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Abstract: Federated learning is a distributed machine learning algorithm that enables collaborative
training among multiple clients without sharing sensitive information. Unlike centralized learning,
it emphasizes the distinctive benefits of safeguarding data privacy. However, two challenging
issues, namely heterogeneity and backdoor attacks, pose severe challenges to standardizing federated
learning algorithms. Data heterogeneity affects model accuracy, target heterogeneity fragments model
applicability, and model heterogeneity compromises model individuality. Backdoor attacks inject
trigger patterns into data to deceive the model during training, thereby undermining the performance
of federated learning. In this work, we propose an advanced federated learning paradigm called
Federated Mutual Distillation Learning (FMDL). FMDL allows clients to collaboratively train a global
model while independently training their private models, subject to server requirements. Continuous
bidirectional knowledge transfer is performed between local models and private models to achieve
model personalization. FMDL utilizes the technique of attention distillation, conducting mutual
distillation during the local update phase and fine-tuning on clean data subsets to effectively erase the
backdoor triggers. Our experiments demonstrate that FMDL benefits clients from different data, tasks,
and models, effectively defends against six types of backdoor attacks, and validates the effectiveness
and efficiency of our proposed approach.

Keywords: federated learning; heterogeneous; backdoor attack; knowledge distillation; attention map

1. Introduction

The rapid development of the big data era has highlighted the significant advantages
of machine learning in numerous domains, giving rise to a plethora of intelligent applica-
tions [1]. However, traditional centralized machine learning suffers from a fatal flaw of
highly centralized data, leading to significant privacy breaches. In real-world applications,
due to factors such as market competition and management strategies [2], participating
users (groups or individuals) are reluctant to share their data due to concerns about privacy
risks, thus leading to the problem of data silos. To address this crucial issue, Federated
Learning (FL) [3] emerges as a highly promising solution. Its main innovation lies in pro-
viding a distributed machine-learning framework with privacy-preserving characteristics,
enabling thousands of participants to collaboratively train a specific machine-learning
model in a distributed manner. As the training data remains stored locally with the partici-
pants throughout the federated learning process, this mechanism allows for the sharing of
training data among participants while ensuring privacy protection for each participant [4].
To this day, the improvement and innovation of federated learning frameworks remain a
research hotspot in the field of machine learning.
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The basic workflow of federated learning is illustrated in Figure 1, which mainly
consists of the following steps: (1) Participants download the initialized global model from
the cloud server, train the model using their local datasets, and generate the latest local
model updates (i.e., model parameters). (2) The cloud server collects the local update
parameters and updates the global model using model averaging algorithms. Despite
making progress in privacy protection, federated learning still faces numerous security
and privacy issues. Among them, the problems of heterogeneity and backdoor attacks are
particularly acute.

Figure 1. Federated Learning Framework.

Federated learning heterogeneity refers to the differences among various participants
in federated learning, which can be summarized into three aspects: data heterogeneity
(DH), objective heterogeneity (OH), and model heterogeneity (MH). Data heterogeneity
refers to the variations in data characteristics, data types, or data scales among different
participants. Each participant may possess data from different domains, such as medical
data, financial data, or image data [5], which could exhibit distinct data distributions,
feature representations, and data labels. Objective heterogeneity refers to the differences
in learning objectives or tasks among different participants. Each participant may have
different learning goals, which could include classification, regression, clustering, or other
tasks. Model heterogeneity refers to the usage of different machine learning models or
model architectures among different participants. Each participant may employ different
types of models, such as neural networks, decision trees, support vector machines, and so
on. Classical federated learning aims to train a universally applicable global model, which
may overfit local data and lose personalized features [6]. Therefore, federated learning
requires the design of suitable protocols and algorithms to handle these differences.

Backdoor attacks are not only easy to execute [7] but also possess strong attack capabili-
ties, making them a subject of significant concern in security research for federated learning.
A backdoor attack refers to an attempt by an attacker to insert malicious backdoors or traps
into a federated learning model. Since federated learning is a distributed machine learning
approach involving multiple participants training the model together without sharing
raw data, the attacker could be one of the participants or someone attempting to infiltrate
the participants. The objective of a backdoor attack is to implant malicious functionality
or behavior into the federated learning model, causing the model to perform normally
under specific trigger conditions but execute malicious operations under specific backdoor
trigger conditions. Examples of triggers include a single pixel [8] or a black-and-white
checkerboard [7]. Attackers can implement backdoor attacks by manipulating training
data, model parameters, or update rules during the local model update process of the
participants. Backdoor attacks pose threats to the security and privacy of federated learn-
ing. Once a backdoor is successfully implanted, attackers can exploit the backdoor trigger
conditions to perform unauthorized operations or obtain sensitive information. To pre-



Electronics 2023, 12, 4838 3 of 14

vent backdoor attacks, a series of security measures need to be implemented in federated
learning, including data privacy protection, participant verification, secure mechanisms for
model aggregation, anomaly detection [9], and robustness enhancements.

