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Abstract: Light field datasets enable researchers to conduct both objective and subjective quality
assessments, which are particularly useful when acquisition equipment or resources are not available.
Such datasets may vary in terms of capture technology and methodology, content, quality character-
istics (e.g., resolution), and the availability of subjective ratings. When contents of a light field dataset
are visualized on a light field display, the display system matches the received input to its output
capabilities through various processes, such as interpolation. Therefore, one of the most straight-
forward methods to create light field contents for a specific display is to consider its visualization
parameters during acquisition. In this paper, we introduce a novel display-specific light field dataset,
captured using a DSLR camera and a turntable rig. The visual data of the seven static scenes were
recorded twice by using two settings of angular resolution. While both were acquired uniformly
within a 53-degree angle, which matches the viewing cone of the display they were captured for,
one dataset consists of 70 views per content, while the other of 140. Capturing the contents twice was
a more straightforward solution than downsampling, as the latter approach could either degrade
the quality or make the FOV size inaccurate. The paper provides a detailed characterization of the
captured contents, as well as compressed variations of the contents with various codecs, together with
the calculated values of commonly-used quality metrics for the compressed light field contents. We
expect that this dataset will be useful for the research community working on light field compression,
processing, and quality assessment, for instance to perform subjective quality assessment tests on a
display with a 53-degree display cone and to test new interpolation methods and objective quality
metrics. In future work, we will also focus on subjective tests and provide relevant results. This
dataset is made free to access for the research community.

Keywords: light field; dataset; content characterization; angular resolution; objective quality assessment

1. Introduction

Research on light field visualization modalities is continuously progressing, including
studies on perceptual aspects and quality assessment, with the first relevant international
recommendation published recently [1], following a lack of guidelines and standard pro-
cedures. While access to real light field displays—which often appear in the scientific
literature as super multiview (SMV) displays [2–7]—is still rather limited at the time of
writing this paper. There is, in fact, a steady stream of research efforts to pave the way
for future use cases of light field visualization. Light field displays and the contents they
visualize can be characterized by various key performance indicators (KPIs) [8]. Among the
KPIs that are both applicable to display and content, resolution (spatial and angular) and
field of view (FOV) need to be particularly highlighted due to the universal importance.
Practically, spatial resolution determines visualization fidelity at the plane of the screen,
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angular resolution is responsible for the smoothness of the parallax effect trough the density
of distinct light rays, and FOV is basically the angle of visualization. Of course, these KPIs
are highly intertwined (e.g., spatial and angular resolution [9–11]), yet they can be—and
they should be—addressed separately as well.

If we approach light field content as an array of 2D views—which is a 1D array for
horizontal-only parallax (HOP)—and a 2D array for full-parallax (FP) visualization, then
angular resolution is technically the ratio of the total number of views and the angle in
which they are spread evenly (i.e., the FOV). Hence, the number of views of the content as
an input parameter on its own does not determine the corresponding quality characteristics.
The FOV and the angular resolution of the display describe the valid viewing area (VVA)
of the visualization system; while the FOV is the angle that encloses the area, the size of the
area is set by angular density (i.e., greater angular resolution values can support greater
viewing distances).

When a given light field content is visualized on a specific display, the characteristics
of the content must be matched to the capabilities of the display. In an ideal scenario,
the parameters align perfectly. In any other case, the content must be matched via tech-
niques locally enabled by the visualization system (e.g., interpolation). For example, if the
density of the rasterized 2D views are lower than the angular resolution of the display, then
the display attempts to map the input to the output through a process that is basically an
estimation—and hence, the perceived quality becomes degraded.

When creating content datasets for light field displays, it is possible to capture or
render content with the display KPIs in mind. For instance, the dataset published by Tam-
boli et al. [12] offers a single view per degree, and since it was designed for a display with
a 50-degree FOV, each content is composed of 50 views. In this paper, we present a novel
light field dataset, specifically designed for a commercially-available light field display.
The HOP content was captured as a series of 2D images, by using a digital single-lens reflex
camera (DSLR). The seven static scenes (i.e., models) were rotated on a turntable, in order
to accurately achieve the different perspectives. In essence, the camera was placed at a
given position (fixed distance from the model) and orientation (looking at the center of the
model) while the model itself rotated at a constant speed. Each model was captured with
two values of angular density (i.e., two different capture frequencies). As the number of
acquired views were 70 and 140, and the dataset FOV was 53 degrees—matching the FOV
of the light field display—the corresponding values of angular resolution were 1.32 and
2.64 views per degree. In the alternate, degree-based format—where a smaller number indi-
cates higher angular density—these values were 0.76 and 0.38 degrees. Again, the novelty
of our work lies in the creation of a light field dataset that takes into consideration the light
field display on which it is aimed to be visualized on. Although this somewhat narrows
and limits the universality of the dataset, at the same time, it may avoid issues related to
device-based interpolation, mismatch between the viewing angle of input and output light
fields, and other potential changes in visualization quality.

