samples, so the algorithms run on it for the longest time.

Table 4. The average running time of the compared algorithms (in seconds) based on KNN.

Datasets GA GWO JAYA HGA

eNTERFACE05 755.2 1622.5 187.6 462.8
RAVDESS 1969.8 5279.1 449.8 1560.4

SAVEE 794.0 2156.9 201.1 1044.3
TESS 5524.9 17391 1269.6 4492.9

Based on the previous discussion, it is evident that HGA presents exceptional performance
in terms of classification accuracy, precision, recall, F1-Score, and the number of selected
features. Therefore, HGA is a highly appropriate choice for speech emotion recognition.

4.2.2. Simulation Results on the RF Classifier

Table 5 displays recognition accuracy and the number of selected features using
the RF classifier. The accuracy achieved with RF surpasses the value obtained by KNN.
The results in Table 5 highlight the superior performance of HGA in eNTERFACE05,
RAVDESS, SAVEE, and TESS, demonstrating its superiority over GA, GWO, and JAYA.
According to the Wilcoxon rank sum test, GA, GWO, JAYA, and HGA excel in three, three,
zero, and four datasets, respectively. GA and GWO have similar statistical results to HGA
in eNTERFACE05, RAVDESS, and SAVEE. JAYA employs the minimum number of features
to complete classification, followed by HGA, GA, and GWO. The results of the Friedman
test indicate that the average ranks of GA, GWO, JAYA, and HGA are two, three, four,
and one, respectively, with a p-value of 7.38 × 10−3. This analysis is further proved by
the data in Table 5, which clearly reveals the superior performance of HGA in speech
emotion recognition.
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Table 5. The experimental results of the compared algorithms based on RF.

Datasets
GA GWO JAYA HGA

Accuracy Length Accuracy Length Accuracy Length Accuracy Length

eNTERFACE05 0.5153 742.75 0.5152 1088.3 0.4579 96.5 0.5172 177.3
RAVDESS 0.5521 785.4 0.5488 1164.6 0.4750 105.5 0.5612 190.7

SAVEE 0.6533 729.3 0.6451 1110.8 0.6314 94.25 0.6575 184
TESS 0.9905 742.8 0.9888 1155.65 0.9589 112.2 0.9931 181.8

>/=/< 0/3/1 0/3/1 0/0/4 4/0/0
Rank 2 3 4 1

p-Value 7.38 × 10−3

Figure 5 describes the precision, recall, and F1-Score of the algorithms. In terms of
these metrics, the algorithms achieve their highest scores in TESS, followed by SAVEE,
RAVDESS, and eNTERFACE05. Notably, HGA excels in RAVDESS and SAVEE, while
GWO outperforms the other algorithms in eNTERFACE05 and TESS. Figure 5 effectively
illustrates that HGA is adept at selecting the most pertinent features from the speech
emotion datasets, and it achieves a harmonious balance between precision and recall.
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Figure 5. The precision, recall, and F1-Score of the algorithms based on RF.

Table 6 depicts the running time of the algorithms. The maximum time complexity
of RF is O(M ∗ (D ∗ N ∗ logD)), where M is the number of decision tress. The execution
time of the algorithms with the RF classifier is significantly longer compared to that with
KNN, primarily due to the higher time complexity of RF. JAYA demonstrates the quickest
execution efficiency, followed by HGA, GA, and GWO. RAVDESS and TESS display longer
running time, while eNTERFACE05 and SAVEE require relatively less time for execution.

Table 6. The average running time of the compared algorithms (in seconds) based on RF.

Datasets GA GWO JAYA HGA

eNTERFACE05 6306.0 6260.3 6290.9 5990.6
RAVDESS 21,050.8 21,124.5 21,175.2 19,343.1

SAVEE 7135.5 7031.1 7117.0 6611.9
TESS 25,160.6 26,345.8 24,241.2 22,994.6

HGA is unequivocally the top-performing method based on the experimental data of
the algorithms using KNN and RF classifiers. The novel hybrid filter–wrapper technique
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employs a few features for classification. The adaptive crossover strategy enhances
population diversity and retains the potential to discover the optimal solution. The empirical
evidence derived from HGA confirms its suitability for emotion recognition.

5. Conclusions

Emotion-related features are always extracted from speech signals. People attempt
to use more features for recognition due to uncertainty about which features are effective
for classification, causing high-dimensional problems. We investigate feature selection
based on filter and wrapper methods. Fisher Score and information gain rank features.
However, unlike traditional filter methods, low-ranking features also enter the wrapper
operation. An improved GA is proposed to effectively search for the optimal solution,
and the performance of the algorithm is tested on four different datasets using KNN
and RF classifiers. HGA is superior to the compared algorithms in terms of accuracy,
precision, recall, and F1-Score. It acquires an accuracy of 0.4634, 0.5123, 0.5364, and 0.9748
on eNTERFACE05, RAVDESS, SAVEE, and TESS based on KNN and an accuracy of 0.5172,
0.5612, 0.6575, and 0.9931 based on RF. The future research work for the proposed algorithm
involves exploring its adaptability to real-world scenarios, enhancing its robustness in
diverse cultural and linguistic contexts, and integrating it into practical applications such
as human–computer interaction, mental health monitoring, and personalized services.
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