In this work, we propose a novel federated learning paradigm called Federated
Mutual Distillation Learning (FMDL). FMDL is a federated learning strategy that addresses
the challenges of federated heterogeneity and backdoor attacks, guided by federated
mutual learning and knowledge distillation [10,11]. FMDL views federated learning as a
transfer learning process between the global model and local models, using deep mutual
learning [12] for localized updates in federated learning. This approach satisfies the
universal standards of global updates while preserving the local, personalized requirements.
Moreover, under the fine guidance of a teacher model, the student model (i.e., the local
model) in FMDL maintains high accuracy even under various backdoor attacks.

We summarize our main contributions as follows:

• We propose the adoption of dual-model updates in local updates of federated learning,
where the meme model is used for knowledge transfer between the global model and
local models, and the personalized model is designed as a private model for client
data and tasks. The two models engage in deep mutual learning to address the three
types of heterogeneity, enabling personalized model requirements.

• We construct a clean teacher model based on knowledge distillation to guide the train-
ing of the student model. The teacher model is fine-tuned on small, clean subsets to
defend against various types of backdoor attacks. This approach significantly reduces
the accuracy of backdoor attacks, approaching random guessing without causing
significant performance degradation, effectively ensuring privacy and security.

• To achieve defensive performance visualization, we utilize attention maps as an
evaluation criterion and define distillation loss based on the attention maps of the
teacher and student models.

• We conduct experiments on multiple benchmark datasets to validate the effectiveness
of the FMDL method in addressing heterogeneity issues and its security against
backdoor attacks.

The remainder of this paper is organized as follows. Section 2 introduces the related
works. Section 3 describes the proposed federated mutual distillation learning method.
Section 4 evaluates and analyses the results of the experiment. Finally, Section 5 concludes
this paper.

2. Related Work
2.1. Federated Learning

Federated Learning coordinates the training of machine learning models across multi-
ple parties while maintaining the privacy of local users. However, it still faces numerous
challenges in practice. Highlighting the importance and challenges of group fairness,
H. Ezzeldin et al. [13] proposed the FairFed fair-aware aggregation algorithm, which allows
the use of debiasing methods across clients and demonstrates advantages in scenarios
with highly heterogeneous client data. Zhang et al. [14] introduced FedALA (Adaptive
Local Aggregation) to improve the generalization ability of the global model by capturing
the information required from client models in personalized federated learning. Simi-
larly, Huang et al. [15] proposed Federated Prototype Learning (FPL), which constructs
cluster prototypes and unbiased prototypes to provide rich domain knowledge and fair
convergence objectives. Simple federated learning often requires a large number of training
iterations to converge and lacks adaptability. To address this issue, Wu et al. [16] designed
an efficient adaptive algorithm called FAFED (Fast Adaptive Federated Learning) based
on momentum-based variance reduction techniques in cross-silo federated learning, sig-
nificantly improving the efficiency of heterogeneous data in language modeling tasks and
image classification tasks.
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2.2. Heterogeneous Federated Learning

The heterogeneity of data in federated learning can be attributed to the generation of
data from various clients with different distributions. Federated learning achieves high
model accuracy when trained on identically distributed data. However, non-IID data can
lead to imbalanced data distributions, introducing bias during model training due to weight
differences during model aggregation. As a result, the performance of federated learning
may significantly decline. To address this, Zhao et al. [17] proposed a data-sharing strategy
that creates shared data subsets to mitigate non-IID data. Wang et al. [18] utilized distillation
to extract shared data, while Chen et al. [19] employed generative adversarial networks to
generate shared data, both achieving promising results. However, implementing shared
data methods can be complex.

