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Abstract: Speech emotion recognition (SER) is widely applicable today, benefiting areas such as
entertainment, robotics, and healthcare. This emotional understanding enhances user-machine in-
teraction, making systems more responsive and providing more natural experiences. In robotics,
SER is useful in home assistance devices, eldercare, and special education, facilitating effective
communication. Additionally, in healthcare settings, it can monitor patients’ emotional well-being.
However, achieving high levels of accuracy is challenging and complicated by the need to select the
best combination of machine learning algorithms, hyperparameters, datasets, data augmentation,
and feature extraction methods. Therefore, this study aims to develop a deep learning approach for
optimal SER configurations. It delves into the domains of optimizer settings, learning rates, data
augmentation techniques, feature extraction methods, and neural architectures for the RAVDESS,
TESS, SAVEE, and R+T+S (RAVDESS+TESS+SAVEE) datasets. After finding the best SER configura-
tions, meta-learning is carried out, transferring the best configurations to two additional datasets,
CREMA-D and R+T+S+C (RAVDESS+TESS+SAVEE+CREMA-D). The developed approach proved
effective in finding the best configurations, achieving an accuracy of 97.01% for RAVDESS, 100% for
TESS, 90.62% for SAVEE, and 97.37% for R+T+S. Furthermore, using meta-learning, the CREMA-D
and R+T+S+C datasets achieved accuracies of 83.28% and 90.94%, respectively.

Keywords: speech emotion recognition; convolutional neural network; meta-learning; data augmentation

1. Introduction

Speech emotion recognition (SER) has been gaining increasing popularity in the grow-
ing field of human–computer interactions (HCIs) [1]. This is due to the significance of
analyzing emotions expressed in speech to enhance the intelligence level of conversational
robotics and HCI systems [2]. By interacting with individuals and understanding the
emotions conveyed in speech, it is possible to provide higher-quality services and create a
more intelligent, natural, and personalized human–computer interaction experience [3].
The significance of speech emotion recognition has significantly expanded across vari-
ous sectors, encompassing applications in home automation, customer service, medical
applications, and even entertainment [4]. In all these applications, effective communica-
tion between humans and computers/machines/robots requires understanding human
intentions, which is often discerned through speech emotions [1,5].

In the early days of SER research, the primary focus was on probabilistic models such
as Hidden Markov Models (HMMs) [6,7] and Gaussian Mixture Models (GMMs) [8,9].
Recently, with the advent of deep learning, the landscape of emotion recognition has
significantly shifted towards neural-network-based approaches [4,10]. Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Deep Neural Networks
(DNNs) now play a predominant role in advancing speech emotion recognition [11].
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With the ongoing progress of deep learning techniques, specific challenges have arisen,
including the need for readily available data to support new advancements and facilitate
model comparisons [12]. In the field of SER, many small datasets are prevalent, leading to
the merging of different databases and the application of data augmentation techniques,
which play a pivotal role in enriching datasets. This, in turn, allows models to learn from a
broad spectrum of emotional speech variations [4]. Another essential requirement is tuning
various hyperparameter settings, such as the optimizer and learning rate [13]. In [14], it
became evident that hyperparameter tuning significantly impacts the performance of deep
learning models. Therefore, conducting tests to discover the optimal hyperparameters for
each problem is crucial. Furthermore, a thorough investigation of various feature extraction
techniques is essential in speech emotion recognition since the extracted features play a
critical role in the quality and performance of models [15]. Last but not least, it is imperative
to explore a variety of neural architectures, such as CNNs, RNNs, and hybrid architectures,
to determine which ones deliver the best performance and generalization across different
datasets and application scenarios. This comprehensive approach is essential for driving
progress in the field of speech emotion recognition [3].

Notably, optimizing many combinations requires a long computational time before
finding a good solution [16–18]. In this context, a recently highlighted approach that has
attracted considerable attention is meta-learning (MtL). MtL involves building strategies
that enable models to learn from diverse datasets and transfer that knowledge to related
tasks, accelerating the learning process and improving generalization [19]. An example is
the transfer of hyperparameters to similar datasets [20].

However, despite the considerable amount of work in SER, gaps in the existing
literature studies are observed. The literature still lacks an approach based on deep learning
that explores the combinations between optimizers, learning rates, data augmentation
techniques, feature extraction, and the neural architecture. Most works present limited
comparisons, focusing on specific aspects such as neural architectures or feature extraction
techniques in isolation. Additionally, the absence of studies that employ meta-learning
and hyperparameter optimization, such as optimizers and learning rates, is notable. These
aspects serve as motivation for our paper.

Thus, this study aims to develop a deep learning approach that investigates the best
configurations of optimizers, learning rates, data augmentation techniques, feature extraction
methods, and neural architectures. To achieve this, the approach is applied to four datasets:
RAVDESS, TESS, SAVEE, and R+T+S (RAVDESS+TESS+SAVEE). Once the optimal combi-
nation is identified, meta-learning is performed, i.e., transferring the best configuration to
two additional databases: CREMA-D and R+T+S+C (RAVDESS+TESS+SAVEE+CREMA-D).

In summary, the main contributions of this study are:

• A deep learning approach is proposed that investigates the best configurations of
optimizers, learning rates, data augmentation, feature extraction, and the neural
architecture for different datasets.

• Meta-learning is performed, transferring the best configuration found for the optimizer,
learning rate, data augmentation, feature extraction, and neural architecture to two
other SER datasets.

This article is structured as follows: Section 2 reviews the research in speech emotion
recognition that investigates the best SER configuration. Section 3 defines the complete
approach for obtaining results for each dataset under study and for meta-learning. The re-
sults are presented and discussed in Section 4, while final considerations and conclusions
are presented in Section 5.

2. Related Works

The field of SER research is highly dynamic and has seen many significant innovations
and advances over time. Specifically, advanced deep learning (DL) techniques have brought
substantial progress in this area. Implementing DL and DNNs generated the need to
investigate and adjust settings for a better model performance.
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Hyperparameter tuning, such as optimizers and learning rates, significantly improves
the classifier [13]. Furthermore, with the scarcity of datasets in the SER field, data augmenta-
tion is a valuable alternative to compensate for the lack of data [15]. Furthermore, carefully
selecting features extracted from audio plays a crucial role in the overall performance of
the applied DL techniques [21]. Finally, the choice of neural architecture used to classify
emotions expressed in speech is a determining factor [22]. These elements are fundamental
and must be carefully considered, as they directly influence the classifier’s performance,
when aiming to achieve the best results.

