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Abstract: Electrophysiological signals are one of the key ways that fish convey information and
govern movement. Changes in physiological electrical signals may indirectly reflect changes in fish
sensory thresholds and locomotor behavior. The acquisition of physiological electrical signals in fish
is more susceptible than in mammals to the effects of surface mucus and water noise, thereby reducing
signal quality. In this study, a noise reduction method for electrophysiological behavioral signals
in fish was proposed, namely the decomposition of the original EMG signal into multiple intrinsic
mode components using CEEMDAN. To choose the signal-dominated IMF, noise-dominated IMF,
and pure IMF, mutual correlation function characteristic analysis is done on each IMF and the original
signal. The signal-dominated IMF is then filtered using the improved wavelet thresholding approach.
Finally, the wavelet threshold filtered signal-dominated IMF with pure IMF was reconstructed into
the processed fish EMG signal. It is demonstrated that the algorithm proposed in this paper improves
the SNR by 3.1977 dB and reduces the RMSE by 0.0235 when compared to the traditional wavelet
threshold denoising. The denoising method proposed in this paper can effectively improve the signal
quality and provides an effective tool for the in-depth analysis of fish behavior from the perspective
of physiological electrical signals.

Keywords: fish electromyographic signal; fish behavior; signal processing; CEEMDAN;
wavelet threshold

1. Introduction

Fish behavior is closely related to the muscles of the corresponding functional area,
which perform movements by contraction and relaxation. The rapid tail wagging of
fish is often used to catch prey and escape themselves, and is biologically important [1].
Neurobehavioral science attempts to reveal the neural mechanisms behind natural behavior,
and the study of the correlation between neural activity and behavioral representations is
challenging [2]. Fish use their muscles to propel them when they swim. To bend their bodies
and swing their tails, the muscles on either side of the fish must alternately contract and
relax. It was discovered by examining the EMG signals at anterior, middle, and posterior
body locations in rainbow trout that the EMG signal appears at a more posterior position
earlier in each tailbeat cycle [3]. EMG can detect, record and analyze the electrical signals
of skeletal muscle contractions, it is also useful for measuring the degree of myocardial
relaxation or contraction during the exposure of fish to the effects of exogenous anesthetic
substances [4,5]. Cod exhibits transient epileptic-like impairment after being electrocuted,
and the ECG signal will show high amplitude and high frequency waves during the tonic
phase [6]. Differences in the behavior of different fish immersed in different concentrations
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of anesthetics were studied based on changes in delicate information such as EMG and
ECG [7–9].

However, the collection of physiological electrical signals in fish is more susceptible to
the effects of surface mucus, random noise in water and underwater dark current intensity
than in mammals, thus reducing the signal quality. At present, the acquisition points of
fish physiological electrical signals are not standardized, resulting in large random noise
and a low signal noise ratio contained in the original fish physiological electrical signals.
The poor signal quality makes it difficult to combine EMG, ECG and EEG signals for
subsequent studies of fish behavior and physiology. The current fish muscle signal noise
elimination process is usually a bandpass filter after the signal amplifier [10,11]. However,
because relatively little is known about the inherent characteristics of the fish physiological
electrical signal, choosing a filter with too wide or too narrow a bandwidth can lead to
signal distortion and easily filter out critical parts of the signal. To address the issue of
denoising such fish physiological electrical data, a signal processing approach more suited
to noise removal from unknown signals should be adopted.

