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Abstract: In the current steel production process, occasional flaws within the billet are somewhat
inevitable. Overlooking these flaws can compromise the quality of the resulting steel products. To
address and mark these flaws for further handling, Magnetic Particle Testing (MT) in conjunction
with machine vision is commonly utilized. This method identifies flaws on the billet’s surface and
subsequently marks them via a device, eliminating the need for manual intervention. However,
certain processes, such as magnetic particle cleaning, require substantial spacing between the vision
system and the marking device. This extended distance can lead to shifts in the billet position, thereby
potentially affecting the precision of flaw marking. In response to this challenge, we developed a
detection-marking system consisting of 2D cameras, a manipulator, and an integrated 3D camera to
accurately pinpoint the flaw’s location. Importantly, this system can be integrated into active produc-
tion lines without causing disruptions. Experimental assessments on dynamic billets substantiated
the system’s efficacy and feasibility.

Keywords: machine vision; steel billet; descriptor matching; point cloud; SVD (singular value
decomposition)

1. Introduction

In industrial steel production, occasional slender flaws on the steel surface, which are
challenging to discern with the naked eye, might precipitate crack expansion post rolling.
This can have direct ramifications for the subsequent phases of steel production. Given the
implications, it is imperative to detect and rectify surface flaws. In many contemporary
steel mills, flaws are manually pinpointed and chalk-marked, polished in a subsequent
procedure. Given this, the development of an automated flaw detection-marking system
becomes essential to optimize labor costs and enhance operational efficiency.

Several methodologies exist for detecting flaws on billet surfaces, including eddy
current testing, infrared testing, and magnetic particle testing (MT) [1]. Among these,
MT stands out due to its reliability, efficiency, and non-damaging nature to billets [2].
Under specific lighting conditions, the magnetic particle reaction facilitates easy visual
identification of flaws. Numerous studies have delved into the utility of machine vision for
steel billet surface detection. A typical visual tool offers dual functionalities: flaw detection
and classification [3–8]. Upon flaw localization on the billet surface, the positional data
must be relayed to the marking device, such as a manipulator [9].

Generally, an interlude of magnetic particle cleaning is executed between MT and
marking. In the manufacturing landscape, this cleaning spans an extended length of the
billet. Given potential discrepancies in roller table installations, the billet’s orientation
may shift during this extended process, potentially leading to misalignment between the
marking device and the flaw’s position. To address this, a proximal visual system precedes
the manipulator for flaw relocalization. Our proposed solution leverages point clouds
rendered by a singular 3D camera.
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For mobile workpieces, as described in work [10], a line scanning camera inspects
rapidly moving tubular metals, identifying flaw locations. However, billet production
systems might necessitate multiple line scanning cameras, thereby inflating costs. Owing
to its expansive illumination range coupled with cost effectiveness, we integrated a solitary
area-array camera into the system. This paper offers the following contributions:

• A novel system for locating and marking billet flaws that can be operated without
affecting billet production.

• A dynamic keypoint tracking strategy combining descriptor extraction and a projection
technique. Descriptor extraction employs a SIFT (Scale Invariant Feature Transform)-
like method, whereas the projection technique utilizes geometric constraints and point
cloud image processing algorithms. SIFT is an algorithm for detecting and describing
key points in an image with stability for rotation, scaling, brightness changes, etc.

• Implementation of an SVD-based technique for the ICP (Iterative Closest Point) solve,
facilitating the calibration of both the camera and manipulator.

2. Related Work

Theoretically, the pose estimation of the billet involves edge detection and the Hough
transform to discern the billet’s edge, subsequently computing its pose transformation.
Notably, edge detection for deducing billet poses remains underexplored, with predominant
focus directed towards flaw detection. Liu et al. [11] deployed the Sobel method for
steel surface defect detection, achieving a detection rate of 80%. For augmenting the
precision of heavy rail surface defect detection, an enhanced Sobel operator was introduced
in [12]. By incorporating a template oriented at 45◦ and 135◦, this operator captured a
more comprehensive edge information compared to its traditional counterpart. Another
study [13] utilized the Canny edge extraction operator to extract steel strip image edges
and delineate its contour. Our endeavors with edge detection techniques are elaborated
upon in Section 3.

