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Abstract: Collaborative filtering (CF) based on graph neural networks (GNN) can capture higher-
order relationships between nodes, which in turn improves recommendation performance. Although
effective, GNN-based methods still face the challenges of sparsity and noise in real scenarios. In
recent years, researchers have introduced graph self-supervised learning (SSL) techniques into CF to
alleviate the sparse supervision problem. The technique first augments the data to obtain contrastive
views and then utilizes the mutual information maximization to provide self-supervised signals for
the contrastive views. However, the existing approaches based on graph self-supervised signals still
face the following challenges: (i) Most of the works fail to effectively mine and exploit the supervised
information from the item knowledge graph, resulting in suboptimal performance. (ii) Existing
data augmentation methods are unable to fully exploit the potential of contrastive learning, because
they primarily focus on the contrastive view of data structure changes and neglect the adjacent
relationship among users and items. To address these issues, we propose a novel self-supervised
learning approach, namely Knowledge-aware Graph Self-supervised Learning (KGSL). Specifically,
we calculate node similarity based on semantic relations between items in the knowledge graph to
generate a semantic-based item similarity graph. Then, the self-supervised learning contrast views
are generated from both the user–item interaction graph and the item similarity graph, respectively.
Maximization of the information from these contrastive views provides additional self-supervised
signals to enhance the node representation capacity. Finally, we establish a joint training strategy
for the self-supervised learning task and the recommendation task to further optimize the learning
process of KGSL. Extensive comparative experiments as well as ablation experiments are conducted
on three real-world datasets to verify the effectiveness of KGSL.

Keywords: self-supervised learning; knowledge graph; semantic similarity; recommendation

1. Introduction

With the development of the Internet, human society has entered an era of information
explosion. As an important technological approach to alleviate information overload,
recommendation systems have become an indispensable component in many online ap-
plications, ranging from E-commerce platforms [1], video-sharing websites [2] to online
advertising [3] and so on. Recommender systems aim to mine user preferences based
on their historical behavior and provide them with potentially interesting items. At its
core, the systems involve studying ways to effectively learn high-quality user and item
representation from user historical behavior data [4–6]. Collaborative filtering (CF), as a
traditional and effective recommendation method, predicts user preference based on ob-
served user–item interaction behavior. Its fundamental principle is that users with similar
interaction behaviors may have similar interests in items [7].
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Up to now, various recommendation methods based on CF have been proposed for
projecting users and items into latent embedding spaces, such as matrix factorization-based
approaches [8–10], autoencoder-based methods [11,12] and graph convolutional network
(GCN)-based approaches [13,14]. Due to the large number of network structures naturally
possessing recommendation problems, the modeling of high-order connectivity between
users and items with graph neural networks (GNN) has become the state-of-art framework
in the field of graph learning; examples include GCMC [15], GCCF [16]. However, in real-
world scenarios, even when complex user–item interactions are modeled, most CF-based
recommendation methods still face the issues of sparse user interaction data and noisy
data. For instance, user interactions with items do not necessarily indicate user preference,
which might result in hot items. Conversely, the absence of interactions with items does
not necessarily imply user disinterest; it might be due to the user’s lack of awareness. As a
result, it becomes challenging to effectively model the representation of users and items. To
address this issue, knowledge graphs (KG), as important external information, have been
incorporated into recommendation system (RS) to enhance the representation process of
users and items by encoding semantic relatedness.

Existing KG-enhanced recommendation methods are broadly classified into three
categories. Firstly, some studies integrate KG embedding with user–item interaction mod-
eling and generate prior item embedding by employing transition-based entity embedding
approaches (e.g., TransE [17], TransR [18], etc.). Secondly, to enhance the RS performance
in capturing the higher-order semantic information from the KG, some path-based models
aim to construct path-oriented user–item connections and incorporate entity information
within the KG [19,20]. However, the majority of path-based methods involve the design
of a meta-path to generate entity-related relationships, which requires specific domain
knowledge and intensive labor to accurately construct paths. Lastly, inspired by the ad-
vantages of GNN, recursive information propagation aggregation among multiple nodes
while capturing the structural information of graph textcolor[RGB] has become an ex-
tremely promising research direction, including as KGAT [21], MIVN [22], KHGT [23], and
KGIN [24] approaches. In some scenarios, the recommendation methods integrating KG
have achieved some success. However, many of these methods belong to supervised learn-
ing methods; model performance heavily relies on high-quality KG (labeled information)
and is susceptible to noise disruptions. In real scenarios, knowledge graphs are usually
sparse and noisy, and entities have long-tailed distributions which make it challenging
to provide accurate and sufficient supervision signals for the model. Consequently, these
issues can hinder the generation of accurate user and item representation.