The contents of the dataset are characterized and objectively measured by using the
following techniques and processes:

• Measurement of spatial information (SIV), pooled among the different views;
• Measurement of similarity among the views, measured via a modification of the

temporal information (TI) metric, that we denote (TIV);
• Measurement of standard deviation of the Y channel for each view;
• Measurement of colorfulness (CFV), pooled among the different views;
• Measurement of color distribution in Lab∗—also known as the CIELab space—based

on the technical report of the International Commission on Illumination (CIE);
• Measurement of color distribution in the red, green, and blue (RGB) space;
• Measurement of color distribution in the hue, saturation, and value (HSV) space;
• Measurement of color distribution in the hue, saturation, and lightness—also known

as luminance—(HSL) space;
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• Application of degradation to views by advanced video coding (AVC), high-efficiency
video coding (HEVC), video codec 9 (VP9), and AOMedia video 1 (AV1) encoders;

• Objective quality assessment that includes mean square error (MSEV), peak signal-to-
noise ratio (PSNRV), and structural similarity index (SSIMV).

Additionally, it should be noted that various light-field-specific objective quality
metrics already exist at the time of writing this paper. However, the existing algorithms
and methods were evaluated on conventional 2D displays and other display types that
are not actual light field displays. For example, the Win5-LID dataset [13] was based on a
stereoscopic display (3D television with shutter glasses), which was used to evaluate the
performance of the tensor-oriented no-reference light field image quality assessment [14];
the MPI-LFA dataset [15] had subjective tests on a liquid-crystal display (LCD) desktop
monitor that was viewed via glasses, which was used by the no-reference light field image
quality assessment based on spatial-angular measurement [16]; and the VALID dataset [17]
used an LCD monitor and a light-emitting diode (LED) display, which was used by the
no-reference light field image quality assessment based on micro-lens image [18] metric.
Therefore, as the dataset is specifically created to be visualized not only on light field
displays in general, but for a given display model, our work does not extend to the
utilization of such an objective quality assessment.

The remainder of this paper is structured as follows. The review of the related literature
(i.e., similar datasets) is presented in Section 2. The experimental setup for creating the
light field dataset is detailed in Section 3. Section 4 focuses on the methods of content
characterization. Objective quality assessments are presented in Section 5. The results
obtained from the various analyses are introduced in Section 6. Finally, the paper is
concluded in Section 7.

2. Related Work

Most publicly available light field datasets consist of static contents (i.e., static scenes
and models). For instance, the dataset created by Paudyal et al. [19]—using the Lytro
Illum light field camera—comprises fifteen indoor and outdoor scenes, accompanied
by content characterization measurements, such as CF and SI. Numerous static-scene
datasets [17,20–23] were captured by using the Lytro Illum plenoptic camera, not including
motion or video content among them. Other static-content light field datasets [15,24–27]
were captured by using DSLR cameras without incorporating video elements. A high-angular-
resolution dataset consisting of seven objects is introduced by the work of Tamboli et al. [24].
The dataset was generated using three different cameras placed at separate positions, each
capturing the object at half-degree intervals as it rotated. A total of 720 images were
recorded for each camera. A number of light field datasets are based on synthetically
generated content. For instance, Wu et al. [28] utilized red, green, blue plus depth (RGB-D)
images as input data and synthesized them, achieved through their proposed all-software
algorithm to enhance spatial and angular resolutions.

In contrast, only a very limited number of datasets contain light field videos. Among
the few public datasets that fit this criterion is the work of Guillo et al. [29], which consists of
objects on a rotating turntable, captured via the raytrix R8 plenoptic camera (manufactured
by raytrix GmbH, Kiel, Germany). Each video clip lasts for ten seconds, has a frame rate of
30 frames per second (fps), and contains a total of 300 individual frames for each content.
Each frame shows 25 different views. Notably, as described in the work of Guillo et al. [29],
all the motion in the dataset was due to the turntable.

Another category of light field datasets involves the use of multi-array cameras,
capturing distinct dimensions of a scene based on individual camera positions within
an array. In particular, a dataset created by Vaish and Adams [30] employs an array of
100 video graphics array (VGA) video cameras to assemble the contents of both static and
real video scenes.
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There are multiple comprehensive summaries on the available light field datasets [31,32],
offering detailed information on the majority of these contents. Additionally, the recently
published international recommendation [1] lists the relevant datasets as well.

There is a limited amount of research conducted in terms of color measurements
and content characterizations on light field datasets. CIELab and HSV are the usual color
spaces that are chosen. The research conducted by Bora et al. [33] explains color image
segmentation. It highlights that the HSV color space outperforms CIELab. The instructions
for image segmentation involve the initial application of both color spaces, followed by the
application of subsequent processing units. Additionally, quality assessments—using MSE
and PSNR—are conducted after the segmentation process. The research by Basak et al. [34]
used RGB, HSV, and HSL color spaces as input variables for datasets to develop multiple
linear regression (MLR) and support vector machine regression (SVM-R) models. In the
case of evaluation of fruit ripeness, color plays a crucial role; Pardede et al. [35] studied fruit
ripeness based on different color features of RGB, HSV, HSL, and CIELab. Images were
resized to 100 × 100 pixels, and color features were extracted from these color spaces. A
scheme proposed by Ravishankar et al. [36] learns multiplicative layers optimized through a
convolutional neural network (CNN). HEVC is used to encode the dataset, but only the RGB
color space is utilized to characterize the contents. The work specifies the aim of exploring
HSV/HSL or CIELab for enhanced image perception in the future. Indrabayu et al. [37]
converted RGB to HSV color space. The three components were used for classification in
the use case of strawberry ripeness based on skin tone colors.