There is also feature extraction from point clouds of billets to achieve their positional
detection. In [14], a multi-step refinement method used robust moving least squares to
fit potential features locally. But finer calculations inevitably bring a heavier computing
burden. In [15], a multi-scale neighborhood feature extraction and aggregation model
(MNFEAM) to enhance feature extraction method for point cloud learning was proposed.
Normally, deep learning-based methods require a large enough number of training samples,
demanding significant time costs.

Furthermore, billet pose identification can be realized via template matching [16].
However, the accuracy of this approach might be compromised due to variances in surface
textures and morphologies across different billets. Acknowledging this, our methodology
incorporates the region growth algorithm in tandem with RANSAC (Random Sample
Consensus) for implementation.

Building upon the existing methods for flaw detection in steel billets, this study aims to
address the practical challenges of integrating such systems into the dynamic environment
of industrial steel production. Our research focuses on developing an automated system
that not only detects surface flaws with high accuracy, but also aligns flaw marking pro-
cesses with real-time orientation changes of billets. This objective stems from the identified
need for more operationally feasible solutions in the existing literature.

3. Application Scenario Introduction and Previous Attempts
3.1. Application Scenario Introduction

The proposed scheme is implemented within a steel production line. Here are specific
details pertaining to the billets processed on this line.

Figure 1 presents an illustration of a billet. Typically, the flaws manifest as straight
lines parallel to the direction of forward movement, with lengths ranging from 50 mm to
500 mm. The spacing between roller tables is approximately 2 m. Billets on this line measure
between 13 m to 15 m in length and operate at a speed of 0.2 m/s. Due to the manufacturing
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methodology, flaws exclusively appear on the two inclined planes at the upper part of the
billet. A section of roughly 8 m is designated for magnetic particle cleaning.

Rollers

Billet

Flaw

 

Figure 1. Shape of a billet in the production workshop. The direction of the arrow indicates the travel
direction of the billet.

In reality, our system is not constrained by the length of the steel billets; it can be
readily adapted to billets of different cross-sectional areas with minor adjustments to the
installation of the flaw detection cameras. For slab billets, which can be considered as a
type of billets with a larger ratio of width to thickness, our approach remains effective.
This adaptability ensures that the system is versatile and applicable across a range of
billet dimensions.

In essence, the object of the proposed system is to relocalize flaws running parallel
to the direction of movement on the two upper surfaces of the billet after it travels a
considerable distance. Following this, their positional information is translated into the
manipulator’s coordinates to facilitate marking.

3.2. Previous Attempts

Initially, our relocalization was executed using two well-calibrated cameras, similar
to the flaw detection setup. Each camera was equipped with supplementary lighting, as
shown in Figure 2a,b. By fine-tuning the parameters of the cameras and the lightings,
we enhanced the visibility of the edges of the steel billets under the illumination of the
supplementary lights, as depicted in Figure 2c. The workflow for this process is as follows:

• Midpoints are selected on the upper edges of the images captured by both cameras,
along with two equidistant points on either side, serving as co-visibility points.

• These co-visibility points are then triangulated and processed using least squares
estimation to reconstruct the spatial position of a co-visibility line.

• Utilizing the known actual width of the steel billet and the minimum width difference
observed on the image’s upper and lower edges, the spatial position of the lower edge
is deduced.

• Utilizing the spatial positions of the upper and lower edges, the position of the plane
is reconstructed, thereby facilitating the calculation of the flaw’s location.

The viability of this approach is highly contingent on specific lighting conditions
and installation requirements. In real-world production environments, variables such as
changing illumination and vibrations can impact the precision of this method. Therefore,
the robustness of this solution is somewhat limited under these conditions. As a result,
this approach was deemed unviable and subsequently discarded. The workflow of the
validated, feasible solution is depicted in Figure 3.
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(a) (b)

A camera with a 
supplementary light

(c)

Upper Edge

Lower Edge

Upper Edge

Lower Edge

Figure 2. Previous solution. (a) The previous solution. (b) Design diagram of the previous solution.
(c) Billet edge detection in the previous solution.