Although supervised learning has achieved success in recommendation systems, it
still faces challenges due to the limited availability of training labels, especially considering
that labels are often sparse in practical recommendation applications. Recently, the emer-
gence of self-supervised learning (SSL) has provided a new approach for addressing sparse
supervision [25]. It learns discriminative embedding from unlabeled data by minimizing
the distance between positive samples and maximizing the distance between negative sam-
ples. Furthermore, graph neural networks (GNNs), as one of the state-of-the-art machine
learning methods, iteratively aggregate neighboring node information to update node rep-
resentations, effectively capturing both structural information and semantic relationships
between nodes [26].

In view of the above-mentioned issues and challenges, we propose a general framework
that integrates user–item interaction and knowledge-aware contrastive learning (CL). Firstly,
to alleviate the sparsity of user–item interaction data, we introduce the KG to enrich item
representation. Subsequently, to deal with the noisy data in both the user–item graph and
the knowledge graph, we design a cross-view contrastive learning mechanism aiming to
maximize the consistency of nodes across different views, which in turn provides self-
supervised signals for learning distinctive node presentation. Finally, a joint optimization
strategy is established by combining self-supervised learning tasks with the recommenda-
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tion task. This strategy aims to provide personalized recommendations for users. The main
contributions of this paper are summarized as follows:

1. In this paper, we propose a general self-supervised learning paradigm from a novel
perspective, which jointly models KG and the user–item interaction graph to improve
the robustness of recommendations and alleviate data noise and sparsity problems.

2. We propose the Knowledge-aware Graph Self-supervised Learning (KGSL) frame-
work, which constructs a contrastive view from the user–item interaction graph and
the semantic-based item similarity graph for data augmentation while taking into
account both structural information and semantic neighbor information.

3. Extensive experiments on three real-world datasets are conducted, demonstrating
that the proposed KGSL method outperforms several competitive baseline methods.
Additionally, ablation studies and parameter investigations are performed to illustrate
the impact of unique structures or parameters on model performance.

2. Related Work
2.1. GNN-Based Recommendation

In recent years, graphs, as data with spatial structures that intuitively describe the
relationships between entities in the real world, have attracted widespread attention in
both academia and industry [27,28]. In the field of RS, network structure naturally exists
among data. To a certain extent, GNN-based models alleviate the data sparsity by aggre-
gating the information of high-order neighbor nodes through information propagation
mechanisms [29]. Early recommendation methods, which were based on meta-paths [30]
and random walks [31] to generate sequences, used similarity to characterize the semantic
relationships among nodes and achieved effective recommendation results. However,
such methods heavily relied on substantial manual effort and domain-specific knowledge.
Recently, with the success of GNN, a series of graph-based models have been extensively
researched in various recommendation scenarios [32]. The GNN-based CF methods incor-
porate multi-hop connections between users and items into their representation through
neighborhood aggregation and node updates. This methods effectively alleviate the impact
of data sparsity and improve the performance of recommendation models [32]. For instance,
Berg et al. [15] introduced a graph autoencoder into the learning of interaction graphs for
the first time to generate the embedding of users and items, which integrated a bilinear
decoder to address the rating prediction task in recommendation. Hamilton et al. [33]
proposed a GNN-based model named GraphSage, which randomly sampled the neigh-
boring nodes based on the graph topological structure and then aggregated information
from the neighboring nodes by using aggregation functions to generate the embedding of
central nodes. Subsequently, Stanford University and Pinterest collaborated to propose
Pinsage [34], the first industrial-grade GNN recommendation model based on Graph-
Sage, which reduced the computational complexity of GNN models by quickly sampling
neighbor nodes using short random walk. In addition, from the perspective of model inter-
pretability, corresponding counterfactual data were designed for different backgrounds,
providing a reasonable explanation for the recommended model [35,36]. For model training,
in works [37,38], corresponding negative sampling strategies were designed to enhance
the robustness of the model. These examples highlight the importance of graph neural
networks in the field of recommendation.