Objective heterogeneity in federated learning refers to the differences between the
global model and local model objectives. The central server performs global aggregation to
ensure participants obtain a generalized global model and converge iteratively toward a
universally applicable model. On the other hand, clients train local models using private
data to obtain representative personalized private models. Clients also expect their models
to perform well in the global model after each local model update. However, due to data
heterogeneity, federated aggregation [3] sacrifices some clients’ individualities in favor of
commonalities, thereby excluding these clients from benefiting from federated learning [20].
Liu et al. [21] proposed a federated learning framework where different tasks yield multiple
types of image representations, and useful features from vision and language are merged
to enhance personalized models.

Due to the variations in client hardware capabilities [22], different representations of
local data [12,23], and diverse client task requirements [24], clients often need to individu-
ally design their private models, resulting in model heterogeneity in federated learning.
Khodak et al. [25] proposed the ARUBA theoretical framework, which allows individually
trained models controlled by a central server but lacks a comprehensive implementation
method. Li et al. [26] proposed a decentralized framework that utilizes knowledge distilla-
tion to enable federated learning with independently designed models, but this method
does not support new participants.

2.3. Knowledge Distillation

Knowledge distillation is a model compression technique aimed at transferring knowl-
edge from a large, complex model, referred to as the teacher model, to a smaller, simplified
model known as the student model. The goal is to reduce model complexity, improve
inference speed, and decrease model storage space. The teacher model is characterized
by its large scale, strong performance, and abundant knowledge, exhibiting high accu-
racy and expressive power, and it guides the student model, which is smaller, simplified,
and has weaker knowledge. Knowledge distillation has shown great potential in various
aspects such as adversarial robustness [27], multi-granular lip-reading [28], and data aug-
mentation [29]. To supervise the training of the student model and improve distillation
performance for better model performance [30,31], feature maps and attention maps [32–34]
are widely utilized as the basis for visual analysis.

2.4. Backdoor Attacks and Defense

Backdoor attacks aim to inject triggers (poison labels [35,36] or clean labels [37–39])
into a small portion of the model data during training to disrupt model predictions and
compromise model performance, achieving the desired attack effect. Li et al. [40] investi-
gated various aspects of backdoor attacks. In addition to the single-pixel and black-box
modules mentioned earlier, real-world backdoor attacks are more covert, and there are
six common and more advanced attack methods: BadNets [7], Trojan attack [36], Blend
attack [35], Clean-label attack (CL) [38], Sinusoidal signal attack (SIG) [41], and Reflection
attack (Refool) [39].
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When dealing with these attacks, the backdoor defense can be summarized into two
approaches: backdoor detection and trigger erasing. Detection-based methods can only
verify the presence of a backdoor and whether the model is poisoned while the backdoor
still remains in the model, rendering some data or the entire model unusable. Erasing-
based methods can effectively remove the backdoor and purify the model. Liu et al. [42]
utilized fine-grained pruning to remove the implanted backdoor information neurons and
fine-tuned the model to suppress backdoor triggers. However, fine-tuning methods can
lead to a decrease in model performance as the model may become overly adapted to clean
subsets [43]. Truong et al. [44] proposed regularization-based methods, and Zhao et al. [45]
introduced pattern stitching for backdoor repair, but the effectiveness of these methods
often does not outweigh the costs, as effective methods often come at a high price. In
the latest research on backdoors, Jebreel et al. [46] proposed a defense mechanism called
FL-Defengder, which filters poisoned samples by analyzing the feature differences between
key-layer suspicious samples and benign samples. They further addressed FL-targeted
attacks by updating the centroid bias of similar vectors obtained through re-weighting
client-side PCA compression. This approach achieves a lower attack success rate while
maintaining task accuracy [47].

3. Federated Mutual Distillation Learning

Addressing the three heterogeneous issues in federated learning while maintaining
model personalization and improving overall performance, we introduce the method of
knowledge distillation during the local update phase. Unlike the typical teacher-student
relationship in knowledge distillation structures, although there is no well-trained teacher
model or untrained student model in the federated learning system, the method of knowl-
edge distillation can be applied to two different knowledge transfer models with different
architectures. Therefore, we deviate from the traditional concept of one-way knowledge
transfer in the “teacher-student model” and employ deep mutual learning in federated
learning for local model updates. This allows the central server to obtain a generalized
global model while enabling different clients to train a private personalized model tailored
to their specific data and task requirements, resulting in a win-win situation. As shown in
Figure 2, we design two types of model structures within each client: (1) a local model used
to receive the global model for local training and updates, and (2) a private model designed
by the client for their specific needs. Both models engage in continuous mutual learning.