The empirical mode decomposition (EMD) is to decompose a segment of signal into
some intrinsic mode function (IMF) and a residual function according to the time scale [12–
14]. And the analysis of non-linear, non-smooth signals is appropriate for it [15,16]. EMD
is widely used in the analysis of EMG and ECG signals in mammals such as humans for
noise cancellation [17–19]. However, EMD is prone to the problem of modal mixing during
the decomposition process [20]. To solve this problem, [21] proposed ensemble empirical
mode decomposition (EEMD), adding random Gaussian white noise to the decomposition
process to eliminate modal aliasing by the superposition of noise. Although EEMD can
successfully reduce the modal mixing issue, it is challenging to completely remove the
additional Gaussian white noise during the decomposition reconstruction phase, which
lowers the data accuracy. To improve the accuracy, ref. [22] proposed complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN). CEEMDAN is widely
used in vibration signal denoising [23,24], ultrasound signal denoising [25], human ECG
signal enhancement and other fields [26]. Using only CEEMDAN for noise reduction
in the signal to be processed tends to discard the low-order components dominated by
high-frequency noise, resulting in a partial loss of useful detail information. To solve this
problem, wavelet thresholding is usually combined with EEMD, CEEMDAN, and applied
to each signal denoising [27]. Simulation of heartbeat detection using CEEMDAN-WT
denoising under different intensity EMG signal interference [28] in order to better restore
the characteristics of the ECG signal, ref. [29] improved the wavelet thresholding and
processed the actual ECG signal jointly with EEMD, and the experiments showed that the
method could better preserve the characteristics of the signal.

This study proposes to combine the improved wavelet thresholding with CEEMDAN
for application in the denoising of fish electrophysiological signals. Combined with the
characteristics of fish EMG signals, this paper redesigned the wavelet threshold function
and optimized the selection of IMF signals. Simulated denoising experiments are estab-
lished to assess the denoising impact of the proposed algorithm based on SNR and RMSE.
The actual noise cancellation of the acquired tail EMG signal is combined with the simple
tail swinging behavior of the fish.

2. Materials and Methods
2.1. Experimental Animals

Crucian carp (450 ± 20 g, 25 ± 2 cm, total length) were purchased from a local
commercial fishery and were temporarily housed in an 840 L rectangular glass aquarium
equipped with an oxygenator, UV germicidal lamp and biofilter, under natural light. The
tank was continuously aerated for oxygen supply, and the water quality parameters were
maintained at (pH = 7.4 ± 0.2, temperature = 24.0 ± 1.0 ◦C, dissolved oxygen = 4 ± 1 mg/L
and nitrite = 0.03 ± 0.01 mg/L). Prior to the research, these fish were hand fed twice each
day (9:00 am and 17:00 pm) with feed components (crude protein≥ 30%, crude fiber≤ 14%,
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crude fat ≥ 3%), and no abnormal behavior for 3 days were considered as experimental
fish. Feeding was stopped 24 h prior to the EMG signal acquisition experiment. All
procedures were approved by the Experimental Animal Welfare Ethics Committee of
Zhejiang University (project approval number: ZJU20190073).

2.2. EMG Recording

The electrodes were constructed with two 0.7 mm diameter insulated enameled cop-
per wires, and the ends of the insulated enameled copper wires were stripped of paint by
a (Huajin, HJ-220A, Dongguan, China) paint stripper before the experiment started. In
experiments involving the acquisition of electrical signals from fish, it is difficult to stan-
dardize the location of electrodes implanted in muscle groups due to different experimental
purposes, and the points chosen for this paper were determined after many experiments.
One end of the electrode was bent into a hook shape with a diameter of 5 mm and attached
to the dorsal lateral muscle fibers (15.0 mm below the mid-dorsal fin) and caudal lateral
muscle fibers (5 mm above the mid-caudal lateral line). Its remote end is connected to a
microvolt-level weak signal amplifier (Huigengsi, FA-300, Hangzhou, China) for data ac-
quisition using a multifunctional data acquisition card (Smacq, USB-1252A, Beijing, China).
The experimental sampling frequency was designed to detect the data continuously at
2 KHz and the Matlab 2020a software was used for filtering and analysis.

2.3. Signal Processing Processes and Methods
2.3.1. CEEMDAN Principle

EEMD is to perform EMD decomposition directly after adding white noise and cal-
culate the average value directly for each order of IMF. After calculating the mean value
of the first-order IMF, CEEMDAN adds Gaussian white noise to the residual IMF again,
iteratively until the end. The detailed process is as follows [30,31]:

1. Adding Gaussian white noise with τ0wi(t) normal distribution a to the original signal
x(t), then the signal of the i-th addition of Gaussian white noise xi(t) is represented
as:

xi(t) = x(t) + τ0wi(t) (1)

τ0 is the white noise coefficient, wi(t) is the i-th added white noise, and i is the number
of trials.