2.2. Auxiliary Information-Based Recommendation

To mitigate the issue of data sparsity, many studies have incorporated various forms
of auxiliary information into the recommendation models. For instance, Ma et al. [39]
further learned similar interests between users by jointly factorizing the user social matrices
and the user–item interaction matrices, which leveraged social information to alleviate the
problem of insufficient interaction data. Wang et al. [40] proposed the collaborative deep
learning model that jointly performed deep learning from item content information and
collaborative rating information to mitigate the impact of data sparsity. Zhang et al. [41] in-
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troduced structured semantic information from the knowledge graph into item embedding
using Knowledge Graph Embedding (KGE) algorithms. Gao et al. [42] comprehensively
considered the structure, text, and label information of items and used two dual neural net-
works to learn more accurate item embedding. Zhao et al. [43] transformed the user–item
interaction graph into two isomorphic graphs using multiple heterogeneous auxiliary in-
formation. They employed two GCNs to learn user and item embedding, which effectively
fused auxiliary information and collaborative information to improve the performance
of recommendation. Yan et al. [44] proposed a GNN-based recommendation algorithm
that combined semantic information with attention, which leveraged the implicit semantic
information in text and the influence of interaction relationships in the network to learn the
embedding of users and items so as to enhance the accuracy of recommendation results.

2.3. SSL-Based Recommendation

Self-supervised learning (SSL) is a learning paradigm that originally emerged in
computer vision (CV) [45] and natural language processing (NLP) [46]. Recently, some
works have focused on applying SSL for graph representation learning, aiming to explore
self-supervised signals by exploring the graph structure. Currently, as one of the leading
methods in self-supervised graph representation learning, contrastive learning explores
self-supervised signals by comparing multiple contrasting views generated from the same
graph, which helps alleviate the 251,188,51 issues of sparse data in recommendation scenar-
ios. Given the sparsity characteristics of most recommendation datasets, researchers have
introduced SSL methods into GNN-based models. For example, Zhou et al. [47] designed
four self-supervised optimization objectives to learn the correlations in the context informa-
tion of user–item interaction sequences, and enhanced the data embedding through SSL
pre-training. Ma et al. [48] used SSL to predict the users’ long-term interaction intentions in
the implicit space and generated the interaction subsequence as self-supervised signals for
model training. Xia et al. [49] employed SSL to enhance the ability of a hypergraph convo-
lutional network to model the hyper-pair relationships between items in a session, which
in turn completed the recommendation by fusing the session representation with the hyper-
pair relationships. Wu et al. [50] performed various data augmentation techniques on a
user–item graph (node dropout, edge dropout and random walk), which generated the the
sub-views of the original graph and constructed an SSL task by maximizing the mutual in-
formation between these views. In the joint optimization process with the recommendation
task, this approach improved the accuracy of recommendations. Sun et al. [51] designed a
hybrid structure of a knowledge graph and a user–item graph to explore self-supervised
contrastive learning by generating different data augmentation views. Yang et al. [52]
designed a new generative task in the form of masking–reconstructing by calculating
rational scores for knowledge triplets, aiming to generate a recommender model with
noise-resistant performance.

Although SSL-based GNN recommendation models have been proven effective, the
generation of contrastive views often relies on structural perturbation, which can easily
disrupt the fundamental essence of the graph. Furthermore, graph self-supervised recom-
mendation models rarely incorporate item KG information, overlooking the rich semantic
relationships between items. In response to this, we propose a Knowledge-aware Graph
Self-supervised Learning (KGSL) paradigm.

3. Preliminaries
3.1. Notation and Description of Concepts

KGSL is a GNN-based recommendation algorithm, so the data used in the recommen-
dation algorithm are primarily in the form of graph structure, as shown in Figure 1. They
mainly consists of the user–item graph Gr generated from user–item interaction data, the
item knowledge graph Gk composed of items and their attributes, and the semantic-based
item similarity graph Gs generated from the item knowledge graph. The conceptual de-
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scriptions are as follows. Additionally, Table 1 summarizes the parameters used in this
paper and their explanations.

Back To The Future Ⅰ Back To The Future Ⅱ Forrest Gump Contact
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Figure 1. Graph Structured data used in KGSL.

Table 1. Main parameters and variables in KGSL.