(a)

(b)

(d)

Billet with a flaw

c-1

c-2
c-3

d-1

(c)

3D camera

Figure 3. Workflow. (a) Billet with a flaw; (b) The processing of MT flaw detection; (c) In view of
posture differences of a billet, a 3D camera is brought in for relocalization, where (c-1) represents the
original point cloud data of the billet, (c-2) shows the effect after processing, and (c-3) is to illustrate
that the posture of the same position on the same billet changes when passing by the fixed 3D camera
multiple times; (d) The processing of the coordinates conversion system, where in (d-1), the red line
demonstrates the working range of the chalk on the manipulator. Finally, the manipulator clamps a
piece of chalk to complete the marking action.

4. Detailed Architecture

The system encompasses two primary components: (1) a flaw detection system,
equipped with two 2D industrial cameras, and (2) a marking system, which includes
a 3D camera paired with a manipulator. A host computer orchestrates the operations,
computations, and data communications of the entire system.

4.1. Flaw Detection System and Notations
4.1.1. Flaw Detection

As depicted in Figure 3b, the two flaw detection cameras are designed to capture
images of the two surfaces of the steel billet where flaws are likely to manifest. Each camera
is meticulously positioned to ensure that its field of view encompasses the entire width of
the billet. As illustrated, the image captured by Camera B has its x-direction correlated
with the width of the surface. The flaw detection procedure identifies which surface (either
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A or B) presents a flaw. The flaw’s starting position along the x-direction is discerned using
a recognition algorithm. For the y-direction coordinate of the flaw’s initiation point, both
sections utilize identical encoders (refer to Figure 4) that are engaged with the moving
billet. This mechanism facilitates the computation of the coordinate. The same method is
employed to determine the flaw’s length. As a result, the visual system design negates the
need for considerations related to the y coordinates.

Pictures taken by 3D camera

(a)

(b)

Billet Manipulator 3D camera
Roller 

encoder

(Ahead)

Zm

Om

Xm

Ym

O3d

X3d

Z3d

Y3d

3D camera

Figure 4. Marking system. (a) Engineering design drawing (SolidWorks). (b) General site layout.

4.1.2. Notations

Figure 4 offers a schematic representation of the marking system’s structure. At the
top of Figure 4a, the coordinate systems for both the 3D camera and the manipulator are
illustrated, represented by X3d − Y3d − Z3d and Xm − Ym − Zm. Y3d and Ym, respectively.
Notably, both Y3d and Ym align with the billet’s direction of movement.

4.2. Relocalization

The 3D camera, positioned above the steel billet, is adept at producing both RGB and
point cloud images. As indicated in Figure 3(c-3), vibrations lead to discrepancies when
the same billet position moves under the 3D camera, causing point cloud images not to
overlap. Hence, relocalization becomes indispensable.

4.2.1. Descriptor-Based Relocalization

The flaw’s starting point is identified by one of the detection cameras. As it transitions
towards the 3D camera, it might undergo unforeseen displacements due to vibrations.
Consequently, relocalizing the flaw is tantamount to tracking a dynamic point. However,
this presents a twofold challenge: 1. The considerable separation between the two cameras
precludes either from maintaining a consistent track of the point. 2. Potential variations
stemming from the magnetic particle cleaning process, coupled with fluctuating lighting
conditions, can modify the point’s features, impeding consistent visual tracking. To address
these challenges, the proposed system leverages encoders to relay the point’s position to
the 3D camera.

Pf law−3D = Te,3D(T2D,ePf law−2D + f (v)), (1)
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where Pf law−3D and Pf law−2D represent the coordinates of the detected flaw’s starting point
in the 3D and 2D cameras, respectively. Te,3D and T2D,e are transformation matrices in a
SE(3) form. These matrices capture the transformations from the encoder to the 3D camera
and from the 2D camera to the encoder, respectively. Function f (v) characterizes the offset
induced by vibrations.