Paudyal et al. [19] used CF and SI to test the characteristics of light field images
before carrying out subjective evaluation, and Faria et al. [38] created a light field image
dataset for skin lesions and used SI and CF for the assessment of the texture characteristics.
Shi et al. [13] also evaluated the light field dataset of Faria et al. [38] for the characterization
parameters and utilized both SI and CF for this reason. Regarding spatial and temporal
content characterization, Barman and Martini [39] evaluated video characterization based
on SI and TI for different values of bit depth of pixels of the video content, but the contents
were not light field. As mentioned above, Paudyal et al. [19] calculates SI, on a single image
per content, according to what can be inferred from the paper.

Objective quality metrics—including PSNR and SSIM—were applied for some existing
datasets (e.g., by Amirpour et al. [40]), in addition to conducting subjective tests on the
dataset. Phicong et al. [41] proposed objective assessment metrics for light field-image
quality assessment (LF-IQA) to enhance light field content analysis. Perra et al. [42]
conducted a study on the light field JPEG Pleno encoder developed by the JPEG committee
(ISO/IEC JTC1/SC29/WG1). They evaluated the encoded light field contents using the
PSNR objective metric. Wang et al. [43] introduced a convolutional network designed to
enhance the quality of light field images. They achieved this by first extracting both angular
and spatial features from the initial light field image, and then by combining these features,
using their special interactive mechanism. This approach yielded superior results compared
to its previous methods. Jin et al. [44] conducted a study on an enhanced disparity learning
mechanism for super-resolution light field content. Their study involved incorporating both
convolution-based and transformer-based approaches to evaluate the PSNR, specifically
focusing on the disparity between training and inference stages. Xiao et al. [45] introduced
a real-world light field dataset, captured with the Illium Lytro plenoptic camera. They
observed spatial degradation in the contents and subsequently evaluated the dataset in
terms of the PSNR quality metric. Yu et al. [46] proposed light field network models,
designed to handle the light field contents of varying quality. The authors trained these
models and evaluated their performance using synthetic and real-world datasets, assessing
the results in terms of PSNR and SSIM quality metrics. The objective metrics used in
existing open source datasets are reported in Table 4 of the work of Shafiee and Martini [32].

The recommended method to perform quality assessment for light field content is
via subjective tests, since rendering and visualization play an important role, not yet
captured appropriately by objective metrics. Subjective tests are conducted using both
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conventional 2D displays and light field displays. To standardize light field subjective
tests, recommendations are provided [1,47] for assessing the quality of experience (QoE)
of light field content visualization. Darukumalli et al. [48] conducted a study on the
HoloVizio C80 light field cinema system to assess how the zoom level impacts the subjective
quality of light field contents. Guindy et al. [49] created light field contents for different
types of camera animations and visualized them on the same light field display to assess
feasibility. Tamboli et al. [12] introduced a light field dataset—assisted by a turntable—of
real-world objects, capturing one view per degree for a complete 360 degrees. The authors
carried out subjective tests on a Holovizio 721RC light field display with a 50-degree FOV.
Simon et al. [50] investigated the impact of resolution values and viewing distance on
light field content for test participants with reduced visual capabilities using the HoloVizio
640RC display system. A comprehensive review of the subjective tests carried out on real
light field displays is provided by the work of Kara et al. [47]. There are numerous other
works that report subjective tests that used either 2D displays or conventional 3D displays
to visualize light field contents.

3. Capture Configuration

The contents in this work were captured using a Canon 77D DSLR camera (manufac-
tured by Canon Inc., Tokyo, Japan) [51]. To acquire the contents (in the form of a series of
2D images), a turntable was used. The selected objects were placed on a turntable, which
was rotated clockwise at a consistent speed, completing one full turn in a period of 19 s.
The camera was placed at a fixed distance of 20 cm from the objects, with a fixed 18 mm
focal length, ensuring consistent spatial relationships. The 2D spatial resolution of each
view in the contents is 1920× 1080 pixels. Each content was captured in front of a dark blue
background. The color of the background was chosen in order to provide contrast with
the involved models, most of which are red, green, and yellow. The level of illuminance
in the capture environment—measured with a lux meter—was registered at 320 lux for
every item.

The dataset contains seven distinct sets of objects, some of which consist of multiple
objects rather than a single entity. Additionally, two of the contents (’Marbles’ and ’Sharp-
ener’) feature semi-translucent objects. Generally, the seven contents were selected with
the aim of creating a dataset that is diverse along multiple dimensions (e.g., structural
complexity, color variety). Sample views of the captured contents are illustrated in Figure 1.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. View samples of the light field dataset: (a) Camera, (b) Cars, (c) Duck, (d) Eiffel, (e) Marbles,
(f) Sharpener, and (g) Toys.
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Content ‘Camera’ is an actual, functioning, small-scale neuromorphic camera [52].
Content ‘Cars’ consists of two toy cars, one of which is green and black, and the other one
is red and light blue. Content ‘Duck’ is a black plastic duck. Content ‘Eiffel’ consists of a
small ivory-colored model of the Eiffel tower, as well as a yellow and orange plane and
the same green and black toy car from content ‘Cars’. Content ‘Marbles’ is a set of four
glass marbles with different patterns and colors. Content ‘Sharpener’ is a conventional
pencil sharpener with a transparent container. Content ‘Toys’ consists of four plastic toys,
with smooth surfaces and with different variations of the colors red, orange, and purple.

Each content within the dataset was captured in a 53-degree FOV and consists of 70 and
140 views, which—as stated earlier in the paper—correspond to 1.32 and 2.64 views per de-
gree. The dataset was created for the Looking Glass Factory [53] 32-inch, commercially-
available light field display, which provides visualization in a 53-degree FOV—which is
evidently the reason why the models were captured in a 53-degree FOV.