Parameters Definitions Parameters Definitions

U User Set Mrh, Mrt Mapping Matrix of head and tail entity in KGE
I Item Set h⊥, h⊥ Embedding of head and tail entity in r space of KG
A User–Item Interaction Matrix vi, vj Embedding of item i, j in KG
E Entity Set sim(i, j) Similarity of item i, j
R Relation Set ρ Rate of edge dropout
Gr User–Item Graph Nr, Ns Node set in graph Gr and Gs
Gk Item Knowledge Graph Er, Es Edge set in graph Gr and Gs
Gs Semantic-based Item Similarity Graph d Embedding dimension
eu, ei Embedding of User and Item in Gr L Encoder layer
es

i Embedding of Item in Gs K The number of supervised signals

User–Item Graph: It is denoted as Gr = {(u, yui, i)|u ∈ U, i ∈ I, yui ∈ A}, where
U = {u} denotes the user set, I = {i} represents the item set, A = {0, 1}|U|×|I| is the
adjacent matrix. If there is an interaction (e.g., click, review, querying) between user u and
item i, then yui = 1. Otherwise, yui = 0.

Item Knowledge Graph: It is denoted as Gk = {(h, r, t)|h, r ∈ E, r ∈ R}, where (h, r, t)
denotes the triple in the KG, h, t are the head entity and the tail entity, respectively. r is the
edge between the head entity and the tail entity, which indicates the relation between them.
E, R are the entity set and the relation set, respectively. The head entity and tail entity are
connected through different relationships, such as (The God f ather, is acted by, AI Pacino),
which reflects the fact that the movie The God f ather is acted by actor AI Pacino.

Semantic-based Item Similarity Graph: It is denoted as Gs = {(i, j)|i, j ∈ Es ⊂ E},
where i, j indicates the item nodes in Gs, (i, j) indicates the strong semantic correlation
between item i and item j, Es is the subset of entity set E in Gk, which indicates the entity
set of Gs.

3.2. Self-Supervised Learning

Contrastive learning in SSL is usually used as an auxiliary task to assist the recommen-
dation task by learning additional self-supervised signals. Contrastive SSL aims to learn
sample features by comparing similarities and differences among the feature embedding of
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different data samples. One of the typical methods to achieve this goal is setting a Noise
Contrastive Estimation (NCE) [53]. It is defined by Equation (1).

L = E
x,x+ ,x−

[
− log

e f (x)T f (x+)

e f (x)T f (x+) + e f (x)T f (x−)

]
(1)

where x is similar to x+ but dissimilar to x−, f (·) indicates the encoder, and the encoder
functions and similarity measures are designed to vary across different tasks. On the
basis of NCE, the existing works further propose Information-theoretic Negative Con-
trastive Estimation (InfoNCE) [54] that handles dissimilar data pairs, which is defined by
Equation (2).

L = Ex,x+ ,xk

[
− log

e f (x)T f (x+)

e f (x)T f (x+) + ∑K
k=1 e f (x)T f (x−)

]
(2)

In InfoNCE, each sample x corresponds to a set of negative samples xk. By maximizing
the mutual information between the positive samples pairs (x, x+) and minimizing the
mutual information between negative samples pairs (x, x−), the model can better learn
more discriminative node embedding. Therefore, when using InfoNCE as the loss function
for contrastive self-supervised learning, it is necessary to consider how to construct appro-
priate contrastive views. This is one of the research focuses of contrastive SSL applied to
recommendation tasks.

4. The Proposed Methodology

In this section, we provide an overview of the proposed KGSL model, as shown
in Figure 2. Firstly, we introduce the node representation learning that incorporates the
relational knowledge, which learned from item KG Gk, and generate the semantic-based
item similarity graph Gs by calculating the similarity between nodes. Secondly, the user–
item interaction graph Gr and the semantic-based item similarity graph Gs are used as the
inputs to the KGSL model. The GNN-based encoder is employed to learn node embedding,
including user embedding eu and item embedding ei from the user–item interaction
graph Gr, as well as item embedding es

i from the semantic-based item similarity graph
Gs. Subsequently, a self-supervised learning task is constructed. By maximizing the
consistency of nodes across different views, self-supervision signals are generated to learn
discriminative node representation. Finally, the self-supervised learning task and the
recommendation task are jointly optimized to provide personalized recommendations
for users.

4.1. Semantic-Based Item Similarity Graph

The semantic-based item similarity graph Gs is used as an input to the model, which
alleviates the sparsity and noise problems of user–item interaction data. It is generated
from item knowledge graph Gk based on node similarity. The details are described below.

4.1.1. Relationship-Aware Knowledge Aggregation

In item knowledge graph Gk, the item entity is represented as a head entity h and the
item entity is represented as a tail entity t. The TransD [55] method is employed to learn
triples (h, r, t) in the item knowledge graph Gk, aiming to model the semantic relationship
between item entities and attribute entities, as illustrated in Figure 3. Firstly, head entity h
and tail entity t are projected into the semantic space of relationship r, respectively. This
projection results in mapping matrices that are related to both entities and relations, which
helps distinguish the head and tail entities as different entity types. For instance, in a movie
knowledge graph, for the triple combination (movie, directed_by, director_name), the head
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and tail entities have different node types. Projection matrices for head entity h and tail
entity t are defined as in Equations (3) and (4), respectively.