Given the inability to track feature points, the starting point of the flaw is treated
as a keypoint. Consequently, texture descriptors similar to SIFT are extracted. SIFT has
demonstrated robustness to variations in lighting, changes in scale, and rotations. We
consider the starting point of a flaw as a center point and extract a descriptor from this
one. We term this method the SIFT-like algorithm. The representation for extracting
SIFT-like descriptors is provided below. We suppose the pixels around the keypoint (the
starting point of the flaw) are partitioned into n subdivisions. The gradient magnitude
and gradient direction for pixels within the ith subdivision are symbolized as gi and θi,
respectively. The descriptor of the keypoint can be represented as an n− dimensional vector
D = {d1, d2, . . . , dn}, where

di = (
m

∑
j=1

gi,jcos(mθi,j),
m

∑
j=1

gi,jsin(mθi,j)). (2)

The positive integer m denotes the number of sub-vectors present within each re-
gion. The host computer continuously tracks encoder values. Upon detecting a keypoint
proximate to the 3D camera, the system derives descriptors for the prevailing image. The
matching SIFT-like algorithm is given by

dist(Pf law−3d − Pf law−2d) = ‖Di3d − Di2d‖. (3)

here, ‖.‖ signifies the Euclidean norm of a vector. If the distance, dist, between two
descriptors falls below the threshold h1, they are deemed to match, and the point is
recognized as a keypoint.

4.2.2. Projection-Based Relocalization

If there is a pronounced rotation, the precision of SIFT diminishes substantially. In
such scenarios, adopting a more resilient strategy based on geometric constraints becomes
beneficial. Projecting these constraints onto the 3D camera facilitates deriving the coordi-
nates of specific points. For illustrative purposes, let us consider the flaw on surface B. The
method to translate its coordinate from camera B to the 3D camera is depicted in Figure 5.

From Figure 5a:
P(x2d, y2d)—the starting point of the flaw,
L—the width of the billet, generally 140 mm.
In Figure 5b:
α—the plane y3d = 0,
P′(x′3d, 0, z′3d)—the intersection of plane α and the flaw. It is the same as the x3d and

z3d coordinates of the starting point of the flaw.
P′xmin—the point with the lowest x coordinate xmin on the intersection of plane α and

suface B,
P′xmax—the point with the largest x coordinate xmax on the intersection of plane α and

surface B,
L′—difference between x coordinates of Pxmax and Pxmin.
As can be seen from the figure,

x2d
L

=
xmax − x′3d

L′
. (4)

Thus,

x′3d = xmax −
x2dL′

L
. (5)
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Coordinate x′3d can thus be determined. For simplification, we directly consider the
y-coordinate as zero. When the x3d and y3d coordinates of a point within a generic point
cloud image are known, the corresponding z3d coordinate is derivable.

Let us assume that the positions of point Pf law−3d that ascertained the projection
method and the SIFT-like algorithm are represented as Pproj and Psi f , respectively. Given
this context, we can define a threshold value h2. Thus, the value of Pf law−3d is articulated
as follows:

Pf law−3d =


Pproj, i f

∥∥∥Pproj − Psi f

∥∥∥ > h2,

Psi f , i f
∥∥∥Pproj − Psi f

∥∥∥ ≤ h2.
(6)

Y2d

X2d

P(x2d,y2d)

X3d

Y3d

L

(a) (b)

O2d

O3d

Z3d

L'

P'(x'3d,0,y'3d)

α

P'xmin

P'xmax

(a) (b)
Figure 5. The method for a flaw’s position in one 2D camera converting to that in the 3D camera. In
(a), the upper image represents taking Camera B as an example, and the lower image is a schematic of
the corresponding image including the coordinate system; in (b), the upper image shows a schematic
of the 3D camera’s capture, and the lower image is a point cloud schematic of Surface B including the
coordinate system.