In this context, we explore recent works investigating the optimal combination of
SER configurations. These articles compare at least one SER parameter: the optimizer, the
learning rate, feature extraction, data augmentation, the neural architecture, and meta-
learning. In Table 1, it is possible to observe the papers and configurations investigated in
their work.

Table 1. Related work in the SER area that investigates the best combinations of optimizers, learning
rates, feature extraction, neural architectures, and meta-learning. Papers marked with a check indicate
that they performed a comparison with the respective configuration.

Paper Optimizer Learning Feature Data Architecture Meta-
Rate Extraction Augmentation Learning

[23] - - - X X -
[22] - - - X X -
[24] - - - X - -
[25] - - - X X -
[26] X - X - - -
[27] - - - - X -
[10] - - X X X -
[28] - - - X X -

Proposed X X X X X X

In [23], the authors use the RAVDESS dataset and employ the MFCC technique to
extract audio features. The article compares data augmentation, including adding noise
and pitch shifting. Furthermore, the neural architecture is compared, comparing a CNN to
a CNN+LSTM. The authors do not provide details on how the optimizer and learning rate
were chosen or specify which hyperparameters were used.

In [22], the authors also compare the use and non-use of data augmentation and com-
pare neural architectures. They used the RAVDESS, TESS, SAVEE, CREMA-D, and EMO-
DB datasets. The data augmentation techniques compared include noise, pitch shifting,
and stretching. The comparison was conducted between not using data augmentation and
all these techniques together (noise+pitch+stretch). Additionally, the authors investigated
neural architectures, comparing a CNN, CNN+LSTM, and CNN+GRU. They used the
Adam optimizer with an adjustable learning rate without further investigations.

On the other hand, in [24], only data augmentation was compared. The applied
data augmentation operations were noise, pitch, and stretching. A 1D CNN was used,
and the techniques used to extract the features were MFCC, Mel, Chroma, and ZCR to-
gether. The hyperparameters employed consisted of the Adam optimizer with an adaptive
learning rate.

In [25], the authors compare different types of data augmentation and different neu-
ral architectures. The data augmentation techniques compared include Gaussian Noise,
SpecAugment, Room Impulse Response (RIR), and Tanh Distortion. The neural architec-
tures compared are CNN2D, CNN+BiLSTM+Attention, and CNN+Transformer. The fea-
ture extraction information used by the models is the Mel spectrogram. The proposal in the
paper was evaluated using the RAVDESS dataset. However, the paper does not provide
information about the optimizer and learning rate.
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Paper [26] uses the RAVDESS dataset to evaluate a model composed of a Convolu-
tional Neural Network. The work compares feature extraction techniques and optimizers.
In this context, they compare feature extraction techniques such as Mel frequency cepstral
coefficients (MFCCs), Linear Prediction Cepstral Coefficients (LPCCs), the Wavelet Packet
Transform (WPT), the Zero Crossing Rate (ZCR), Spectrum Centroid, Spectral Roll-off,
Spectral Kurtosis, Root Mean Square (RMS), pitch, jitter, and shimmer. The optimizers used
were SGD, Adam, and RMSProp, with a learning rate of 0.001.

Paper [27] compares three well-known 2D Convolutional Neural Network architec-
tures in the literature: AlexNet, VGG16, and ResNet50. They use the RAVDESS dataset and
a combination of RAVDESS+TESS+SAVEE+CREMAD to evaluate the model. They also use
Mel spectrogram images without noise as a feature extraction technique. The authors do
not specify which optimizer and learning rate were used, and data augmentation was not
employed.

In [10], the combination of RAVDESS+TESS+SAVEE+CREMAD (R+T+S+C) datasets
was used to assess how different feature extraction techniques influence the model’s perfor-
mance. They used MFCC, Mel, Chromagram, ZCR, RMS, and roll-off as the feature extrac-
tion techniques. They also investigated the influence of data augmentation by applying
noise, stretching, and pitch. They compared a CNN, SVM, MLP, LSTM, and CNN+LSTM
for the neural architecture. The optimizer used was Adam, with a variable learning rate.

Finally, in [28], the authors evaluate two neural architectures, a CNN and a CNN+LSTM.
They also compare data augmentation with the addition of white noise and pitch. The feature
extraction techniques used were ZCR, RMS, and MFCC combined. They used the RAVDESS,
TESS, SAVEE, and CREMA-D datasets and their combination (R+T+S+C) to evaluate the
methodology’s performance. They used the SGD optimizer with a fixed learning rate
of 0.001.

Based on the results described in Table 1, it is possible to observe some trends and
gaps in some works in the literature in the SER research field. Of the eight works surveyed,
six investigate the use of data augmentation, and most of the works compare the use and
non-use of DA techniques, which are generally pitch and noise. Only the works of [23]
and [25] carry out an investigation testing the operations separately and in combination.
Another observation is that they attempt to evaluate and test different neural architectures
for the SER problem. Of the eight works mentioned, six investigate the best architecture.
The CNN algorithm and the combination of a CNN with LSTM or GRU are among the
most used.

The first point we can see regarding the gaps in Table 1 is that the works in the SER
area do not perform adjustments to the network’s hyperparameters, such as analyzing
the best optimizer and learning rate. Only [26] investigated the best optimizer, and no
work analyzed the learning rate. The second aspect we can observe is the lack of work that
evaluates and tests the best technique for extracting characteristics from audio for the SER
problem. Among the eight works mentioned, only two papers ([10,26]) investigate the best
feature extraction. The remaining papers use one or more techniques combined without
evaluation. The third point is regarding the use of meta-learning. No work transfers
configurations between databases for the problem of recognizing emotions in speech.

Therefore, this work’s main contributions are to fill these gaps highlighted by the
summary of works in Table 1. In this sense, we present the following original contributions:

1. A deep learning approach that considers the optimal combination of optimizer, learn-
ing rate, feature extraction, data augmentation, and neural architecture. No work in
the literature includes an evaluation of all these aspects. It is also noteworthy that the
authors developed the evaluated neural architectures of a CNN and a CNN+LSTM.