2. Arithmetic averaging of the signal to be processed after one time repetition of decom-
position using EMD yields the IMF1 and the residual component r1(t):

IMF1(t) =
1
I ∑I

i=1 E1
[
xi(t)

]
(2)

r1(t)= x(t)−IMF1(t) (3)

E is the operator of the intrinsic mode component obtained in the EMD of the signal
to be processed.

3. Adding the standard normally distributed Gaussian white noise τ1wi(t) to the resid-
ual component r1(t) and continuing the EMD, the IMF2(t) and the residual compo-
nent r2(t) after removing r2(t) are expressed as:

IMF2(t) =
1
I ∑I

i=1 E1
{

r1(t) + τ1E1
[
ωi(t)

]}
(4)

r2(t)= r1(t)−IMF2(t) (5)

4. For l = 2, 3, . . ., L, the l-th residual component rl(t) is calculated as:

rl(t)= rl−1(t)−IMFl(t) (6)
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5. The IMFl+1(t) of the extracted signal rl(t) + τlEl
[
ωi(t)

]
is expressed as:

IMFl+1(t) =
1
I ∑I

i=1 El
{

rl(t) + τlEl
[
ωi(t)

]}
(7)

6. Repeating steps 4 and 5 until the residual component signal is a monotonic function
that can no longer be decomposed and eventually the L internal modal components
may be acquired. It is possible to represent the original signal as follows:

x(t)= R(t)+∑L
i=1 IMFi(t) (8)

2.3.2. Improvement of Wavelet Threshold Function

The signal may be split into low-frequency and high-frequency components, and
it is commonly accepted that the high-frequency components of the signal contain the
majority of the noise. The choice of an appropriate wavelet basis function and the amount
of breakdown layers is the first step in wavelet threshold denoising. The electrical signal
from the fish muscle that contains noise was wavelet decomposed to obtain a number of
high-frequency wavelet coefficients and low-frequency wavelet coefficients. According to
the characteristics of the wavelet transformed signal, a threshold setting rule is selected, and
preserved wavelet coefficients with amplitudes larger than the predetermined threshold,
and those with amplitude less than the set threshold are removed. Finally, the noise
reduction signal is obtained by reconstructing the thresholding wavelet coefficients [32].

According to the principle of wavelet threshold denoising, it is known that after the
wavelet decomposition, the fish electromyographic signal needs to be processed by the
threshold function with noisy wavelet coefficients to remove the noise, and the threshold
function’s design is crucial for the signal denoising effect. Traditional wavelet coefficient
processing algorithms have both hard and soft thresholding methods, with the following
expressions:

1. Hard thresholding methods

ωJ,k =

{
ωj,k ,

∣∣ωj,k
∣∣ ≥ λ

0 ,
∣∣ωj,k

∣∣ < λ
(9)

2. Soft thresholding methods

ωJ,k =

{
sign(ωj,k)

(∣∣ωj,k
∣∣− λ) ,

∣∣ωj,k
∣∣ ≥ λ

0 ,
∣∣ωj,k

∣∣ < λ
(10)

In the field of practical research, both hard and soft thresholding have been extensively
employed, nonetheless, both algorithms have flaws [33,34]. The signal’s fundamental prop-
erties may be preserved to the fullest degree using the hard threshold function technique,
but because the hard threshold function at±λ is intermittent discontinuity, this intermittent
discontinuity makes it easy for the signal to produce the pseudo-Gibbs phenomenon [35],
and it is easy to generate oscillations when reconstructing the denoised fish EMG signal.
The discontinuity of the hard thresholding approach is improved by the soft thresholding
method, resulting in a smoother electrical signal from the denoised fish muscle. But there
is a brand-new issue with fixed deviation amongωJ,k andωJ,k, which would diminish the
SNR of the reconstructed fish EMG signal and lose some of the mutational information in
the signal.