4.3. Marking

This section focuses on the computation of the coordinate transformation between
the 3D camera and the manipulator. Specifically, the goal is to determine a transformation
matrix that converts the coordinates provided by the 3D camera into the manipulator’s
coordinate system. ICP is an algorithm widely used in computer vision and robotics to find
the best correspondence and transformation between two sets of points. An ICP solve was
introduced to address this challenge.

Acquisition of a point cloud image by the 3D camera ranges between 500 ms and
1000 ms, while the vision algorithms of the proposed system require approximately 800 ms.
As a result, a specific installation gap between the 3D camera and the manipulator’s
marking position is necessary. Our design incorporates a 1.8 m interval between them.
Given the billet’s running speed of 0.2 m/s, this setup satisfies the system’s requirements.

The manipulator’s marking method involves holding a piece of chalk and pressing it
onto the billet. The relative motion between the billet and chalk creates the marking line.
Upon the encoder measuring the flaw’s length, the chalk is raised. The operational range
of the marking manipulator with the chalk is depicted in Figure 3(d-1).

In actual marking trials to enhance response time, the marking system’s host computer,
upon identifying the surface label, merely positions the manipulator to hover above the
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respective surface’s width center, awaiting instructions. After the coordinates are processed,
the manipulator conducts minor movements to finalize the marking.

5. Algorithms and Their Realizations

To process digital operations, the raw point cloud data captured from the 3D camera
need preliminary handling. As is observable in Figure 3(c-1), the initial point cloud image
exhibits two surfaces, A and B, alongside several extraneous points which are potential
sources of interference. The system’s strategy is to bifurcate the point cloud into two
segments using the region growing algorithm and subsequently filter out anomalies with
the RANSAC algorithm.

5.1. Region Growing, Ransac, and Their Realizations
5.1.1. Region Growing Algorithm

For decades, region growing has been a fundamental technique in medical image
segmentation [17]. It also finds its applications in the processing of 3D point cloud
images [18,19].

The fundamental objective of the region growing technique is to aggregate point
clouds with analogous properties to delineate a coherent region. For every distinct region
intended for segmentation, an initial seed point is identified to kickstart the expansion.
Adjacent points, showcasing similar attributes to the seed, are amalgamated into a singular
cluster. This iterative accretion continues until no additional points fulfilling the preset
criteria can be integrated, culminating in a well-defined region. The sequential steps are
elucidated as Algorithm 1:

Algorithm 1 Region growing

Require: D: Data set, Model requirements, T: Specified iteration times
Ensure: Mbest: The model with the most internal points

1: Initialize Gmax to 0
2: Initialize Mbest to null
3: for i = 1 to T do
4: Randomly select some data from D into set I
5: Build a mathematical model M using I
6: for each data point d in D \ I do
7: Test the data point d with the model M
8: if d applies to M then
9: Consider d as an internal point

10: else
11: Consider d as an external point
12: end if
13: end for
14: Reestimate the model M using all hypothetical internal points
15: Cinliers ← Count of internal points for model M
16: if Cinliers > Gmax then
17: Gmax ← Cinliers
18: Mbest ← M
19: end if
20: end forreturn Mbest

5.1.2. RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm is often used to solve plane
detection tasks in computer vision, and it is also often used to remove external points in 3D
point cloud images. The principle and process are as described in Algorithm 2:
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Algorithm 2 RANSAC

Require: D: Data set, Model requirements, T: Specified iteration times
Ensure: Mbest: The model with the most internal points

1: Initialize Gmax to 0
2: Initialize Mbest to null
3: for i = 1 to T do
4: Randomly select some data from D into set I
5: Build a mathematical model M using I
6: for each data point d in D \ I do
7: Test the data point d with the model M
8: if d applies to M then
9: Consider d as an internal point

10: else
11: Consider d as an external point
12: end if
13: end for
14: Reestimate the model M using all hypothetical internal points
15: Cinliers ← Count of internal points for model M
16: if Cinliers > Gmax then
17: Gmax ← Cinliers
18: Mbest ← M
19: end if
20: end forreturn Mbest

5.1.3. Realizations

The Point Cloud Library (PCL) [20] can be used to easily call processing algorithms
related to a point cloud.