2. The use of meta-learning. This transfers settings for the optimizer, the learning rate,
feature extraction, data augmentation, and the neural architecture between similar
databases for the speech emotion recognition problem.
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3. Deep Learning Approach for SER

Given the identified gaps in the literature, this study aims to present a deep learning
approach aimed at identifying the most effective combinations for speech emotion recogni-
tion. To ensure replicability and explainability of the deep learning approach, a sequence
of steps was developed that clearly outlines the decision-making process at each stage.
As illustrated in Figure 1, the approach begins by selecting the databases to evaluate the
method’s performance. The RAVESS, TESS, SAVEE, and CREMA-D databases were chosen
in this context.

Figure 1. Flowchart of the proposed approach to seek the best speech emotion recognition configuration.

A standard framework was established for this research, utilizing a Convolutional
Neural Network (CNN) with two blocks (Section 3.5 details its architecture). We employed
the MFCC method for feature extraction and did not apply data augmentation. Based on
this standard configuration, the first analysis focuses on the influence of the optimizer and
the learning rate. It is crucial to emphasize that the learning rate significantly impacts
learning performance, making it a critical hyperparameter in neural networks. Initially, we
chose to concentrate our investigation on these two aspects. We evaluated three optimizers,
Adam, SGD, and Adagrad, along with three distinct learning rates: 0.01, 0.001, and an
adjustable rate.

After selecting the most suitable optimizer and the best learning rate for each dataset,
the second phase of this research addresses the implementation of data augmentation. This
technique is employed to increase the diversity of the audio samples, thereby enhancing
the CNN’s ability to generalize. In this context, various data augmentation techniques were
evaluated, including noise addition, pitch shift, temporal stretching, and a combination of
all these techniques together.
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Next, each dataset was evaluated to identify the most effective audio feature extraction
technique. This study involved testing the following feature extraction methods: Mel
frequency cepstral coefficient (MFCC) values, the Zero Crossing Rate (ZCR), Root Mean
Square (RMS), Chromagram, and Mel spectrogram.

Finally, we will evaluate deep learning architectures in the last stage. In this context,
we proposed four configurations for the Convolutional Neural Network (CNN) with two
blocks, four blocks, six blocks, and eight blocks. We will integrate the CNN architecture
demonstrating the best performance into the LSTM algorithm. Thus, we will investigate
the most effective CNN architecture and assess its performance when employing a hybrid
approach (CNN+LSTM).

We will subject these configurations to a meta-learning evaluation after determining
the best combinations of optimizer, learning rate, data augmentation, feature extraction
methods, and deep learning architecture. In other words, we will transfer the combination
that demonstrates the best overall performance for application to the CREMA-D and
RAVDESS+TESS+SAVEE+CREMA-D datasets. This will enable us to apply the most
effective approach to different datasets, allowing us to assess whether meta-learning is a
suitable solution for speech emotion recognition (SER). The following sections will explain
the steps of the proposed approach in more detail.

3.1. Dataset

The choice of a dataset plays a fundamental role in speech emotion recognition.
The dataset selection directly impacts the model’s training and generalization capabilities.
Ideally, the dataset should encompass a broad spectrum of emotional expressions, various
demographic factors, and diverse speaking styles to ensure the robustness and applicability
of the model in real-world scenarios [22]. However, finding databases with a great diversity
that are available online is not easy.

In this sense, this work uses four databases widely used in the literature, RAVDESS,
TESS, SAVEE, and CREMA-D, to evaluate the performance of the proposed approach. Fur-
thermore, to increase data availability for deep learning algorithms, the databases were also
combined into two sets: R+T+S (RAVDESS+TESS+SAVEE) and R+T+S+C (RAVDESS+TESS
+SAVEE+CREMAD). We will provide more detailed information about the databases
used below.

RAVDESS: The Ryerson Audiovisual Database of Emotional Speech and Music
(RAVDESS) [29] is a widely used resource in speech emotion recognition. It con-
sists of recordings of 24 professional actors, divided equally between 12 women
and 12 men. These actors make two statements each, both singing and speaking.
Audios last 3 s and are labeled with emotions, happy, sad, angry, fearful, surprised,
neutral, calm, and disgust, each presented in two levels of emotional intensity, normal
and strong, totaling 2076 audio recordings. This work removed the calm emotion
from the database to standardize it into seven emotions. Table 2 describes the audio
distribution by emotion.

TESS: The Toronto Emotional Speech Set (TESS) [30] features recordings of two English
actresses, one aged 26 and the other aged 64. The audios last two seconds; the
labeled emotions are anger, disgust, fear, happiness, neutrality, surprise, and sadness.
The dataset consists of 2800 audio files, with 400 audio recordings allocated to each
emotion category, as illustrated in Table 2. It is worth mentioning that this database is
balanced, guaranteeing an equal number of audio files for each emotion category.

SAVEE: The SAVEE (Surrey Audio–Visual Expressed Emotion) dataset [31] consists of
480 spoken audios by four English actors aged between 27 and 31. The audios last
an average of 3 s and are labeled with seven emotions: anger, happiness, neutrality,
disgust, sadness, fear, and surprise. However, it is important to note that this dataset
presents a class imbalance problem. Specifically, the “neutral” class contains almost
twice as many samples as all other classes combined, as illustrated in Table 2.
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CREMA-D: The Crowdsourced Emotional Multimodal Actors (CREMA-D) dataset [32]
encompasses 7442 unique audio samples, all recorded by 91 actors representing
diverse racial and ethnic backgrounds. Among these actors, 48 were male and 43
were female; each uttered 12 sentences. The audios last 2 s on average and express six
distinct emotions: anger, happiness, neutrality, disgust, sadness, and fear. In Table 2,
it is possible to observe the number of audio recordings for each emotion within
the database.

Table 2. Number of audios contained in each dataset.