Mrh = rphT
p + I (3)

Mrt = rptT
p + I (4)

where Mrh and Mrt are projection matrices from head entity h and tail entity t in the
entity space to the semantic space of r, respectively. hp, tp, rp are projection vectors, and I
represents the identity matrix.

Semantic-based Item Similarity Graph
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Figure 2. The overall framework of KGSL.
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Secondly, utilizing the projection matrices, we obtain the embedding of head entity h
and tail entity t in the semantic space of relation r, denoted as h⊥ and t⊥, respectively, as
shown in Equations (5) and (6).

h⊥ = Mrhh (5)

t⊥ = Mrtt (6)

Next, the distance between the vectorized representations of head entities and tail
entities is measured by the distance function, aiming to measure whether there are corre-
lations between the head and tail entities. The distance scoring function is calculated by
Equation (7).

fr(h, t) = −‖h⊥ + r− t⊥‖2
2 (7)

Finally, in order to learn the node representation that incorporates the item attribute
information connected by different relationships, the loss function, which is calculated by
Equation (8), is used to train the whole item knowledge graph Gk.

Lk = ∑
(h,r,t)∈Gk

∑
(h′ ,r,t′)/∈Gk

[
fr(h, t)− fr(h′, t′) + γ

]
+ (8)

where [x]+ , max(0, x), (h, r, t) represents the golden triples that exist in item knowledge
graph Gk, while (h′, r, t′) represents the corrupt triples that are constructed by randomly
replacing the head entity or the tail entity, and γ represents the minimum distance between
positive and negative triples.

Entity Space

i1

i2

i4

i3

e2

e1

Relation Space

i1^

i2^

i4^

e2^ 

i3^

e1^

rh p p

rt p p

 

 

T

T

M r h I

M r t I

Figure 3. Schematic mapping from the entity space into the relationship space.

4.1.2. Generating the Semantic-Based Item Similarity Graph

From the above section, the relationship-aware item node embedding is obtained.
Next, the semantic similarity between any two item entities is computed by Equation (9),
which provides the basis for generating semantic-based item similarity graph Gs.

sim(i, j) =
1

1 + d(vi, vj)
(9)

where vj, vj stand for vector representations of item i, j, which is obtained after pre-training
of item knowledge graph Gk, d(vi, vi) denotes the Euclidean distance between the two item
nodes, and sim(i, j) denotes the semantic similarity between item i and item j.

Next, based on Equation (9), the similarity between any two nodes is calculated. For
each item existing in the user–item interaction graph Gr, we select Top-ks items with the
highest semantic similarity and establish connections to forming semantic-based item
similarity graph Gs, as shown in Figure 4.
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i1

i2

i3

i4

e1

e2

i1

i2

i3

i4

j1

j2
s

TransD

Sim(i, j)

k

Figure 4. The generation process of semantic-based item similarity graph Gs.

Through the above approach, the TransD method is used to learn the node repre-
sentations from item knowledge graph Gk that contains rich semantic information. Node
similarity is calculated based on distance Equation (9), and a fixed number of neighboring
nodes is generated for each node. This effectively mitigates the impact of noisy information
from weakly relevant nodes during the subsequent information aggregation process in
the model.

4.2. Representation Learning Based on GNN

GNN-based approaches generate the representations for users and items by propagat-
ing and aggregating neighborhood information on graph-structured data. In KGSL, GNNs
are employed to model user–item interaction graph Gr and semantic-based item similarity
graph Gs. This results in learning the embedding for users eu, collaborative embedding
for items, ei, and semantic embedding for items es

i . Specifically, following the principles of
LightGCN, the non-linear activation and feature transformation in the propagation function
are discarded. Formally, this is calculated by Equations (10)–(12).

e(l)u = ∑
i∈Nu

1√
| Nu |

√
| Ni |

e(l−1)
i (10)

e(l)i = ∑
u∈Ni

1√
| Ni |

√
| Nu |

e(l−1)
u (11)

es(l)
i = ∑

j∈Ns
i

1√
| Ns

j |
√
| Ns

i |
es(l−1)

j (12)

In Equations (10)–(12), e(l)u and e(l)i denote the l-th layer representation of user u and
item i in user–item interaction graph Gr, respectively. Nu denotes the item sets that have
interacted with user u, while Ni denotes the set of users who have interacted with item i.
In Equation (12), es(l)

i denotes the lth layer representation of item i in the semantic-based
item similarity graph Gs, and Ns

i represents the first-order neighbor set of item i in the
semantic-based item similarity graph Gs.