Figure 6 displays how algorithms are realized. The program starts with obtaining a
point cloud from the 3D camera, after which the point cloud could be cut into a smaller box.
Subsequently, following calculating normals and curvature, the region growing method
is used to merge points. Then, the RANSAC method is utilized to extract surface A or B.
Moreover, the surface is projected into a horizontal one, which is the same as the plane
captured by the flaw detection camera. Finally, the starting position of the flaw in the 3D
camera’s coordinate system is calculated according to (1).

Coordinate calculationRANSACRegion growingPre-process

Start

Get point 
cloud

Cut point 
cloud

Calculate 
normals

Calculate 
curvature

Get initial seed 
point

Expansion of 
Seed Points

Extract the 
plane 

Remove 
outliers

Project point 
cloud plane 

Calculate and 
output

End

Figure 6. Realization workflow.

5.2. ICP Solve

We assume that there is a set of points whose coordinates are P = {p1, p2, . . . , pn} in
the manipulator coordinate system. In the 3D camera coordinate system, these correspond
to P′ =

{
p′1, p′2, . . . , p′n

}
. To seamlessly translate the coordinates deduced by the vision
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program into the manipulator’s coordinates, it is imperative to incorporate a Euclidean
transformation into the program’s configuration file, ensuring the following relationship:

∀i, p = Rp′ i + t. (7)

This problem can be solved by iterative closure point (ICP) [21]. The steps of the ICP
solve are as described in Algorithm 3:

Algorithm 3 ICP solve

Require: Two groups of registered points
Ensure: Rotation matrix R and translation matrix t

1: Calculate centroid coordinates p and p′ of the two groups
2: for each point pi in the first group and p′i in the second group do
3: Calculate eccentricity coordinates as

qi = pi − p, q′i = p′i − p′. (8)

4: end for
5: Solve for the rotation matrix R according to:

R∗ = arg min
R

1
2

n

∑
i=1
‖qi − Rq′i‖2. (9)

6: Calculate the translation matrix t as

t∗ = p− Rp′. (10)

return R, t

In Step 5, SVD is applied to solve R [22,23]. It is a mathematical method used to break
down a matrix to reveal its most important elements. The realization of the ICP solve is
shown in the Experiments section.

6. Experiments

The equipment requirements and development environment utilized in the experi-
ments are illustrated in Tables 1 and 2.

Table 1. Hardware conditions.

Item Quantity Model/Condition

Manipulator 1 HuaMing, HMQR5
2D camera 2 JAI, GO-2401M-PGE
3D camera 1 Chinshine, Surface HD50

Experimental site 1 A billet production workshop

Table 2. Software environment.

Item Library/Software

Operating system Ubuntu 18.04
UI development QT 5.12

Point cloud processing PCL 1.8 and Cloud Compare
Image processing OpenCV 3.2

6.1. Calculation of Coordinate Conversion Matrix between 3D Camera and Manipulator

Experiment process: Make the manipulator mark 6 points on a billet (as is shown
in Figure 7), and record the coordinates of these 6 points on the teaching pendant as
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{p1,p2,. . . ,p6}. Then, use Cloud Compare software to obtain the coordinates of these 6 points
in the generated point cloud (as is shown in Figure 8), which are recorded as {p′1,p′2,. . . p′6}.
Table 3 describes the coordinates of the points obtained. Then, solve R and t according to
Algorithm 3.

Figure 7. Points being marked by the manipulator on a billet. In total, there are 6 such points.

 

Figure 8. The 6 points taken by the 3D camera. Labeled from right to left as No. 1–6.

Table 3. pk and p′k.

k pk p′
k

1 (0.440, −699.614, −609.065) (51.866, 8.656, 551.423)
2 (−7.854, −707.887, −584.550 (38.819, −7.414, 536.600)
3 (−22.004, −710.480, −565.058 (20.969, 10.040, 523.670)
4 (−70.521, −681.394, −547.310) (−27.320, −22.966, 527.000)
5 (−99.288, −679.490, −577.388) (−45.017, −11.765, 546.945)
6 (−118.263, −703.891, −568.578) (67.579, 0.378, 566.353)

Calculation results:

R =

 0.9407 −0.0332 −0.3376
0.0195 −0.9882 0.1516
−0.3387 −0.1492 −0.9290

,

t =

 134.3108
−783.6481
−74.1692

.