Dataset Happy Sad Angry Fear Disgust Surprise Neutral Total

RAVDESS 376 376 376 376 192 192 188 2076
TESS 400 400 400 400 400 400 400 2800

SAVEE 60 60 60 60 60 60 120 480
CREMAD 1271 1271 1271 1271 1271 0 1087 7442

R+T+S 836 836 836 836 652 652 708 5356
R+T+S+C 2107 2107 2107 2107 1923 652 1795 12,798

3.2. Step 1: Tuning of Optimizers and the Learning Rate

Learning and optimization hyperparameters determine how the network learns and
optimizes its parameters to achieve the minimum error. Among them are optimization
algorithms and learning rates (LRs) [33]. Due to the importance of these hyperparameters
for the CNN model, the first investigation into the proposed model seeks the best optimizer
and learning rate for each database used. To this end, the three most used optimizers in the
literature will be used, Adam, SGD, and Adagrad, with the learning rates most found in
articles in the SER research field (0.01, 0.001, and adaptive learning rate with a factor of 0.4
and a minimum LR of 0.000001) [10,15,28]. Below is a brief explanation of the optimizers
and learning rates used.

Stochastic Gradient Descent (SGD) is the optimization technique most widely em-
ployed in machine learning, especially deep learning. Unlike regular gradient descent,
which computes the loss and gradient over the entire training dataset before adjusting
parameters, SGD adopts a more nimble approach. It randomly selects one data point from
the training set for each step and computes the gradient using only that instance [33].

The Adam optimizer, short for Adaptive Moment Estimation, is a widely used op-
timization algorithm in machine learning and neural network training. Adam combines
concepts from Stochastic Gradient Descent (SGD) and the momentum method by comput-
ing moving averages of past and squared gradients. This enables it to handle non-stationary
optimization problems effectively and helps prevent undesired oscillations in the conver-
gence path. Adam has proven to be particularly efficient in accelerating the training of
deep networks and is widely embraced in the machine learning community [33].

Adagrad, an abbreviation for “Adaptive Gradient Descent,” is an optimization tech-
nique based on gradient descent. It is an optimizer that utilizes learning rates tailored
to specific parameters, adapting them according to how often each parameter is updated
during training. Parameters subject to frequent updates experience reduced learning rates,
leading to progressively smaller parameter adjustments as the training unfolds [34].

One of the optimizer’s input parameters is the learning rate (LR). Theoretically, a min-
imal learning rate guarantees the minimum error (if training for an infinite time). A high
learning rate speeds up learning but does not guarantee finding the minimum error [33].

3.3. Step 2: Data Augmentation Optimization

The second phase of the proposed deep learning approach involves investigating the
impact of data augmentation on the performance of the deep learning algorithm. Data
augmentation generates new synthetic training samples through slight perturbations of
existing examples. We aim to make our model invariant to these perturbations and enhance
its generalization capacity. Various techniques are used to augment audio data, with some of
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the most common ones including noise, time stretching, and pitch variation [10]. The visual
representation of these techniques’ effects is illustrated in Figures 2–5.

Figure 2. The original sound waveform.

Figure 3. Noise.

Figure 4. Stretch.

Figure 5. Pitch.

In this study, the noise injection technique was employed to introduce random values
into the data using both NumPy’s normal and uniform methods with a rate of 0.035 [35].
The time-stretching technique was also used to elongate time series at a fixed rate of 0.8,
implemented through the time-stretching method from the Python library Librosa [22].
Lastly, random pitch alterations were applied with a pitch-shifting factor of 0.7, using
Librosa’s pitch-shifting method [22]. We tested the data augmentation techniques both
individually and in combination.
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3.4. Step 3: Feature Extraction Seletion

The extraction of features from speech audio signals constitutes a fundamental step in
speech emotion recognition (SER) activities [36]. The third step of this investigation specifi-
cally employs the five most used spectral attributes in the SER research field [10,22,24,28].
They are Mel frequency cepstral coefficient (MFCC) values, the Zero Crossing Rate (ZCR),
Chromagram, Mel spectrogram, and Root Mean Square (RMS) values. More details of each
feature extraction technique will be presented below.

3.4.1. Mel Frequency Cepstral Coefficients (MFCC)

To derive MFCC features, the initial step involves dividing the speech signal into
short frames of 20–30 ms each, advanced every 10 ms to capture temporal features of
individual speech signals. The Discrete Fourier Transform (DFT) is subsequently applied
to each windowed frame, converting them into magnitude spectra. Next, 26 filters are
employed on the signal obtained in the previous step to compute the Mel-scaled filter
bank (MSFB). The MSFB, grounded in human ear frequency perception, yields 26 values
describing the energy of each frame. Log energies are computed to obtain log filter bank
energies. Equation (1) quantifies the Mel estimation from a physical frequency [10,22,37]:

fMel = 2590 log10 1 +
f

700
(1)

Here, f denotes the physical frequency (in Hz) and fMel represents the frequency
perceived by the human ear. After obtaining log filter bank energies, the Discrete Cosine
Transform (DCT) is applied to generate the MFCCs [12,22]. The extraction of MFCC values
from the datasets was performed using the Librosa library.

3.4.2. Zero Crossing Rate (ZCR)

The ZCR is a commonly used feature in SER. It quantifies the number of times the
amplitude of a speech signal crosses the zero-value threshold within a specified time
frame. The ZCR has been proven effective in distinguishing between voiced and unvoiced
expressions. Mathematically, the ZCR is defined by Equation (2), where s represents a
signal of length T, and 1R<0 is an indicator function. ZCR values from the datasets were
extracted using the Librosa library [22].

ZCR =
1

T − 1

T−1

∑
t=1

1R<0(StSt−1) (2)

3.4.3. Chromagram

The Chromagram (Chroma) feature characterizes the tonal content of an audio signal,
closely related to the 12 classes of pitch. Chroma features excel at capturing harmonic and
melodic audio traits. Chromagram features are derived by applying Short-Time Fourier
Transforms (STFTs) to the audio waveform from the dataset [38]. The extraction of Chroma
values from the datasets was carried out using the Librosa library.

3.4.4. Mel Spectrogram

A spectrogram visualizes a signal’s frequency spectrum over time through Fast Fourier
Transform (FFT) analysis. It divides the frequency spectrum into Mel scale frequencies,
producing a Mel spectrogram for each window. Magnitude components corresponding
to the Mel frequencies are then isolated [10,38]. In this study, these values were extracted
from the datasets using the Librosa library.