An alternative solution to capturing the content at both 140 views and 70 views would
be to capture 140 views and then use downsampling to achieve the 70 viewss. One way
to reduce the angular resolution in such a manner is simply to skip every second view.
However, in such a case, either the leftmost or the rightmost view is skipped, resulting in a
lower FOV value. The other solution is to utilize an actual downsampling method, yet such
may compromise the quality of the content due to their nature—after all, methods such as
light field reconstruction, interpolation, and view synthesis are estimations, approximations,
and therefore, not perfectly accurate by definition.

The selected contents were modeled in a circular format to mathematically determine
their coverage circumference, and the corresponding camera FOV was measured on the
basis of the calculated radius of the objects. This is illustrated in Figure 2.

(a) (b) (c) (d)

Figure 2. The FOV of the camera (‘α’) and the covered circumference (‘C’) for each content:
(a) Camera and Duck, (b) Toys, (c) Cars, Marbles, and Eiffel, and (d) Sharpener.

4. Content Characterization Methodology

Every evaluation in this work is performed on the model variant with higher angular
resolution; each input of the analysis consists of 140 views. Additionally, the suffix ‘v’
is appended to every quality metric, denoting that they are sub-metrics based on the
available views. In this section, several color measurements are provided, as well as SIV ,
TIV , and CFV characterizations of light field contents. Since a conventional DSLR camera
was used to capture the contents, depth information was not measured initially; it can only
be approximated. For example, Ranftl et al. [54] introduced a dense prediction transformer
based on neural networks that can be used for such a purpose. Figure 3 shows the depth
maps of the view samples of the light field dataset, which were created by using this
aforementioned method.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. The depth maps of the view samples of the light field dataset: (a) Camera, (b) Cars,
(c) Duck, (d) Eiffel, (e) Marbles, (f) Sharpener, and (g) Toys.

4.1. Color Measurements

The dataset—captured using electronic sensors—employs the RGB color space as
its primary representation. The amplitude intensity of each color channel (red, green,
and blue) is represented with 8 bits. This leads to values ranging from 0 to 255, providing
each channel with the capacity to convey 256 distinct intensity levels.

When considering all three color channels together, they can produce a wide range
of colors by combining their respective intensity levels. The total number of unique
colors that can be represented in this RGB color space is 2563, resulting in a palette of
16,777,216 distinct colors.

The HSL color space shares a conceptual foundation similar to that of the HSV color
space, utilizing a 3D cylindrical coordinate system. However, it distinguishes itself by in-
corporating the characteristics of two cones within its model. Because of this unique combi-
nation of two cones, the HSL color space is often referred to as the “bi-hexcone model” [35].
The equation for transforming from RGB to HSL [34,35] is presented as Equation (1):

L =
Max + Min

2
,

H =



undefined, if Max = Min(
G−B

Max−Min

)
× 60◦, if Max = R(

B−R
Max−Min + 2

)
× 60◦, if Max = G(

R−G
Max−Min + 4

)
× 60◦, if Max = B,

S =


0, if Max = Min
Max−Min

2L/255 , if L ≥ 127
Max−Min

2−(2L/255) , if L < 127,

(1)

where ”Max” refers to the maximum value among the red (R), green (G), and blue (B) color
channel values in the RGB color model, and “Min” refers to the minimum value.
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The conversion from RGB to HSV is described in Equation (2):

V = Max(R, G, B),

H =



undefined, if Max = Min(
G−B

Max−Min

)
× A, if Max = R(

B−R
Max−Min + 2

)
× A, if Max = G(

R−G
Max−Min + 4

)
× A, if Max = B,

S =

{
0, if Max = Min
Max−Min, others,

(2)

where Max = max(R,G,B), Min = min(R,G,B), and the value of A is equal to Π/3 if H is in
radians, and 60 degrees if H is in degrees.

The CIELab color space is designed to closely align with the perceptive capabilities of
the human eye. To derive the CIELab color space, a transformation from the RGB to XYZ
color space is first performed, followed by a conversion from XYZ to CIELab. Based on
the documentation of CIE [55], as well as the works of Schanda [56] and Pardede et al. [35],
this conversion process is facilitated using Equations (3)–(5):X

Y
Z

 =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950277

R
G
B

, (3)

δ =
6
29

,

f (t) =


3
√

t if t > δ3

t
3δ2 + 4

29 otherwise,

(4)

L = 116× f
(

Y
Yn

)
− 16,

a = 500×
(

f
(

X
Xn

)
− f
(

Y
Yn

))
,

b = 200×
(

f
(

Y
Yn

)
− f
(

Z
Zn

))
.

(5)

The CIE standard Illuminant D65 (6504-degree Kelvin) is provided in Equation (6):

Xn = 95.0489,

Yn = 100,

Zn = 108.8840.

(6)

The CIE standard Illuminant D50 (5000-degree Kelvin) is provided in Equation (7):

Xn = 96.4212,

Yn = 100,

Zn = 82.5188.