Considering the above problems, this paper improves on the former by introducing
primary functions such as exponential functions and preset adjustable parameters α and β.
The coefficients below the threshold in the wavelet decomposition are not immediately set
to 0 and are instead provided modest compensation [36]. The following is the new wavelet
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threshold function expression that is presented in the study as an improved new wavelet
threshold function:

ωJ,k =


sign(ωj,k)

[∣∣ωj,k
∣∣− |ωj,k| − λ

α e
√
|ωj,k |−λ

e
β

√
|ωj,k |

2−λ2

]
,

∣∣ωj,k
∣∣ ≥ λ

sign(ωj,k)
|ωj,k|
α e

αβ

(
|ωj,k |
λ −1

)
,

∣∣ωj,k
∣∣ < λ

(11)

where λ is the threshold value,ωj,k is the wavelet coefficient of the original signal,ωJ,k is
the new wavelet coefficient obtained after wavelet thresholding, and α and β are preset
adjustable parameters. The schematic diagram of the traditional hard threshold, soft
threshold, and enhanced threshold function curve in this research is shown in (Figure 1)
below.
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Figure 1. Comparison of three threshold functions (hard threshold, soft threshold, improved thresh-
old).

The equation f (ωj,k) =ωJ,k, was created to check the improved threshold function’s
characteristics in the following five areas, and to demonstrate the function’s viability using
the mathematical justification [29]. The mathematical proof is derived as follows:

1. Parity

The function is in the range (−∞, +∞), which is consistent with f (ωj,k) = − f (−ωj,k),
so the function is an odd function.

2. Continuity

When
∣∣ωj,k

∣∣ = 0, f
(
ωj,k

)
= 0, and when

∣∣ωj,k
∣∣ → +λ, lim

ωj,k→λ+
f (ωj,k)

= lim
ωj,k→λ+

sign(ωj,k) ∗
[
λ+ − λ+ − λ

α e
√
λ+−λ

eβ
√
λ+

2−λ2

]
= λ
α . And when

∣∣ωj,k
∣∣→−λ, lim

ωj,k→λ−
f (ωj,k) =

lim
ωj,k→λ−

sign(ωj,k)
λ−
α eαβ(

λ−
λ −1) = λ

α .

The function satisfies the continuity at ωj,k = ±λ, and the continuity of the function
can improve the hard threshold function in signal reconstruction with oscillation, burr and
other problems [37].

3. Progressivity
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When
∣∣ωj,k

∣∣ → +∞, lim
ωj,k→∞

[ f (ωj,k)

ωj,k

]
=

1− |ωj,k| − λ
α e
√
|ωj,k |−λ

ωj,k ∗ e
β

√
|ωj,k |

2−λ2

, and according to

Lopita’s law operation, lim
ωj,k→∞

[ f (ωj,k)

ωj,k

]
= 1, it is demonstrated that when the wavelet

coefficients steadily grow, this threshold function is asymptotic to the traditional hard
threshold.

4. Constant difference

When
∣∣ωj,k

∣∣→ +∞, lim
ωj,k→+∞

[
f (ωj,k)−ωj,k

]
=
∣∣ωj,k

∣∣− |ωj,k| − λ
α e
√
|ωj,k |−λ

e
β

√
|ωj,k |

2−λ2
−
∣∣ωj,k

∣∣ = 0.

Thus, it demonstrates that when wavelet coefficients are increased, the disparity between
the reconstructed signal and the original signal gradually reduces.