3.4.5. Root Mean Square (RMS) Value

The RMS value is computed for each frame of speech audio samples, offering an
average signal amplitude irrespective of positive or negative amplitude levels. For a given
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signal x = x1, x2, x3, . . . , xn, the RMS value xRMS can be determined using Equation (3) [22].
RMS values were extracted from the datasets using the Librosa library.

xRMS =

√
x2

n
=

√
1
n
(x2

1, x2
2, x2

3, . . . , x2
n) (3)

3.5. Step 4: Neural Architecture Search

The fourth stage of the proposed methodology involves investigating the best archi-
tecture. In this regard, two well-known algorithms in the literature were utilized: the
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Below, we
will provide more information on these two deep learning algorithms and how they will be
used in this study.

3.5.1. Convolutional Neural Network

In this study, we will employ Convolutional Neural Networks (CNNs) to classify
emotions based on speech data. We will identify the most effective architectures for each
dataset to achieve this goal. The proposed architectures are illustrated in Figure 6. Initially,
we will conduct tests using the two-block CNN architecture. In the final phase of our
methodology, we will investigate the optimal number of blocks for model performance,
considering two blocks, four blocks, six blocks, and eight blocks.

Each CNN block includes a convolutional layer (1D) with ReLu activation, batch
normalization, max pooling 1D (pool size = 5), and dropout (rate = 0.2). Batch normalization
is a layer that normalizes the inputs by applying a transformation that keeps the average
output close to 0 and the standard deviation of the output close to 1. Max pooling is
a technique used to reduce the spatial dimensionality of the feature representation and
to maintain the most relevant characteristics. Furthermore, dropout is a regularization
technique to avoid overfitting in neural networks.

At the end of the CNN blocks, a flatten layer and two dense layers were added to
perform the final classification. The first dense layer contains the ReLu activation function,
and the output dense layer contains the softmax activation function. The Rectified Linear
Unit (ReLU) activation function activates a node only if the input is above zero. If the input
is below zero, the output is always zero. However, when the input exceeds zero, it has a
linear relationship with the output variable. The ReLU function is represented by [33]:

f (x) = max(0, x). (4)

The softmax function is a generalization of the sigmoid function. It obtains classifica-
tion probabilities when there are more than two classes. It transforms input values into
probability values between 0 and 1, where the final sum of all probabilities is 1. A prevalent
use case in deep learning problems is to predict a single class among many options (more
than two) [33]. The softmax equation is described by (5) [33], where σ(xj) is the probability
of the output neuron, xj is the output neuron’s vector, and i are the indices of all neurons.

σ(xj) =
exj

∑i exi
(5)

In this work, fixed hyperparameters were used, including 100 epochs and a batch
size of 64. For the loss function, we employed “categorical crossentropy,” which can be
represented by Equation (6) [33], where L(y, ŷ) is the value of the loss function, yi represents
the actual probability of class i (a binary value, 0 or 1, indicating the correct class), and ŷi
represents the predicted probability for class i by the model.

L(y, ŷ) = −∑
i

yi log(ŷi) (6)
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Figure 6. Convolutional Neural Network architectures for comparison.

3.5.2. Long Short Term Memory

Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN) architecture
that handles sequential data and is widely used in natural language processing, voice
recognition, and time series prediction tasks [39]. After selecting the best CNN architecture,
we will investigate the model performance by adding two LSTM layers. Figure 7 shows
that the first layer has 258 units and the second LSTM layer has 128 units.
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Figure 7. Hybrid architecture with a Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM).

3.6. Meta-Learning

Meta-learning (MtL) is a process of using knowledge acquired from a specific dataset
and transferring it to new databases [19]. The transferred knowledge, also known as
meta-knowledge, can include information such as neural architectures, resulting models,
and configurations for previously obtaining better models [40]. In this way, it is possible to
explore how to learn from past experiences and reduce the computational time and cost
required for model adaptation [17].

Figure 8 illustrates how meta-learning was utilized in this work. As described in
the previous sections, the RAVDESS, TESS, SAVEE, and R+T+S databases were initially
selected to adjust the optimizer and learning rate settings, data augmentation, feature
extraction, and neural architecture. After finding the best configuration (i.e., the set of
configurations that has the best accuracy value for most of the datasets), it is then stored in
a knowledge base.

Figure 8. Meta-learning system to transfer SER configurations (optimizer, learning rate, data aug-
mentation, feature extraction, and neural architecture) between different databases.

After the best configuration is found and stored in the knowledge base, meta-learning
is carried out, in which new datasets, CREMA-D and R+T+S+C (RAVDESS+TESS+SAVEE+
CREMA-D), will access the best configurations of the knowledge base and apply the same
choices of the optimizer, learning rate, data augmentation, feature extraction, and neural
architecture in the deep learning process. The result obtained through meta-learning is then
compared with not using meta-learning, that is, carrying out the entire approach proposed
for the CREMA-D and R+T+S+C bases.

4. Results

This section will present the results obtained using the proposed methodology de-
scribed in Section 3. To conduct the experiments, we used a notebook with a Windows
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11 operating system, an Intel i5 1135G7 2.40 GHz processor, 8 GB of RAM, and an Nvidia
GeForce MX350 GPU with 2 GB VRAM. The development environment used in this work
consists of a Jupyter IDE, associated with the Python language.

As described in Section 3, the datasets used to evaluate the methodology’s perfor-
mance were RAVDESS, TESS, SAVEE, and RAVDESS+TESS+SAVEE (R+T+S). Subsequently,
the combinations showing the best accuracy performance will be transferred to the CREMA-
D and RAVDESS+TESS+SAVEE+CREMA-D (R+T+S+C) datasets. All the datasets used
were divided into 80% for training, 10% for validation, and 10% for testing.

For the first step, we adjusted each dataset’s optimizer and learning rate. In this regard,
we used the Adam, SGD, and Adagrad optimizers, combined with learning rates of 0.01,
0.001, and an adjustable rate. The results for this initial investigation can be seen in Table 3,
which presents the test accuracy values for each evaluated dataset.

In Table 3, one can observe how the variation in hyperparameters influences the
classifier’s performance. When analyzing the RAVDESS database, it was observed that the
variation in optimizer and learning rate leads to a wide improvement in precision values,
ranging from 30.76% (with Adam 0.01) to 80.01% (with variable Adam). This influence
extends to other databases.

Table 3. Results of accuracy (%) obtained by adjusting the optimizer and learning rate. The most
accurate values for each dataset are emphasized in bold. RAVD is RAVDESS and R+T+S is
RAVDESS+TESS+SAVEE.