(7)

Equations (1) and (2) are based on the works of Basak et al. [34] and Pardede et al. [35],
Equation (3) is also based on the work of Pardede et al. [35], Equation (4) is based on the
work of work of Schanda [56], Equation (5) is based on the works of Pardede et al. [35] and
Schanda [56], and Equations (6) and (7) are based on the CIE technical report [55].
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4.2. SIV , TIV , and CFV Content Characterizations

We propose here three content characterization metrics for light field content, obtained
by slightly modifying/adapting three commonly used measures of content complexity
(i.e., SI, TI, and colourfulness) to characterize our contents in terms of spatial complexity,
inter-view complexity, and colorfulness: SIV , TIV , and CFV , where V refers to “views”. SIV
pertains to the distribution and arrangement of visual elements within a static light field
scene. TI normally refers to temporal complexity, in terms of changes in visual content over
time, such as motion, movement of objects, or variations in lighting. Here we consider TIV ,
and we define it as a measure of the changes over the adjacent perspectives. CFV evaluates
the intensity and vividness of the views representing the scene.

SIV and TIV are used to calculate the complexity of the light field content, helping
to find the correct data rate for real-time light field communication. Higher spatial and
temporal values typically require higher data rates to achieve satisfactory quality [57]. We
also expect that for light field data, higher SIV and TIV are associated with higher data
rates required for compression.

The combination of SIV and TIV allows for a more comprehensive characterization
of light field content. For the computation of SIV , the first step is to filter each view out
of all available views in the light field content (luminance component) using the Sobel
filter. Next, the standard deviation is calculated over the pixels in each Sobel-filtered view.
This operation is then repeated for all available views in the light field content, and the
maximum value is selected.

To detect horizontal and vertical edges of the luminance component of each view,
the kernels of Equations (8) and (9) are applied, respectively:

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, (8)

Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ I. (9)

The magnitude of the gradient of Equations (8) and (9) are calculated in Equation (10):

SIp =
√

Gx2 + Gy2. (10)

The mean value is measured in Equation (11):

SImean =
1
P ∑ SIp, (11)

where P is the number of pixels available in each view. Having the mean value of each Sobel-
filtered view in Equation (11), the standard deviation is then calculated in Equation (12) [58]:

SIstd =

√
1
P ∑(SIp − SImean)2. (12)

The maximum standard deviation value over the views yields SIV , as calculated in
Equation (13):

SIV = maxv{SIstd}. (13)

Similar to SIV , TIV plays a critical role in video compression and transmission, as it
directly affects the data rate required to represent and transmit a video sequence. Instead of
a video containing a series of frames, for the light field contents, we measured the TIV based
on the available views within each light field content. To compute TIV , the differences
between the corresponding pixels in the luminance component of two successive views
are first computed. Then, the standard deviation of the differences is calculated and the
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maximum value of all views in each light field content is selected as TIV . The initial step in
computing the TI value is represented in Equation (14):

Mn
p = Vn

p −Vn−1
p , (14)

where Mn
p means the pixel intensity difference between the current view Vn

p , denoted view
n, and the previous view Vn−1

p , which is view n− 1 [58].
The standard deviation is computed in Equation (14). The maximum value among

all available views of the light field content is selected as the final TI result, as shown in
Equation (15):

TIV = maxv{std[Mn
p ]}, (15)

which is performed for each content within the dataset.
Another method of calculating the complexity of a content or an image is the calcula-

tion of the variance of the luminance [57]. We adapt it to our context of light field contents,
calculating it for multiple views.

Finally, the CFV value shows the diversity and intensity of the available colors within
the images [38], the calculation of which is shown in Equation (16):

CFV =
√

σ(rg)2 + σ(yb)2 + 0.3
√

µ(rg)2 + µ(yb)2, (16)

where

rg = R− G,

yb = 0.5(R + G)− B,

where σ(·) represents the standard deviation, and µ(·) shows the mean value.

5. Data Compression and Objective Quality Assessment Methodology

In order to exploit inter-view redundancy (i.e., the similarities between adjacent
perspectives) we compressed the acquired contents using video encoders considering the
views as video frames. In particular, the created light field contents—each consisting of
140 views, as stated earlier—are encoded using four different video encoders: AVC [59],
HEVC [60], VP9 [61], and AV1 [62], for bit rates ranging from 1 Mbps to 30 Mbps. The fast
forward MPEG (ffmpeg) application was used for encoding, but note that the actual bit
rate results may not exactly match the specified bit rates due to imperfect rate control in
the codecs. More details on this are provided in Section 6.

Following compression, the quality of the impaired contents is assessed by using
three quality assessment metrics: MSEV , PSNRV , and SSIMV , where V—similarly to SIV ,
TIV , and CFV—refers to “views”. As the objective is to assess the quality of the degraded
contents, these metrics calculate the mean of MSEV , PSNRV , and SSIMV , respectively,
over the different views.

Striking a balance between video quality and bandwidth requirements is critical for
any compression method, and the added quality metrics will also support further relevant
studies, as shown as an example by a recent work [63].

5.1. PSNRV

One of the methods chosen to assess the quality of the impaired versions of the
images/views is PSNR [64], described by Equation (17):

PSNRv = 10 · log10

(
MAX2

I
MSEv

)
, (17)
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where MAX I denotes the highest achievable pixel value within the view, and MSEv
quantifies the difference between the original and distorted views of the content. MSEv is
calculated as shown in Equation (18):

MSEv =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

(I(i, j)− K(i, j))2, (18)

where I and K are the original and impaired versions of the view, respectively, and M and
N are the dimensions of the view.

The value of MAXI varies based on the number of available bits in each single pixel.
For instance, if there are 8 bits in each pixel, then the value is equal to 28 = 256, but it starts
from zero and ends at 255. Similarly, for 10-bit pixels, the value is equal to 210 = 1024,
which similarly starts from zero and ends at 1023. This means that there are 1024 different
possible values for 10-bit pixels. Therefore, for the first case, the value of MAXI is 255,
and for 10-bit pixels, the value of MAXI is equal to 1023. We consider here:

PSNRV =
1
V

V

∑
v=1

PSNRv, (19)

where V is the number of views.