After propagation of L layers, each layer of embedding contains the information aggre-
gated from the previous layer neighboring nodes. This achieves the effect of modeling the
higher-order connectivity information between users and items on graph Gr and expanding
the semantic similarity of the items on graph Gs. Here, a weighted summation readout
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function is used to combine the node representations obtained from each layer, and the
result is taken as the final representation of the node, as shown in Equation (13).

eu =
1

L + 1

L

∑
l=0

e(l)u

ei =
1

L + 1

L

∑
l=0

e(l)i

esi =
1

L + 1

L

∑
l=0

es(l)i

(13)

When l = 0, it represents the corresponding initial input; when l ∈ [1, L], it stands for
the node representation obtained after aggregation through the l layer of neural networks.

4.3. Construction of the Self-Supervised Learning Task

After obtaining item embedding ei that contains user preference on user–item interac-
tion graph Gr as well as item embedding es

i on semantic-based item similarity graph Gs, a
self-supervised learning task is constructed for both. KGSL constructs the self-supervised
learning task aiming at learning the common features of similar nodes in different views
and distinguishing the differences between dissimilar entities. The purpose is the genera-
tion of additional self-supervised signals to alleviate the sparsity of the interaction data
and to eliminate noisy data to enhance the robustness of the model.

Firstly, in order to extract additional self-supervised signals from the raw data, data
augmentation is performed on both user–item interaction graph Gr and semantic-based item
similarity graph Gs. Specifically, during each iteration of GNN, edge dropout operations
are applied to both graph Gr and graph Gs with a certain probability ρ. In this way, the
data augmentation views for both are constructed and the unlabeled sample set is created,
where ρ is a trainable hyper-parameter. This approach is used to make it more conducive
for the model to identify influential nodes in the views, reducing the sensitivity of node
representation to structural changes. This is formalized in Equations (14) and (15).

G̃r = (Nr, Mr � Er) (14)

G̃s = (Ns, Ms � Es) (15)

In Equations (14) and (15), Nr denotes the node set of graph Gr, which includes all
user nodes and item nodes. Ns represents the set of nodes, which includes all item nodes
in semantic-based item similarity graph Gs. Er and Es are the edge sets in Gr and Gs,
respectively. Mr ∈ {0, 1}|Er | and Ms ∈ {0, 1}|Es | are two masking vectors used to randomly
drop out edges in Gr and Gs. G̃r and G̃s represent the views after performing edge dropout
operations on Gr and Gs, which are the data augmentation views. Additionally, during
training, an extra graph encoder is utilized to learn the representation of item nodes in the
augmented views, denoted as the unlabeled sample set Ẽ. The graph encoder structure is
the same as in Section 4.2 and is not further elaborated in this section.

Collaborative embedding ei and semantic embedding es
i of item i reflect different

aspects of item information, and they can seek self-supervised signals from each other.
Taking the example of predicting self-supervised signals for user–item interaction graph
Gr based on semantic item similarity graph Gs, self-supervised signals are predicted from
the unlabeled sample set Ẽ that incorporates auxiliary information and is beneficial for the
recommendation task. Specifically, for any given item i in the user–item interaction graph
Gr, a confidence test is performed on the items in the unlabeled sample set Ẽ. This involves
calculating probability yr

i+ that items in unlabeled sample set Ẽ exhibit a positive semantic
with respect to the given item i, as shown in Equation (16).

yr
i+ = Softmax(cos(ẽ, es

i )) (16)
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where ẽ denotes item embedding in the unlabeled sample set Ẽ, and cos(·) represents the
cosine similarity. yr

i+ represents the additional supervised signals of user–item interaction
graph Gr, which is obtained by computing the similarity between the items in semantic-
based item similarity graph Gs and the items in unlabeled sample set Ẽ.

Then, based on the results of confidence test yr
i+, the Top-K unlabeled positive semantic

samples with the highest confidence are selected as positive samples for item i. These
selected samples serve as self-supervised signals for item i in user–item interaction graph
Gr. The specific process is described in Equation (17).