Dataset Adam SGD Adagrad
0.01 0.001 Variable 0.01 0.001 Variable 0.01 0.001 Variable

RAVD. 30.76 78.84 80.01 75.07 52.88 60.09 77.88 50.00 42.78
TESS 98.21 98.57 100.00 99.64 98.93 98.02 99.64 99.29 99.29

SAVEE 64.58 70.83 68.75 66.67 43.75 62.50 58.33 54.17 56.25
R+T+S 67.54 87.31 87.13 86.57 77.05 84.51 86.94 76.49 74.63

For the next steps, the best combinations of optimizer and learning rate were used for
each dataset. Consequently, the RAVDESS and TESS datasets employed variable Adam,
while the SAVEE and R+T+S datasets used Adam with a learning rate of 0.001.

The second stage of the methodology involves the use of data augmentation. In this
regard, three techniques were investigated: noise, stretch, and pitch, as well as the combina-
tion of all three. Table 4 presents the accuracies from the previous investigation, i.e., without
data augmentation (no D.A). It also displays the accuracies for each technique investigated.
As seen in Table 4, the stretch technique performed well in most datasets. Only the Tess
dataset maintained 100% accuracy across all combinations in this stage.

Table 4 reveals the impact of data augmentation, highlighting that for the RAVDESS
dataset, the precision varies from 77.88% (using only noise) to 96.63% (using only stretch).
In contrast, the SAVEE dataset ranges from 67.50% (noise) to 85.83%, indicating an enhance-
ment in accuracy. Notably, the R+T+S dataset shows an improvement of around 10% when
applying the stretch operation.

Table 4. Accuracy (%) achieved for different data augmentation techniques, noise, pitch variation,
and stretch, across four distinct datasets. The highest accuracy values for each dataset are emphasized
in bold.

Dataset no D.A Noise Streatch Pitch All D.A.

RAVDESS 80.01 77.88 96.63 86.30 85.23
TESS 100.00 100.00 100.00 100.00 100.00

SAVEE 70.83 67.50 85.83 80.00 81.94
R+T+S 87.31 88.99 96.64 93.47 92.21
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For the third stage, stretch-type data augmentation was applied to all datasets to
investigate the best audio feature extraction technique. The standard technique used in
this article is MFCCs, and in this stage, other techniques such as Chroma, ZCR, RMS, Mel,
and the application of all together will be explored. Table 5 shows the test accuracy values
obtained in this third stage. As can be observed, the MFCC technique performed better in
most datasets, except for the SAVEE dataset, which achieved a higher accuracy with all
the techniques applied together. Furthermore, it is possible to observe that the selection of
the feature extraction method significantly impacts the SER classification. Table 5 reveals,
for example, that in the RAVDESS database, the accuracy is 20.91% when using the ZCR
and increases to 96.63% when using MFCCs. Similarly, other databases show significant
variations in accuracy depending on the resource extraction technique used.

Table 5. Accuracy (%) obtained for different feature extraction techniques, including MFCC, Chroma,
ZCR, RMS, and Mel, across four distinct datasets. Bold accuracies represent the highest values.

Dataset MFCC Chroma ZCR RMS Mel All

RAVDESS 96.63 63.70 20.91 30.70 67.79 94.23
TESS 100.00 89.82 19.82 32.14 98.57 99.08

SAVEE 85.83 52.50 32.08 32.50 70.42 90.62
R+T+S 96.64 73.41 19.96 24.63 83.68 96.36

The fourth stage of the methodology, the neural architecture search, aims to investigate
the optimal architecture for the Convolutional Neural Network proposed in this paper.
In this regard, four architectures were tested, two blocks, four blocks, six blocks, and eight
blocks, as described in Section 3.5.

In Table 6, the test accuracy values for each architecture can be observed. The RAVDESS
and R+T+S datasets achieved better accuracies with the four-block CNN, reaching 96.88%
and 97.11%, respectively. The SAVEE dataset achieved an accuracy of 90.62% with the
two-block CNN. However, the TESS dataset did not show any variation in the accuracy
values at this stage of the methodology.

Table 6. Accuracy (%) obtained for different CNN architectures, two blocks, four blocks, six blocks
and eight blocks, on four different datasets. Accuracies in bold represent the highest values.

Dataset CNN (Two
Blocks)

CNN (Four
Blocks)

CNN (Six
Blocks)

CNN (Eight
Blocks)

RAVDESS 96.63 96.88 95.29 95.19
TESS 100.00 100.00 100.00 100.00

SAVEE 90.62 87.50 76.04 83.33
R+T+S 96.64 97.11 96.92 95.18

After determining the best CNN architecture for each dataset, i.e., the most effective
CNN architecture identified in the previous stage, two LSTM layers were added to assess
whether a hybrid deep learning algorithm improves the test accuracy. Table 7 showcases
the test accuracy results for both the optimal CNN architecture and the hybrid CNN+LSTM
architecture, organized by dataset. In the case of the RAVDESS and R+T+S datasets,
the hybrid architecture (CNN (four blocks) + LSTM) consistently exhibited a superior
accuracy. However, for the SAVEE dataset, the two-block CNN architecture yielded better
results. Remarkably, the Tess dataset showed no significant changes.
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Table 7. Accuracy (%) obtained for the best CNN architecture and hybrid architecture (CNN+LSTM)
on four distinct datasets. Accuracies in bold represent the highest values.

Dataset Best CNN Best CNN+LSTM

RAVDESS 96.88 97.01
TESS 100.00 100.00

SAVEE 90.62 85.42
R+T+S 97.11 97.37

Upon completing the methodology steps, it became possible to describe the best
combination for each dataset, considering the optimizer, learning rate, data augmentation
techniques, feature extraction methods, and neural architecture that yielded the highest
performance. For the RAVDESS dataset, the best combination involved using the Adam
optimizer with a variable learning rate, applying stretch for data augmentation, MFCCs
for audio feature extraction, and a hybrid architecture consisting of a four-block CNN
combined with LSTM. Regarding the computational time spent, the code was executed
25 times for each database, totaling 150 executions due to working with six databases.
The duration of each execution varies mainly according to the database (number of audio
files) and the neural architecture used. Therefore, it can be stated that there was an average
computational cost of 25 h incurred.