5.2. SSIMV

The SSIM [64]—the formula of which is provided in Equation (20)—is a method to
measure the similarity between two images. It compares the structural information of
an image, such as edges and textures, rather than just comparing the pixel values. This
method has been applied in various research studies related to quality assessment [65–73].

Unlike PSNRv—which only measures the difference between two views in terms
of their pixel values—SSIMv is a more comprehensive metric that takes into account
the structural information of the views. SSIMv assesses the perceived quality of views
by comparing their luminance, contrast, and structure with that of the reference image.
Therefore, SSIMv is considered a more accurate measure of view quality than PSNRv,
which does not account for the characteristics of the human visual system (HVS).

For example, in the work of Salem et al. [74], both PSNR and SSIM were used to
reconstruct the quality assessment metrics.

The main SSIMv formula is mentioned in Equation (20):

SSIMv(I, K) =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ
2
I + σ2

K + c2)
, (20)

where I and K represent the original and distorted views, while µI and µK denote their
respective means. Similarly, σI and σK refer to the standard deviations of I and K, and σIK
represents their covariance. Constants c1 and c2 are included to prevent division by zero.
The resulting SSIMv output varies from 0 to 1, with 1 signifying a perfect similarity between
the two images. Similar to the above, we consider here:

SSIMV =
1
V

V

∑
v=1

SSIMv, (21)

where V is the number of views.

6. Content Characterization and Objective Quality Assessment Results

In this section, the aforementioned metrics are utilized to evaluate our novel light field
dataset in terms of content complexity and objective quality of the compressed versions of
the contents.
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6.1. Content Characterization

In this section, we present the analyzed results for color measurements, standard
deviation over the available views in each content, and the characterization of spatial,
temporal, and colorfulness information.

6.1.1. Color Measurements

Fifteen different result values are provided for each content in the dataset, as shown in
Table 1. These results represent the mean values of all pixels in each light field view within
the content, followed by the average of all views. This cumulative process generates the
single result provided in the table.

The color space range for each component is categorized as below.
HSV:

• Hue describes the color tone, spanning from 0 to 360 degrees;
• Saturation signifies the color’s intensity, with a range of 0% (dull) to 100% (vivid);
• Vivid represents the brightness level, ranging from 0% (completely dark or black) to

100% (full brightness).

HSL:

• Hue defines the color tone and operates within the 0 to 360-degree spectrum;
• Saturation quantifies the color’s intensity, varying from 0% (pale) to 100% (highly

saturated);
• This attribute gauges the darkness or lightness of the color and spans from 0% (dark)

to 100% (light).

RGB:

• Red Signifies the red color’s intensity, which spans from 0 to 255;
• Green represents the green color’s intensity, which varies from 0 to 255;
• Blue, this parameter quantifies the blue color’s intensity and operates in the 0 to

255 range.

In the CIELab color space, three distinct axes are utilized:

• L measures the transition from darkness to lightness, with values ranging from 0%
to 100%,

– Lower values indicate darker colors or shades;
– Higher values correspond to lighter colors or shades.

• a* represents the color axis between green (−128) and red (+127),

– Negative values (−): Suggest a shift towards the green side;
– Positive values (+): Indicate a shift towards the red side.

• b* represents the color axis from blueness (−128) to yellowness (+127),

– Negative values (−): Suggest a shift towards the blue side;
– Positive values (+): Represent a shift towards the yellow side.

Table 1. The average color measurement values for the contents of the dataset.

Content H(HSV) S(HSV) V(HSV) H(HSL) S(HSL) L(HSL) R G B L(D65) a(D65) b(D65) L(D50) a(D50) b(D50)

Camera 111.57 60.58 37.71 111.62 53.15 27.06 63.62 43.86 84.04 68.12 27.88 −31.02 68.12 26.02 −48.06
Cars 106.85 60.38 39.89 107.16 53.09 29.11 64.16 51.59 92.50 72.63 23.75 −33.45 72.63 21.82 −51.49
Duck 90.30 54.38 38.31 90.31 46.80 28.57 66.90 52.30 86.79 73.81 21.61 −26.78 73.81 19.66 −44.37
Eiffel 100.33 61.48 35.29 100.45 52.60 26.18 62.94 50.47 76.31 68.33 22.17 −28.21 68.33 20.33 −45.02
Marbles 102.24 59.69 31.53 102.24 48.83 23.66 55.45 47.79 71.10 67.15 19.02 −27.33 67.15 17.22 −43.85
Sharpener 101.57 57.52 37.33 101.57 50.33 27.81 60.95 49.42 89.37 70.58 23.46 −33.21 70.58 21.57 −50.88
Toys 101.95 71.86 43.40 102.51 64.29 28.45 86.85 46.43 67.29 70.91 32.61 −17.23 70.91 30.66 −33.41
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6.1.2. Analysis of Standard Deviation across Available Views of the Contents

As highlighted in [57], the variance and standard deviation of the luminance of an
image are associated with contrast and hence to its (spatial) complexity for compression;
hence, we calculated for the contents in the dataset, the standard deviation of the luminance
in each single image/view. The results are shown in Figure 4 in the form of histogram
plots, where the x-axis displays the standard deviation values, and the y-axis shows the
number of occurrences in all available views for each light field content. The higher the
standard deviation values, the higher the (spatial) complexity of the content. We can
observe that when the histogram presents spikes, most of the views have a very similar
standard deviation/contrast, while “flatter” histograms are associated with a more uniform
distribution of standard deviation/contrast values across the views.