Figure 2. Federated Mutual Distillation Learning.

Additionally, we report our experimental parameters in Table 1.
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Table 1. Symbolic representations used in FMDL.

Symbols Meaning

L Loss Function.
LCE Cross Entropy.

DKL(||) Kullback Leibler (KL) Divergence.
p The predicts of the model.
T A hyper-parameter mean temperature.
z The logits of teacher model.

α, β
The hyper-parameters that control the proportion of knowledge from data or from

the other model.
M A DNN model.
Ml The activation output at the l-th layer.
Z An attention operator that maps an activation map to an attention representation.

Zsum Reflects all activation regions.

Zk
sum

Amplify the disparities between the backdoored neurons and the benign neurons by
an order of p.

Zk
mean

Align the activation center of the backdoored neurons with that of the benign neurons
by taking the mean over all activation regions.

N, H, W The dimensions of the channel, the height, and the width of the activation map.

3.1. Classical Distillation Methods

The fundamental idea behind knowledge distillation is to transfer the “knowledge”
of the teacher model to the student model by having the student model learn the teacher
model’s predicted outcomes. Through knowledge distillation, the student model can
acquire additional information from the teacher model, including relationships between
categories, decision boundaries, and data distributions. As a result, the student model can
maintain relatively high accuracy while having a smaller model size and faster inference
speed. The loss function for the student model can be simplified as follows:

Lstudent = LCE + DKL(pteacher||pstudent) (1)

pteacher =
exp(z/T)

∑i exp(zi/T)
(2)

3.2. Federated Mutual Learning

In traditional federated learning, each participant (or client) trains a local model using
their own local data and only shares model updates with the central server. The central
server aggregates these updates to create a global model, which is then distributed back to
the participants. However, the collaboration among participants is limited to the exchange
of model updates. In terms of target heterogeneity, typical federated learning only focuses
on the objectives of the central server and overlooks the clients’ need for personalized
models. Moreover, in cases of significant data heterogeneity, the performance of the glob-
ally trained model in federated learning may not be ideal. In fact, if the client’s data are
fragmented and dispersed, the model may even fail to converge after multiple iterations.
Therefore, we introduce federated mutual learning, which aims to leverage the collective in-
telligence and diverse perspectives of participants to enhance the learning process, improve
model performance, and overcome the individual limitations of participant data.

During the training process of federated mutual learning, the initial model is still
distributed by the central server and used as the local model for the first iteration of local
updates. Simultaneously, all clients also customize an independent private model (allowing
for similarity or diversity). Both models are trained using local data. Unlike normal local
updates, each client does not simply train a replica of the global model but instead engages
in several rounds of deep mutual learning between the local model and the private model to
achieve better performance than independent training. The detailed process is illustrated in
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Figure 3. During this process, knowledge is transferred bidirectionally. As the local model
receives updates from the global model, it migrates the knowledge from the central server
to the private model. At the same time, the private model provides feedback on the client’s
personalized features. Finally, the client sends the trained local model to the server, which
selects and aggregates them for updating the global model in the federated aggregation
step, preparing for the next round of federated training. This process is repeated until the
model converges. The objectives of both models are to undergo self-training on the same
dataset to achieve consistency in the predicted outcomes. The entire process is illustrated
in Algorithm 1. Throughout the training process, we redefine the classical knowledge
distillation loss as follows:

Lprivate = αLCprivate + (1− α)DKL(plocal ‖ pprivate) (3)

Llocal = βLClocal + (1− β)DKL(pprivate ‖ plocal) (4)

Algorithm 1: Federated Mutual Learning
Global Updata:
Distribute the initial global model G0.;
for epoch t = 1, 2, · · · , N do

for client i = 1, 2, · · · , N do
Locali

t+1 ← LocalUpdata(Locali
t);

Aggregation:Gt+1 ← 1
N ∑N

i=1 Locali
t+1;

LocalUpdata:
Initialize the private personalized model privatei

0.;
Locali

t ← Gt;
for epoch t = 1, 2, · · · , T do

DML between local and private models over private data.;

Figure 3. Federated Mutual Learning.