In Figure 9, we can observe the graphs illustrating the accuracy and loss trends
throughout the training and validation processes of the RAVDESS dataset. Additionally,
Table 8 displays the precision, recall, and F-score metrics derived from the optimized
configuration applied to the RAVDESS dataset.

Figure 9. Graph of (a) accuracy and (b) loss values during training and validation of the RAVDESS
dataset.

Table 8. Precision, recall, and F-score percentage values for the RAVDESS database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 95.0 93.0 94.0
Happy 95.0 99.0 97.0

Fear 100.0 93.0 96.0
Neutral 100.0 100.0 100.0
Angry 94.0 99.0 96.0

Surprise 97.0 97.0 97.0
Sad 98.0 98.0 98.0

Accuracy - - 97.0

The TESS dataset achieved a 100% accuracy rate using a combination of the Adam
optimizer with a variable learning rate, MFCC feature extraction, no data augmentation,
and a two-block CNN architecture. In several stages, the accuracy remained unchanged,
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leading us to consider the initial combination, which achieved 100% accuracy as the best
combination. In Figure 10, we can observe the training and validation accuracy and loss
curves for the TESS dataset. In Table 9, we can find the precision, recall, and F-score metrics
calculated using the optimized combination for the TESS dataset.

Figure 10. Graph of (a) accuracy and (b) loss values during training and validation of the TESS dataset.

Table 9. Precision, recall, and F-score percentage values for the TESS database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 100.0 100.0 100.0
Happy 100.0 100.0 100.0

Fear 100.0 100.0 100.0
Neutral 100.0 100.0 100.0
Angry 100.0 100.0 100.0

Surprise 100.0 100.0 100.0
Sad 100.0 100.0 100.0

Accuracy - - 100.0

The SAVEE dataset achieved a maximum accuracy of 90.62% with a combination
of the Adam optimizer, a learning rate of 0.001, stretch-type data augmentation, feature
extraction using all techniques together (MFCC, ZCR, RMS, Chroma, and Mel), and a
neural architecture consisting of a two-block CNN. Figure 11 displays the training and
validation accuracy and loss history. Additionally, Table 10 presents the precision, recall,
and F-score values obtained.

Figure 11. Graph of (a) accuracy and (b) loss values during training and validation of SAVEE dataset.
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Table 10. Precision, recall, and F-score percentage values for the SAVEE database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 100.0 91.0 95.0
Happy 86.0 86.0 86.0

Fear 92.0 100.0 96.0
Neutral 100.0 86.0 92.0
Angry 92.0 92.0 92.0

Surprise 93.0 87.0 90.0
Sad 73.0 100.0 85.0

Accuracy - - 90.6

The dataset that combines RAVDESS+TESS+SAVEE achieved a maximum accuracy of
97.37% with a combination of the Adam optimizer, a learning rate of 0.001, stretch-type data
augmentation, MFCC feature extraction, and a neural architecture consisting of a hybrid
CNN with four blocks and LSTM. Figure 12 presents the training and validation accuracy
and loss history, and Table 11 displays the precision, recall, and F-score values obtained.

Figure 12. Graph of (a) accuracy and (b) loss values during training and validation of the
RAVDESS+TESS+SAVEE dataset.

Table 11. Precision, recall, and F-score percentage values for the RAVDESS+TESS+SAVEE database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 98.0 96.0 97.0
Happy 96.0 96.0 96.0

Fear 95.0 95.0 95.0
Neutral 95.0 100.0 97.0
Angry 97.0 95.0 96.0

Surprise 96.0 99.0 97.0
Sad 98.0 93.0 95.0

Accuracy - - 97.4

4.1. Results of Meta-Learning

This section provides the results of the meta-learning carried out. As illustrated in
Figure 8, once the optimizer, learning rate, data augmentation, feature extraction, and neural
architecture settings were identified for the RAVDESS, TESS, SAVEE, and R+T+S databases,
the best configuration found, that is, the configuration that obtains the highest accuracy
values for the majority of datasets, was subsequently registered in a knowledge base. In this
way, a comparison is made between using the configurations contained in the knowledge
base, transferring the configurations to the new CREMA-D and R+T+S+C databases, that
is, using meta-learning (“yes meta-learning”) with the non-use of meta-learning (“no
meta-learning”), in which the CREMA-D and R+T+S+C databases go through the entire
step-by-step approach proposed in Section 3. The comparison will be based on the accuracy
value and the computational time.



Electronics 2023, 12, 4859 18 of 23

In Table 12, a comparison between the “no meta-learning” configurations and those
derived from the meta-learning process, “yes meta-learning,” is provided, along with the
corresponding accuracy values and computational time consumed. In this context, we can
observe that the configurations are quite similar. For the CREMA-D dataset, the difference
between the “no meta-learning” and “yes meta-learning” configurations pertained only to
the optimizer and learning rate, increasing accuracy by 2.16%. Additionally, meta-learning
significantly reduced the computational time required from 218:51 to 15:19 min.

Table 12. Comparison of accuracy values (%) and computational time (min) for the CREMA-D and
R+T+S+C databases using the “no meta-learning” and “yes meta-learning” configurations. Bold
values indicate the best result in accuracy and computational time.

Datasets Meta-
Learning Optimizer L.R. D.A. Features Arch. Acc. (%) Time (min)

CREMAD No Adagrad 0.01 Stretch MFCC CNN4b+ 81.12 218:51
LSTM

Yes Adam variable Stretch MFCC CNN4b+ 83.28 15:19
LSTM

R+T+S+C No Adagrad 0.01 Stretch MFCC CNN6b 86.87 388:32
Yes Adam variable Stretch MFCC CNN4b+ 90.94 25:50

LSTM

For the R+T+S+C dataset, the difference between the “no meta-learning” and “yes
meta-learning” configurations involved changes in the optimizer, learning rate, and neural
architecture. This difference increased the accuracy by 4.07%. Furthermore, meta-learning
significantly reduced the computational time required, as observed, from 388:32 min to
25:50 min.

In Figure 13, one can examine the training and validation history of (a) accuracy and
(b) loss for the CREMA-D dataset. It is evident that over the course of 100 epochs, the model
successfully generalized emotions from the dataset. In Table 13, one can verify the precision,
recall, and F-score data obtained through the meta-learning process.

Figure 13. Graph of (a) accuracy and (b) loss values during training and validation of the CREMA-
D dataset.