6.1.3. Characterization of Spatial, Temporal, and Colorfulness Information

Based on the analysis shown in Figure 5, it is evident that the contents labeled ‘Cars’
and ‘Eiffel’ exhibit higher spatial information across the 140 views. Additionally, in terms
of TIV , two of the contents, namely ‘Eiffel’ and ‘Toys’, reached the maximum values among
all the contents of the dataset. For the transparent contents, ‘Sharpener’ and ‘Marbles’
exhibit the lowest values in terms of both SIV and TIV across their views. Regarding CFV ,
content ‘Toys’ demonstrates the highest values. Table 1 presents the results for the different
color channels in various color spaces across the 140 views of each content.

6.2. Data Compression

As highlighted before, the actual datarates are often different from the values set for
encoding, due to inaccuracies in the rate-control algorithms adopted in the codecs. The
results of the actual bitrate values obtained are provided in Tables 2 and 3. The first column
of the table reports the bitrate value sets in the codecs (in Mbps). We refer to bitrates rather
than file size for the scene since we consider the views of a static scene as the frames of
a video for the encoding process. Since the encoding was performed assuming 30 fps,
1 Mbps means that, on average, each view is represented with 33 kbits hence 140 views
with 4.67 Mbits or 583 kB, while 30 Mbps correspond to a file size of 17.5 MB. The other
columns report the actual values obtained with different codecs for the different contents.

The quality results—as depicted in Figures 6 and 7—clearly demonstrate how the inconsis-
tency between the applied bit rates and the actual values—all listed in Tables 2 and 3—affects
the plot lengths, causing them to be unequal.

Table 2. The actual practical results (in Mbps) of the encoders for contents Camera, Cars, Duck,
and Eiffel.

Bit Rate Camera Cars Duck Eiffel

Values AVC HEVC VP9 AV1 AVC HEVC VP9 AV1 AVC HEVC VP9 AV1 AVC HEVC VP9 AV1

1 0.60 0.80 0.91 1.03 0.57 0.74 0.92 1.11 0.60 0.80 0.94 1.00 0.54 0.66 0.88 1.07
2 1.99 1.71 1.77 2.09 1.69 1.63 1.81 2.16 1.92 1.72 1.79 2.23 1.54 1.52 1.74 2.20
3 4.62 2.65 2.63 3.67 3.39 2.54 2.72 3.44 4.01 2.64 2.67 3.44 2.91 2.39 2.63 3.40
4 7.12 3.60 3.53 5.21 5.02 3.48 3.60 5.18 6.10 3.62 3.56 5.02 4.27 3.31 3.53 4.98
5 8.18 4.57 4.47 7.05 6.22 4.45 4.50 6.95 7.28 4.56 4.43 6.95 5.37 4.26 4.39 6.53
6 8.59 5.56 5.28 8.98 6.97 5.36 5.37 9.04 7.70 5.54 5.30 8.51 6.33 5.16 5.24 8.16
7 9.00 6.50 6.15 10.70 7.83 6.36 6.26 11.12 8.26 6.49 6.16 10.22 7.31 6.12 6.15 9.83
8 9.10 7.46 6.92 11.67 8.41 7.27 7.04 12.55 8.63 7.48 7.06 12.11 8.12 7.04 6.99 11.89
9 9.33 8.48 7.73 13.61 9.09 8.29 7.86 13.59 9.22 8.37 7.83 13.53 8.94 8.06 7.64 14.03
10 9.70 9.37 8.38 15.70 9.82 9.18 8.61 15.47 9.82 9.38 8.65 15.25 9.65 8.90 8.43 15.54
20 20.24 18.93 15.02 37.61 19.92 18.80 15.42 38.63 20.33 18.94 15.26 36.53 20.08 18.46 15.31 35.69
25 26.03 23.66 18.25 47.50 25.68 23.52 18.47 47.53 26.00 23.82 18.33 46.12 25.37 23.15 18.39 45.80
30 31.89 28.52 21.05 57.12 31.65 28.18 21.44 57.41 31.98 28.42 21.30 55.12 31.02 27.72 21.14 55.78
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Figure 4. Histograms of standard deviation measurements for the contents of the dataset. (a–g) Illus-
trates the results for ‘Camera’, ‘Cars’, ‘Duck’, ‘Eiffel’, ‘Marbles’, ‘Sharpener’, and ‘Toys’, respectively.

Table 3. The actual practical results (in Mbps) of the encoders for contents Marbles, Sharpener,
and Toys.