5. Adjustable parameters

By modifying the preset parameters α and β, the threshold function may be flexibly
altered. As shown in (Figure 2), when α = 2 and β = 2, the function graph converges to the
hard threshold faster, and when α = 6 and β = 0.8, the function graph converges to the hard
threshold function slower. The preset parameters can be adjusted appropriately according
to the specific signal form to meet different needs.
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2.4. CEEMDAN with Improved Wavelet Thresholding

The CEEMDAN-improved wavelet thresholding method first decomposes the fish
tail EMG signal by CEEMDAN to obtain several IMFs with one residual component. How
much relevance there is between each intrinsic mode component and the original signal
is calculated, then the IMFs with the greatest and lowest correlations are filtered out.
Although the IMF with the highest correlation will also contain some noise, it will also
contain some weak signal details, so the IMF with the highest correlation is treated as
the pure component. The minimum intercorrelation indicates a weak linear relationship
between this IMF and the original signal, so this component is directly taken as the IMF
dominated by noise. The difference of each correlation coefficient is calculated to obtain the
difference curve, and the first extreme point past zero is selected according to the difference
curve as the critical point between the noise-dominated IMF and the signal-dominated
IMF [38]. The signal-dominated IMF is denoised via an improved wavelet thresholding
approach to recover some of the useful information that is lost during the CEEMDAN
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decomposition process after the noise-dominated IMF and the pure noise component
have been eliminated. Finally, the IMF is reconstructed with the pure component after
improved wavelet thresholding to obtain the processed signal. The complete flow of the
noise reduction algorithm is shown in (Figure 3).
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3. Experiments and Results
3.1. Experimental Animals

Combining the features of the fish tail EMG signal, a part of the denoised fish EMG test
signal was picked and 15 dB of random white noise was added to it, and the resulting noise-
containing signal was filtered and tested using traditional wavelet threshold denoising,
CEEMDAN with wavelet soft threshold denoising, CEEMDAN with wavelet hard threshold
denoising, literature 1 [39] and literature 2 [40], and the study proposes using CEEMDAN
with the improved wavelet threshold denoising technique.

The noise reduction effect is shown in (Figure 4), and it can be seen that different
threshold functions have slightly different effects on signal denoising. (Figure 4A) shows
the original test signal and (Figure 4B) shows the noise-containing signal with 15 dB of noise
added to the original signal. The noise-containing signals were subjected to the following
algorithms for noise removal simulation experiments, and the better algorithm is considered
to be the one that can better recover the original signal characteristics. (Figure 4C) uses the
traditional wavelet thresholding denoising algorithm, which can be seen to remove most
of the noise, but there are still more burrs in some mutation details and incomplete noise
filtering. Compared to the signal denoised directly by the wavelet threshold function, the
signal decomposed by CEEMDAN and then denoised by the wavelet soft threshold function
(Figure 4D) is generally smoother, but due to the introduction of the constant difference,
the signal loses some detailed information at the mutation points. (Figure 4E) shows
CEEMDAN decomposition followed by denoising using the wavelet hard thresholding
function, however, this algorithm is not effective in detail burr suppression, but the details
can be preserved. (Figure 4F,G) shows improved denoising algorithms where it can be seen
that after processing combined with the fish electromyographic signal features, the noise-
containing signals and the original signal are slightly different and there is still some room
for improvement. (Figure 4H) shows the effect of the signal after CEEMDAN processing
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with the improved wavelet thresholding denoising method proposed in this paper, the
algorithm retains the details in the original signal and removes the noise effectively, which
is more similar to the original signal.
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Figure 4. Comparison of noise reduction effects using different denoising algorithms. The original
signal (A), 15 dB noise is added to the original signal to synthesize the noise-containing signal (B),
after denoising using traditional wavelet thresholding (C), after denoising using CEEMDAN with
wavelet soft threshold denoising (D), after denoising using CEEMDAN with wavelet hard threshold
denoising (E), the denoising effect of other improved algorithms (F,G), the denoising effect of this
algorithm (H).

In order to more intuitively portray the noise reduction impact of various techniques,
the performance evaluation indexes in this paper adopt SNR and RMSE. SNR directly
reflects the effect of the denoising method. The greater the SNR, the more effectively
noise can be reduced and the better the denoising impact. The RMSE is used to compare
the similarity of the denoised and original signals, and a lower error number implies a
better denoising impact. The performance characteristics of each denoising approach are
compared in (Table 1), and their SNR and RMSE expressions are as follows:

SNR = 10log10

{
∑N

n=1 f 2(n)

∑N
n=1

(
f (n)− f̃ (n)

)2

}
(12)
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RMSE =

√
1
N ∑N

n=1

[
f (n)− f̃ (n)

]2
(13)

where f (n) is the signal before processing, f̃ (n) is the signal after processing, and N is the
length of the signal.