3.3. Attention Distillation Defense Methods

Attention maps are commonly used in deep learning to visualize the regions or
positions that the model focuses on when processing inputs. Attention mechanisms are
employed in sequence data tasks such as natural language processing and computer vision
tasks. The attention mechanism calculates weights for each input element, allowing the
model to concentrate on the most relevant or important elements. The attention map
provides a visual representation of these weight allocations. Given a deep neural network
model M, we define Z : RN×H×W → RH×W as the attention algorithm that maps the
activation maps to the attention representation, i.e., transforming the 3D activation maps
into a flattened 2D tensor along the channel dimension. Attention maps play a crucial role
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in successful knowledge distillation. There are three common forms of attention algorithms,
as shown below:

Zsum(Ml) =
N

∑
i=1
|Ml

i |; Zp
sum(Ml) =

N

∑
i=1
|Ml

i |p; Zp
mean(Ml) =

1
N

N

∑
i=1
|Ml

i |p (5)

Since the teacher model and student model in knowledge distillation do not have a
direct correspondence in federated learning, we replace the “teacher-student relationship”
with the view that the local model and private model can be considered as two different stu-
dent models. They engage in mutual learning and distillation, forming a “student-student
relationship”. As the local model continuously participates in federated learning itera-
tions, there may be potential backdoors. The process of erasing backdoor triggers through
attention distillation is illustrated in Figure 4. Therefore, it is necessary to add attention
loss. Attention distillation combines the local model and private model through a neural
attention extraction process. Attention representations are computed after each residual
block, and attention distillation loss is defined based on the attention representations of
both models:

LAD(Ml
local , Ml

private) =‖
Z(Ml

local)

‖ Z(Ml
local) ‖2

−
Z(Ml

private)

‖ Z(Ml
private) ‖2

‖2 (6)

Figure 4. Attention distillation.The red dot in the figure represent the embedded backdoors in
the model, the pink dot represent the backdoors after fine-tuning, and the white dot represent the
removed backdoors.

Therefore, the overall training loss can be expanded as:

Ltotal = βLClocal + (1− β)DKL(pprivate ‖ plocal) +
P

∑
l=1

LAD(Ml
local , Ml

private) (7)

4. Experimental Evaluations

In this section, we conducted comparative experiments between the proposed Feder-
ated Mutual Learning (FMDL) method and the traditional Federated Learning (FL) method.
The performance of FMDL was evaluated on three commonly used image classification
datasets. Additionally, we conducted experiments specifically targeting three types of
heterogeneous problems. In terms of backdoor defense, we assessed the performance of
FMDL compared to three existing defense methods based on erasure techniques under
six common backdoor attacks. Moreover, we clarified the criteria for selecting the form of
attention maps representation.
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4.1. Experimental Setup

We utilized three datasets, namely MNIST, CIFAR-10, and CIFAR-100, for train-
ing in federated learning, as shown in Table 2. MNIST dataset: this dataset contains
70,000 handwritten digital images of 10 classes (0–9), including 60,000 training samples
and 10,000 test samples. In all experiments, samples from the MNIST dataset were nor-
malized to 28 × 28 pixels. For the pixel block backdoor attack, the attacker embeds a
5 × 5 pixel block in the samples and assigns them with the target label “1” desired by
attackers. In the watermarking backdoor attack experiment, the attacker added the water-
marking “1” with a different watermarking factor to some real samples and set its label as
“1”. CIFAR-10 dataset: the CIFAR-10 dataset contains 60,000 color images in 10 categories
(such as “aircraft”, “car”, “bird”, etc.), including 50,000 training samples and 10,000 test
samples. The images in the CIFAR-10 dataset are normalized to a 32 × 32 three-channel
input during data preprocessing. For the attribute backdoor attack experiment, “car” in the
CIFAR-10 dataset, “cars with stripes”, “cars next to striped walls”, and “green cars” were
selected as the attribute backdoor, which the backdoor triggers. CIFAR-100 has the same
total number of images as CIFAR-10, but it has 100 classes. CIFAR-100 has 500 training
images and 100 testing images per class. Furthermore, a Multilayer Perceptron (MLP)
model was employed, where the weights and biases between neurons were updated using
the backpropagation algorithm to minimize the loss function. After training, the data were
classified. A Convolutional Neural Network (CNN) was used to extract different features
by generating convolutional feature maps with 3 × 3 convolutional kernels. ReLU activa-
tion was applied to two convolutional layers (the first layer with 6 channels and the second
layer with 16 channels, both followed by 2 × 2 max pooling). The linear layer and softmax
layer were utilized for output. The optimizer chosen was the Stochastic Gradient Descent
(SGD) algorithm with momentum = 0.9, weight decay = 5 × 10−4, and batch size = 128.