Pr
i+ = {ẽk | k ∈ Top-K(yr

i+), Ẽ ∼ G̃r} (17)

where ẽk represents the Top-K item embedding with the highest confidence after the
confidence test, which constitutes the self-supervised signal set Pr

i+ of item i in user–item
interaction graph Gr.

Similarly, self-supervised signal set Ps
i+, predicted by semantic-based item similarity

graph Gs, can be obtained by calculating the similarity between the items in user–item inter-
action graph Gr and the items in unlabeled sample set Ẽ, as shown in Equations (18) and (19).

ys
i+ = Softmax(cos(ẽ, er

i )) (18)

Ps
i+ = {ẽk | k ∈ Top-K(ysi+), Ẽ ∼ G̃s} (19)

During the model training phase, KGSL utilizes the two generated knowledge-aware
views to co-supervise each other. Following the existing self-supervised learning paradigm,
we take the items that are semantically positive as calculated in Equation (17) and the items
that interact with users as positive samples for user–item interaction graph Gr. Other nodes
constitute the set of negative samples. To improve computational efficiency, a random
sampling strategy is employed to randomly sample hard negative samples from the set
of negative samples for model training. The auxiliary supervision signals from positive
sample pairs encourage consistency between the same nodes in different views, while the
supervision signals from negative sample pairs enhance the differences between different
nodes. Formally, we use the InfoNCE loss function to maximize the consistency between
positive sample pairs and minimize the consistency between negative sample pairs, as
shown in Equation (20).

Lr
ssl = − log

∑p∈Pr
i+

exp(cos(ei, ẽp)/τ)

∑p∈Pr
i+

exp(cos(ei, ẽp)/τ) + ∑j∈I/Pr
i+

exp(cos(ei, ẽj)/τ)
(20)

In Equation (20), ei represents item embedding in user–item interaction graph Gr, ẽp
represents one of the self-supervised signals for ei, ẽj represents item embedding from
unlabeled sample set Ẽ that is not labeled as a self-supervised signal. τ is the temperature
coefficient of the Softmax function, and an appropriate temperature coefficient allows
the model better learning of hard negative samples. Following the existing research that
introduces self-supervised learning into the recommendation system, in the training of the
KGSL model, temperature coefficient τ is set to 0.1.

Based on Equation (19), we obtain semantic positive samples of semantic-based item
similarity graph Gs, and the positive sample set is generated by combining the first-order
neighbors in Gs. Negative sample sets are generated for each node, and the hard negative
samples are randomly selected from them to participate in model training. Similarly, loss
function Ls

ssl with an enhanced self-supervised learning objective is defined by Equation (21).

Ls
ssl = − log

∑p∈Ps
i+

exp(cos(esi , ẽp)/τ)

∑p∈Ps
i+

exp(cos(esi , ẽp)/τ) + ∑j∈I/Ps
i+

exp(cos(esi , ẽj)/τ)
(21)

Since the denominator of contrastive loss function (Equations (20) and (21)) is the
similarity of the node to all its positive and negative sample nodes, and the positive
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sample consists of structural and semantic positive samples, this result is unaffected when
counterfactual data are present. Combining the two views of the item embedding with the
self-supervised signal for mutual information maximization comparison, we obtain the
final loss function for the self-supervised learning task, which is calculated by Equation (22).

Lssl = Lr
ssl + Ls

ssl (22)

4.4. Joint Optimization

To alleviate the challenges posed by the sparse interaction data and to further improve
the accuracy of KGSL recommendation, we introduce a joint optimization strategy that
combines self-supervised learning tasks with supervised recommendation tasks, that is,
creating a mutually reinforcing learning process.

To optimize the recommendation task, KGSL utilizes the classic Bayesian Personalized
Ranking Loss (BPR) [10], which is commonly used in Top-K recommendation algorithms.
Specifically, it assumes that for a given user, the observed interactions (in this paper,
denoting positive samples) indicate greater user preference, and they should be assigned
higher prediction values than the unobserved interactions (in this paper, denoting negative
samples). It is calculated by Equation (23).

Lr = ∑
(u,i,j)∈O

− ln σ(ŷui − ŷuj) (23)

where O = {(u, i, j)|(u, i) ∈ O+, (u, j) ∈ O−} is the training data of the model O+ denotes
the observed user–item interactions (positive samples), and O− represents the unobserved
user-item interactions (negative samples). ŷui represents the predicted rating of user u
for item i, and the rating function is defined using inner product operation, denoted as
ŷui = êT

uei.
Finally, the KGSL model jointly optimizes the self-supervised learning task and the

recommendation task, which is defined by Equation (24).