Bit Rate Marbles Sharpener Toys

Values AVC HEVC VP9 AV1 AVC HEVC VP9 AV1 AVC HEVC VP9 AV1

1 0.59 0.76 0.90 1.04 0.59 0.78 0.91 0.92 0.68 0.73 0.89 1.20
2 1.71 1.66 1.80 2.06 1.96 1.68 1.79 1.94 1.47 1.58 1.74 2.14
3 3.19 2.56 2.70 3.28 4.04 2.61 2.64 3.39 2.61 2.45 2.66 3.35
4 4.81 3.51 3.57 5.26 5.68 3.57 3.51 4.83 3.81 3.35 3.49 4.86
5 5.81 4.47 4.44 7.08 7.10 4.55 4.39 6.73 4.94 4.30 4.35 6.38
6 6.76 5.43 5.29 8.70 7.68 5.48 5.27 9.20 6.03 5.25 5.17 8.13
7 7.68 6.34 6.10 10.36 8.26 6.49 6.10 10.71 7.10 6.19 5.99 9.98
8 8.47 7.34 6.88 12.48 8.71 7.39 6.87 11.82 8.13 7.14 6.85 11.15
9 9.24 8.27 7.70 13.75 9.28 8.38 7.75 13.88 9.09 8.08 7.63 14.18
10 9.92 9.23 8.52 15.60 9.85 9.38 8.50 15.87 10.00 9.07 8.41 15.34
20 20.04 18.88 15.00 36.81 20.39 18.82 15.70 38.00 20.07 18.56 15.18 36.37
25 25.47 23.77 18.22 47.32 26.06 23.66 18.33 47.88 25.37 23.30 18.51 46.29
30 31.43 28.55 21.33 56.74 31.95 28.47 21.24 57.10 30.82 28.03 21.47 57.06
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Figure 5. Content characterization of the acquired scenes. (a) CFV vs. SIV ; (b) TIV vs. SIV .

6.3. Objective Quality Assessment Results

Following the characterization analysis of the contents mentioned above and compres-
sion, the quality of the compressed versions is objectively assessed.

To accomplish this, all contents are initially encoded with varying bit rate values and by
different encoders, including AVC, HEVC, VP9, and AV1. Subsequently, the quality of the
impaired encoded contents is evaluated in relation to the original contents (“full-reference”
quality assessment).

Figures 6 and 7 report the objective quality results in terms of MSEV , PSNRV , and SSIMV
versus compression ratio, for the different contents (‘Camera’, ‘Cars’, ‘Duck’, ‘Eiffel’ in
Figure 6 and ‘Marbles’, ‘Sharpener’, and ‘Toys’ in Figure 7). We can observe that AV1
performs the best in terms of quality assessment for both MSEV/PSNRV and SSIMV . Fol-
lowing AV1, VP9 is the second best encoder, followed by HEVC and then AVC, which shows
the lowest performance for our dataset. Armipour et al. [75] and Hajihashemi et al. [76]
used the same evaluation methods for their light field contents, with some differences in
the performance of certain codecs. Quality values follow the order of highest to lowest
for AV1, VP9, HEVC, and AVC, respectively. It is notable that all the mentioned encoders
are applied to all 140 views within each content of the light field dataset, followed by the
application of the attributed quality metrics. We can also observe that quality values span a
wider range for some of the contents (e.g., ‘Cars’ and ‘Toys’) than for others (e.g., ‘Duck’).
Since the texture of the objects is relatively simple and the background is quite uniform,
high compression ratios are achieved in general, while a very high quality is kept.
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Figure 6. Quality assessments for different compression ratios were performed using various quality
metrics and each row of the plots presents the results for one content, including MSEV measurements
in (a,d,g,j); PSNRV measurements in (b,e,h,k); and SSIMV evaluations in (c,f,i,l). These assessments
were conducted on content categorized as ‘Camera’, ‘Cars’, ‘Duck’, and ‘Eiffel’, each representing
different types of visual data. In each graph, distinct curves represent the results obtained from
different codecs.
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Figure 7. Objective quality assessments via MSEV , PSNRV , and SSIMV versus different compression
ratios. (a–c) quality-metric plots for ‘Marbles’, (d–f) show quality metrics for ‘Sharpener’, and
(g–i) present results for ‘Toys’ content, all evaluated based on different compression ratios.

7. Conclusions

In conclusion, this paper presented a novel light field dataset captured using the Canon
77D DSLR camera, with the aim to support future research on displays with a 53 degrees
viewing cone, such as the 32-inch Looking Glass Factory light field display, particularly in
the field of subjective quality assessment. Various measures for content characterization
were calculated for the contents in this dataset. Moreover, different encoders were applied
to the contents in the proposed dataset, covering all 140 available views of each content,
with varying compression ratios. Quality scores of the compressed versions are also
provided, calculated via commonly used objective quality metrics.

In future work, the introduced light field contents shall undergo subjective evalua-
tion on the aforementioned light field display, with a particular focus on assessing the
transparency effects during display. We also plan to expand the dataset, for instance, with
further codecs, including versatile video coding (VVC) [77].
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Abbreviations
The following abbreviations are used in this manuscript:

AV1 AOMedia Video 1
AVC Advanced Video Coding
CF Colorfulness
CIE Commission Internationale de l’Eclairage (International Commission on Illumination)
CNN Convolutional Neural Network
DSLR Digital Single-Lens Reflex
FP Full Parallax
fps frames per second
HEVC High Efficiency Video Coding
HOP Horizontal-Only Parallax
HSV Hue-Saturation-Value
HSL Hue-Saturation-Lightness
KPI Key Performance Indicator
LCD Liquid-Crystal Display
LED Light-Emitting Diode
Mbps Megabits per second
MLR Multiple Linear Regression
MSE Mean Square Error
PSNR Peak Signal-to-Noise Ratio
RGB Red, Green, Blue
RGB-D Red, Green, Blue plus Depth
SI Spatial Information
SMV Super MultiView
SSIM Structural Similarity Index
TI Temporal Information
VGA Video Graphics Array
VVA Valid Viewing Area
VVC Versatile Video Coding
VP9 Video Codec 9
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