In Figure 14, one can observe the training and validation history of (a) accuracy and (b)
loss for the RAVDESS+TESS+SAVEE+CREMA-D datasets, allowing for an observation of
the model’s generalization across all seven classes within the dataset. In Table 14, the data
for precision, recall, and F-score obtained for the CREMA-D dataset can be examined.
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Table 13. Precision, recall, and F-score percentage values for the CREMA-D database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 81.0 84.0 82.0
Happy 80.0 83.0 82.0

Fear 85.0 80.0 82.0
Neutral 76.0 80.0 78.0
Angry 91.0 87.0 89.0

Sad 86.0 85.0 85.0
Accuracy - - 83.3

Figure 14. Graph of (a) accuracy and (b) loss values during training and validation of the
RAVDESS+TESS+SAVEE+CREMA-D dataset.

Table 14. Precision, recall, and F-score percentage values for the RAVDESS+TESS+SAVEE+CREMA-
D database.

Emotions Precision (%) Recall (%) F-Score (%)

Disgust 95.0 93.0 94.0
Happy 95.0 99.0 97.0

Fear 100.0 93.0 96.0
Neutral 100.0 100.0 100.0
Angry 94.0 99.0 96.0

Surprise 97.0 97.0 97.0
Sad 98.0 98.0 98.0

Accuracy - - 97.0

4.2. Comparison of Results

This section aims to conduct a comparative analysis of the results obtained in relation
to prior research documented in the literature. We have referred to the studies outlined in
Section 2 to accomplish this. Table 15 provides a comprehensive overview of the studies
under examination, the datasets employed, and the corresponding accuracy values reported
in each article.

Most of the papers mentioned in Table 15 use the RAVDESS database. When compar-
ing the accuracy values obtained, it is evident that our method achieves a higher accuracy,
at 97.01%. The works in [22,23] come closest to our result, with 95.52% and 95.22% accura-
cies, respectively. The same is true when we analyze the TESS database, where our work
achieved 100% accuracy.

The SAVEE and CREMA-D databases performed better in the work in [22], which
uses a hybrid architecture with CNN, LSTM, and GRU as the classifier. The model in [22]
achieved an accuracy of 93.22% for SAVEE and 90.47% for CREMA-D. Our work ob-
tained a similar accuracy for SAVEE, at 90.47%, while our work achieved 83.28% for the
CREMA-D database.
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Table 15. Comparison of accuracy values (%) of the proposed approach with related work. Bold
values indicate the best result of accuracy.

Paper RAVDESS TESS SAVEE CREMA-D R+T+S R+T+S+C

[23] 95.52 - - - - -
[22] 95.22 99.46 93.22 90.47 - -
[24] 68.00 - - - 89.00 -
[25] 89.33 - - - - -
[26] 94.18 - - - - -
[27] 77.31 - - - 89.93 72.94
[10] - - - - - 92.73
[28] 92.60 99.60 84.90 89.90 - 94.50

Proposed 97.01 100.00 90.62 83.28 97.37 90.94

Regarding the databases that combined other datasets, such as RAVDESS+TESS+SAVEE
(R+T+S) and RAVDESS+TESS+SAVEE+CREMA-D (R+T+S+C), our work achieved an ac-
curacy of 97.37% for the R+T+S dataset, standing out compared to the mentioned works.
In the R+T+S+C database, paper [28] achieved an accuracy of 94.50% using a hybrid network
composed of a CNN and LSTM.

This paper stands out for carrying out experiments on six databases, with the aim
of evaluating the robustness and consistency of the proposed approach. Although all
databases are related to emotion recognition in speech, each dataset presents distinct
characteristics and challenges. In this aspect, it is noteworthy that the proposed approach
demonstrated superior performance for three analyzed datasets (RAVDESS, TESS and
R+T+S), that is, for half of the problems applied. Thus, we achieved a superior performance
increase of 1.49% in accuracy for RAVDESS, an increase of 0.40% for TESS, and an increase
of 7.44% in accuracy for the R+T+S dataset.

Furthermore, the proposed approach achieved accuracies greater than 90% in five
of the analyzed datasets. For example, compared to the work in [27], experiments were
carried out with three datasets, but none of them achieved an accuracy greater than 90%.
Likewise, paper [24] evaluated two databases and neither of them achieved an accuracy
greater than 90%. In this way, the results in Table 15 reinforce the robustness of the proposed
approach, given the consistency of the accuracy results for the evaluated speech emotion
recognition problems.

5. Conclusions

This work aimed to develop a deep learning approach for assessing the most effective
configurations for speech emotion recognition. Additionally, we sought to conduct a
meta-learning analysis related to optimizers, learning rates, data augmentation techniques,
feature extraction strategies, and neural architectures. The transfer of configurations was
performed across different SER datasets.

The proposed approach produced results that are close to those in the literature.
Accuracy results in the datasets were impressive: RAVDESS achieved 97.01%, TESS 100%,
SAVEE 90.62%, and R+T+S 97.37%. The best overall configuration involved using the
Adam optimizer with a variable learning rate, applying data augmentation in the stretch
format, feature extraction in the MFCC style, and implementing a hybrid neural architecture
composed of a CNN4b and LSTM.

After identifying the optimal configuration, these settings were transferred to the
knowledge base and applied to the new datasets, CREMA-D and R+T+S+C. Subsequently,
the meta-learning process was conducted. The results demonstrate that meta-learning
outperformed methodical results. CREMA-D showed a 2.16% increase in accuracy, while
R+T+S+C achieved a 4.07% improvement. This suggests the feasibility of applying meta-
learning to various speech emotion recognition (SER) datasets, considering the optimizer,
the learning rate, data augmentation, feature extraction, and the neural architecture.
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This work has aspects that can be worked on in the future for improvement. One of
these topics is including and contributing to large language models (such as ChatGPT).
One of the relevant issues is addressing cultural differences in the recognition of speech
emotions, and the only dataset used in this paper that has cultural diversity is CREMA-D.
Another relevant issue to be worked on is improving the proposed approach by including
new parameters to be analyzed, such as the number of epochs, batch size, application of
cross-validation, and others. Finally, emotion recognition is a broad area, and multimodal
methods can be inserted for emotional recognition with greater assertiveness, i.e., using
speech, facial expressions, electroencephalogram signals, and other modals.
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