Table 2. Datasets used in our experiments.

Dataset Training Samples Test Samples Classes Model

MNIST 60,000 10,000 10 MLP

CIFAR-10 50,000 10,000 10 CNN

CIFAR-100 50,000 10,000 100 CNN

The selection of the distillation parameter β is crucial for clearing the backdoor. Intu-
itively, a larger β is more effective in defending against backdoors. However, arbitrarily
increasing the value of β may lead to a decline in the performance of the method. Based on
the scaling experiments in [48], we have determined the value of β to be 0.5. Although in-
creasing β always enhances model robustness, setting β to 0.5 has already reduced the
clean accuracy below the threshold, which is the optimal value of β.

To ensure fair evaluation, we followed the experimental configurations of six backdoor
attacks as described in their respective original papers, including trigger models, sizes,
and target labels, as presented in Table 3. Regarding the backdoor defense methods, we
compared three methods: Fine-tuning, Fine Pruning, and Mode Connectivity Repair (MCR),
with our proposed FMDL method. For all defense methods, we assumed access to 5% of
clean data.

We used two metrics to evaluate the performance of the defense mechanisms: Attack
Success Rate (ASR) and Accuracy on Clean Samples (ACC). A higher decrease in ASR and
a lower decrease in ACC indicate a stronger defense mechanism.
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Table 3. Experimental configurations of six backdoor attacks.

Backdoor BadNets Trojan Blend Clean-Label Signal Refool

Dataset CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 GTSRB

Model WideResNet WideResNet WideResNet WideResNet WideResNet WideResNet

Inject Rate 0.1 0.05 0.1 0.08 0.08 0.08

Trigger Grid Square Random Grid+PGD Sinusoidal Reflection
Type Noise Noise Signal

Target Size 3 × 3 3 × 3 Full Image 3 × 3 Full Image Full Image

4.2. Comparison of FMDL and Traditional FL Performance

To test the basic performance of FMDL, i.e., whether it can train a universal and
effective global model similar to classical federated learning, we conducted comparative
experiments between FMDL and FL after the FedAvg procedure. We evaluated the perfor-
mance of both methods on three different datasets. Additionally, we constructed different
data structures for each dataset, namely IID data (as shown in Figure 5) and Non-IID
data (as shown in Figure 6). Based on the performance of FMDL on different datasets,
we can conclude that our proposed method outperforms traditional federated learning in
various aspects. Compared to FedAvg, FMDL demonstrates advantages in terms of faster
convergence, higher accuracy, and model stability across different dataset structures.

(a) (b) (c)

Figure 5. The correlation between accuracy and training epochs on IID data. (a) MNIST; (b) CIFAR-10;
(c) CIFAR-100.

(a) (b) (c)

Figure 6. The correlation between accuracy and training epochs on non-IID data. (a) MNIST;
(b) CIFAR-10; (c) CIFAR-100.

4.3. Performance of FMDL under Three Heterogeneous Settings

When comparing the corresponding (a), (b), and (c) subfigures in Figures 5 and 6, it can
be observed that traditional federated learning achieves significantly lower model accuracy
when trained on Non-IID data compared to IID data for the CIFAR-10 or CIFAR-100
datasets, as depicted in the figures. This is due to data heterogeneity causing imbalanced
weights during local updates, and simple federated aggregation hindering model progress.
In contrast, FMDL maintains higher accuracy for both IID and non-IID data. Although there
is a slight decrease in accuracy for non-IID data compared to IID data, it remains within an
acceptable range. Data heterogeneity has a consistent impact on global performance, which
aligns with real-world scenarios. On the MNIST dataset, the model achieves near-perfect
predictions, indicating the effectiveness of FMDL in addressing data heterogeneity.
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FMDL successfully achieves the central server’s objective of training a well-performing
generalized model for target heterogeneity. Regarding personalized requirements, our
designed mutual learning structure ensures that private models are trained locally without
participating in global and local model updates. As a result, the private models fully satisfy
the client’s needs, achieving model personalization.