Table 1. Performance comparison of different denoising algorithms.

Denoising Method

Added Noise

10 dB 15 dB

SNR RMSE SNR RMSE

Wavelet threshold denoising 20.1266 0.0986 22.3172 0.0766
CEEMDAN + Soft threshold denoising 19.9505 0.1005 21.7416 0.0818

CEEMDAN + Hard threshold denoising 21.4373 0.0947 23.8158 0.0644
CEEMDAN + Improved threshold denoising [39] 21.3067 0.0961 23.6247 0.0659
CEEMDAN + Improved threshold denoising [40] 20.8791 0.0973 23.2049 0.0691

Proposed Algorithm 21.8496 0.0908 25.5149 0.0531

From the data in (Table 1), it can be seen that when compared to single wavelet
threshold denoising, CEEMDAN-wavelet soft threshold denoising, CEEMDAN-wavelet
hard threshold denoising, literature 1 and literature 2, the CEEMDAN with improved
wavelet threshold denoising algorithm proposed in this paper has the highest SNR, as
well as the smallest RMSE, and has excellent denoising performance. With the addition
of 15 dB of white noise, the denoising method proposed in this paper improves the SNR
by 3.1977 dB and reduces the RMSE by 0.0235 over the conventional wavelet thresholding
method.

The algorithm proposed in this paper is not only applicable to the electromyographic
signals characterized by fish, but also has a better denoising effect on the electrical signals
of other organisms. In order to verify the effectiveness and generalizability of the algorithm,
the following supplementary simulation experiments were performed. A segment of
human heart electrical signal [41] was selected from the public MIT-BIH database, where
the sampling rate of the signal was 360 Hz. After adding 15 dB of noise to the original signal
as a noise-containing signal (Figure 5A), it can be seen that the original signal is flooded
with noise and loses its original signal characteristics. Noisy signals were processed using
the denoising algorithms proposed in literature 1 [39], literature 2 [40] and in this study.

The original signal is uniformly represented by a specific color, as can be seen in
(Figure 5B,C), after denoising reduction using the algorithms from literature 1 [39] and
literature 2 [40], more details are lost and the denoised signal is too smooth and has a
poor restoration. (Figure 5D) shows the denoising effect of the proposed algorithm in ECG
signals, which can better restore the original signal from the noise-containing signals with
noise interference, and the signal features can be better preserved.
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Figure 5. Comparison of the local noise reduction effects of processed human ECG signals under
different denoising algorithms. Demonstration plot of the original signal with 15 dB of noise added
(A), the original signal and the presentation graph after processing by the denoising algorithm in [39]
(B), the original signal and the presentation graph after processing by the denoising algorithm in [40]
(C), the original signal with the presentation plot after processing by the algorithm proposed in this
paper (D).

As shown in (Table 2), the denoising quality is also visualized using SNR and RMSE.
With 15 dB of noise added, literature 1 [39], literature 2 [40] have an SNR of 8.8071 and
7.5739 and an RMSE of 0.1661 and 0.1914. And the algorithm of this paper reaches an SNR
of 12.8731 and an RMSE of 0.1121. Under the dual effect of signal decomposition selection
and further improvement of the threshold function, the highest SNR and the lowest RMSE
are obtained with the denoising algorithm of this paper, and the validity and universality
of the algorithm are verified.

Table 2. Performance comparison of different denoising algorithms for processing human ECG.