Substitute R and t into the program to complete the automatic conversion of flaw
points from the 3D camera coordinate system to the manipulator coordinate system.

6.2. Overall Dynamic Test

Experimental procedure: To visually represent the flaws, we simulated them by
drawing lines on the billet using a black pen and measured their position in the flaw
detection cameras. We then measured their positions inputting this data into the marking
system, and subsequently initiated the billet’s movement. After marking, we assessed
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whether the chalk line adequately covered the black line and gauged the deviation between
their center lines. Comparative experiments were conducted both with and without the
3D camera in the system. Initial calibration between the flaw detection cameras and the
manipulator was performed at the commencement of these tests. The outcomes of the
10 experiments, employing the proposed method, are collected in Table 4. The results of
the control experiments can be found in Figures 9 and 10. Figure 9 illustrates the deviations
between the center lines of simulated flaws and those marked by the manipulator. Figure 10
exemplifies the methodology employed in measuring the deviations between these center
lines, along with a subset of the results obtained.

Table 4. Experimental results.

Data Number Surface x2d Calculated Coordinates (xm, ym, zm)

1 A 55 (−83.8226, −701.789, −567.817)
2 B 81 (−9.03072, −699.722, −598.169)
3 A 58 (−86.1592, −701.561, −568.805)
4 B 73 (−12.1695, −700.716, −590.882)
5 A 71 (−96.2829, −700.575, −573.082)
6 B 22 (10.9795, −693.383, −644.617)
7 A 34 (−67.4687, −703.382, −560.907)
8 B 46 (3.5686, −695.73, −627.413)
9 A 92 (−112.637, −698.982, −579.992)
10 B 45 (7.7073, −694.736, −611.699)

From the presented figures, it is evident that the system without the 3D camera fails to
fully cover any of the flaws during the experiments. Conversely, the system equipped with
the 3D camera demonstrates enhanced effectiveness.
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)

Data number Data number

(a) (b)

Figure 9. The chart depicts the deviation values of 10 trials for both the initial and improved
experiments as the result. (a) Initial experiments. (b) Improved experiments. It suggests that our
method yields more precise and stable results.
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（a） （b） （c）

（d） （e） （f）

(b)(a) (c)

(d) (e) (f)
Figure 10. Comparison of results. (a–c)—Three results selected from the experiments conducted
on the improved method (with our relocalization method). (d–f)—Three results selected from the
experiments conducted on the initial method (without our relocalization method).

7. Conclusions and Future Work

Our study marks a significant advancement in the field of industrial flaw detection
with the development of a novel automated system for detecting, relocalizing, and marking
flaws on steel billets. The core innovation of our system lies in its utilization of point cloud
data and a 3D camera, which collectively enable a more nuanced and precise identification
of flaws compared to traditional image processing techniques. This technological leap not
only enhances the accuracy of flaw detection, but also substantially reduces the reliance
on labor-intensive processes and deep learning models that typically demand extensive
computational resources and time for training.

Our experiments, conducted in a real-world steel production environment, demon-
strated the system’s efficacy and robustness. The ability to accurately track and mark
flaws on moving billets, despite varying orientations and environmental conditions, un-
derscores the system’s operational viability in a fast-paced industrial setting. Furthermore,
the system’s precision in marking directly correlates to improved quality control measures,
ensuring higher standards in the final steel products.

Looking ahead, integrating this system with automatic polishing mechanisms could
pave the way for a fully automated production line, thereby extending its applicability.
Additionally, while deploying deep learning necessitates substantial model training, its
implementation can significantly enhance the system’s functionality and robustness. For
example, deep learning can be applied for advanced defect classification, enabling the
system to distinguish between various types of surface flaws effectively.
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