We conducted experiments with FMDL using five participating clients. Initially, we
independently trained the five clients to obtain personalized models with the best accuracy,
as indicated by the yellow portion in Figure 7. Subsequently, we trained all clients using
FMDL, and the accuracy of the personalized models obtained is shown in the orange
portion of Figure 7. Comparative analysis reveals that the accuracy of the models obtained
using our proposed method is higher than that of individually trained models. This
demonstrates that FMDL enables clients with different models to benefit from a shared
model, effectively addressing model heterogeneity.

Figure 7. Performance of FMDL under the Model Heterogeneous.

4.4. Effectiveness of FMDL in Defending Backdoors

In the previous section, we proposed three representations for attention functions
and conducted the following experiments to identify the functions that exhibit better
performance. Using the BadNet attack as the baseline attack and ASR (Attack Success
Rate) and ACC (Accuracy) as evaluation metrics, we obtained the following results in
Table 4. Hence, we adopted Z2

sum as our computational function for calculating the overall
distillation loss of the model.

Table 4. The best results of different attention functions.

Attention Zmean Z2
mean Zsum Z2

sum
Function ACC ASR ACC ASR ACC ASR ACC ASR

Baseline 100% 85.86% 100% 85.86% 100% 85.86% 100% 85.86%

Epoch 5 12.28% 81.50% 4.60% 81.30% 6.89% 81.46% 4.21% 81.55%

Firstly, we attacked the model using six different backdoor attacks and employed four
different defense mechanisms to evaluate their respective attack success rates. Next, we
tested the accuracy of the backdoor models after erasing them on clean samples. The results
are shown in Table 5. The MCR (Masking and Confusion Rule) defense method performed
remarkably well in countering BadNets and SIG attacks, resulting in the lowest backdoor at-
tack success rate. However, it showed mediocre performance against other attacks. On the
other hand, the Fine-tuning method exhibited relatively good prediction results on clean
samples after BadNets and CL attacks, but the success rate of backdoor attacks did not
decrease significantly, making it an inadequate defense mechanism. In comparison to the
other three methods, our proposed attention distillation defense method demonstrated ex-
cellent performance in reducing the accuracy of multiple backdoor attacks. Simultaneously,
the model’s prediction accuracy on clean samples did not suffer significant losses, with an
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average deviation of 2.66%, which is within an acceptable range. The attention distillation
method showcased effectiveness and efficiency in countering backdoor attacks.

Table 5. Performance of our method against six backdoor attacks.

Backdoor Attack BadNets Trojan Blend CL SIG Refool

Before ASR 100 100 99.97 99.21 99.91 95.16
ACC 85.65 81.24 84.95 84.95 84.36 82.38

AD ASR 4.77 19.63 4.04 9.18 2.52 3.18
ACC 81.17 79.16 81.68 80.34 81.95 80.73

We also verified the impact of different proportions of clean samples on model per-
formance, as shown in Figure 8. According to the information reflected in the bar chart,
when the proportion of clean samples reached 20%, both the MCR method and our pro-
posed FMDL method reduced the backdoor attack success rate to below 5%. However, our
proposed method exhibited better convergence speed than the MCR method. Even with
only 1% of clean samples, FMDL reduced the average ASR from 99.04% to 35.93%, while
MCR had a high attack success rate of 80%.

Figure 8. The impact of different proportions of clean samples.

5. Conclusions

Considering the challenges of federated learning in three heterogeneous settings and
backdoor attacks, this paper proposes a knowledge distillation-based federated learn-
ing paradigm called Federated Mutual Distillation Learning (FMDL). In the local update
phase, we introduce mutual learning and mutual distillation between local models and
private models to address heterogeneity, and experimental results demonstrate its effec-
tiveness. Additionally, FMDL employs attention maps to evaluate the performance of
defense mechanisms. The results show that our proposed method outperforms three other
backdoor defense methods in countering six backdoor attacks. Overall, our FMDL method
makes significant contributions to addressing heterogeneous federated learning and miti-
gating the threat of backdoor attacks in model deployment. Future research will explore
more advanced methods to achieve federated personalization. Furthermore, although the
distillation-based approach effectively eliminates backdoors, the reliance on teacher models
increases the computational burden on clients. In practical scenarios, users may opt for less
computationally expensive methods with slightly lower performance to mitigate backdoors.
Therefore, exploring methods to reduce computational overhead is worth investigating.
Additionally, the attention map we utilized lacks strict theoretical analysis, and there is a
lack of mature theoretical analysis tools for backdoor attacks. Hence, it is crucial to explore
theoretical analysis methods for backdoor attacks.
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