Denoising Method
Add Noise

15 dB

SNR RMSE

CEEMDAN + Improved threshold denoising [39] 8.8071 0.1661
CEEMDAN + Improved threshold denoising [40] 7.5739 0.1914

Proposed Algorithm 12.8731 0.1121

3.2. Effect of Simulation Experiment

The EMG of the tail of an adult crucian carp (452 g) during the tail-swinging behavior
while gradually awakening form anesthesia with 80 µg/L eugenol solution was used.
The recorded raw fish tail EMG signal is shown in (Figure 6). The unprocessed signal is
prone to interference from trauma mucus and water flow fluctuations which adds a lot of
noise. The fish physiological electrical signal itself is non-linear and non-smooth, which
directly reduces the accuracy of the subsequent fish myoelectric signal analysis. This paper
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proposes that CEEMDAN with an improved wavelet thresholding method can be able to
play a role in suppressing noise in subsequent signal processing.
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3.2.1. CEEMDAN Decomposition

First, the fish EMG signal needs to be decomposed by CEEMDAN and it was con-
cluded through several experiments that the result of adding the ratio of white noise
standard deviation to the signal standard deviation being 0.2, the average signal number
being 200, and the maximum number of iterations being 2000 works better. The 17 IMF and
residual components were obtained from the original fish tail EMG signal by CEEMDAN
decomposition, and the results are shown in (Figure 7).
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Figure 7. CEEMDAN decomposition of myoelectric signals in the tail of a fish.

3.2.2. Noise Treatment

Mutual correlation calculations were performed for each IMF with the original signal.
The difference between the intercorrelation of each IMF and the number of intercorrelations
of the previous IMF was calculated, and the difference curve was plotted as in (Figure 8).
The second extreme point greater than zero, IMF1 and IMF2, was chosen as the critical point
between the noise-dominated IMF component and the signal-dominated IMF component.
The IMF14 with the largest number of interrelationships was selected in turn as the pure
component, and the IMF9 with the smallest number of interrelationships is also used as
the noise-dominated component, and all the noise-dominated IMFs were removed for
the operation.
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Figure 8. Difference curves derived from the number of correlations.

Improved wavelet threshold denoising was used for the remaining signal-dominated
IMF. The wavelet basis function employed in this study, sym4, has a total of 5 decom-
position layers, the preset parameters α and β were adjusted and superimposed on the
IMF dominated by the signal after denoising using this method with the pure IMF. The
denoised signal is shown in its final form in (Figure 9). The Sym4 wavelet has better
symmetry and localization properties, which can better capture the local features of the
signal. After experimental comparison with other wavelet bases, sym4 was found to be
more suitable for fish EMG signal features. In the comparison between the denoised signal
(Figure 9) and the original signal (Figure 6), we can see that the signal curve is smoother
after the denoising process using CEEMDAN and the improved wavelet thresholding
algorithm which suppresses the influence of strong noise on the signal and retains the real
signal information.
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4. Conclusions

This research proposes a signal processing method for denoising fish physiological
electrical signals based on the combination of CEEMDAN and improved wavelet threshold-
ing. Since there is no uniform standardization of the acquisition process for fish electrical
signals, there are also large differences in the acquisition equipment, electrode implanta-
tion sites, and the acquisition environment. All of these factors can reduce the quality of
the acquired fish electrical signals, and effective and generalizable signal preprocessing
algorithms are necessary. The drawbacks of traditional thresholding functions, excessive
smoothing, abrupt changes at the threshold and directly setting a small signal to zero,
are all addressed by the improved wavelet thresholding function. The dual parameters
that have been introduced can also be modified in accordance with the various waveform
characteristics of the actual signal. The experimental results show that compared with the
other denoising algorithms mentioned in this paper, the denoising algorithm proposed
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in this paper has a higher signal-to-noise ratio and lower root mean square error and can
effectively suppress the noise in the signal. The method proposed in this paper focuses on
fish physiological signal preprocessing which provides an effective signal denoising tool
for in-depth analysis of fish behavior and physiological studies investigating the effects of
certain states on fish behavior. Although this denoising algorithm can effectively improve
the accuracy of the signal, there is still some room for optimization and improvement. In
the future, on the one hand, it will be possible to continue to try to optimize and improve
the signal quality in terms of pre-processing. On the other hand, we can try to establish a
stronger link between the physiological electrical signals of fish and their own behaviors
(e.g., opening and closing the mouth, wagging the tail, etc.) to differentiate specific fish
behaviors from the perspective of electrophysiological signals.
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