LKGSL = Lr + βLssl + λ‖Θ‖2
2 (24)

where β is the hyper-parameter that regulates the scale of self-supervised learning, λ is the
hyper-parameter that controls the strength of the regularization, and Θ = {eu, ei, es

i } are
the parameters that the model needs to learn.

The detailed process of the KGSL recommendation algorithm based on item knowledge-
aware graph self-supervised learning is shown in Algorithm 1.

4.5. Complexity Analysis of KGSL

To optimize the multi-task objective in Equation (24), we decouple the training pro-
cess into four parts: adjacency matrix normalization, graph convolutional network, self-
supervised learning task, and recommendation task. We iteratively update the correspond-
ing parameters to minimize the loss until achieving the best performance on the validation
set. To facilitate the analysis of the complexity of each node, N represents the total number
of users and items, |Er| represents the number of edges in the user–item interaction graph
Gr, |Es| represents the number of edges in the semantic-based item similarity graph Gs, d
is the embedding dimension, B is the batch size for training, L is the layers of GNN, and
ρ̂ = 1− ρ represents the probability that an edge is retained. Next, we explain the time
complexity of each part.

• Adjacency Matrix Normalization: Before performing graph convolution operations,
it is necessary to normalize the adjacency matrix of the graph. In KGSL, for each
training iteration, we need to generate augmented views for both user–item inter-
action graph Gr and semantic-based item similarity graph Gs. Since the number of
non-zero elements in the original graph and the augmented views are 2(|Er|+ |Es|)
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and 2ρ̂(|Er|+ |Es|), respectively, the overall computational complexity of this part is
O(2(1 + ρ̂)(|Er|+ |Es|)).

• GNN: For the l th convolutional layer, the complexity of performing matrix multi-
plication is O

(
2d(|Er|+ |Es|)

)
. Therefore, the complexity of graph convolution with

a total number of layers L is O(2Ld(|Er| + |Es|)). Thus, adding the complexity of
performing graph convolutions on two augmented views, the overall complexity
becomes O

(
2Ld(1 + ρ̂)(|Er|+ |Es|)

)
.

• SSL Task: For calculating the time complexity of the self-supervised tasks, only inner
product operations are considered. As shown in Equation (20), when calculating the
loss for item nodes in the user–item interaction graph Gr, all other item nodes are
treated as a negative sample. Since KGSL sets up two self-supervised tasks, the overall
time complexity is denoted as O

(
4(Bd + B2d)

)
.

• Recommendation Task: Similarly, considering only inner product calculations, the
calculation complexity is assessed. Since the BPR method computes the loss function
by matching each positive sample with a negative sample, the overall computational
complexity for the entire training process is denoted as O(2Bd).

Algorithm 1: The Algorithm of KGSL
Input: User–Item Interaction Graph Gr;

Semantic-based Item Similarity graph Gs;
User Set U; Item Set I;
User Embedding eu; Item Embedding ei;
Temperature Parameter τ;
Regularization Coefficient β;
Train Times maxiter;
Train Sample Btrain

Output: Top-K recommended items list for the user
Randomly Initialize user embedding eu and item embedding ei;

for iter = 1, . . . , maxiter do
Perform edge dropout on Gr and Gs to generate unlabeled sample set Ẽ

for batchsize in Btrain do
Construct a self-supervised task and extract self-supervised signals from Ẽ

for item i in I do
(a) the self-supervised signals of Gr

Calculate the positive semantic from the unlabeled sample set Ẽ
(Equation (16))
Calculate the self-supervised signal set for the i in Gr (Equation (17));
Calculate the loss function of Gr (Equation (20))

(b) the self-supervised signals of Gs
Calculate the positive semantic from the unlabeled sample set Ẽ

(Equation (18))
Calculate the self-supervised signal set for the i in Gs (Equation (19));
Calculate the loss function of Gs (Equation (21))

end
end
Calculate the Self-supervised task loss Lssl (Equation (22))
Calculate the recommendation task loss Lr (Equation (23))
Update all parameters according to Equation (24) with Adam;

end
return Top-K recommendation list

5. Experiment
5.1. Experimental Setup
5.1.1. Dataset Description

To validate the effectiveness of the KGSL model, we conduct extensive experiments
on three publicly available datasets from different domains. These datasets are different
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in size and sparsity; we include MovieLens-1M, Last-FM, and Book-Crossing, which are
described in detail below.

• MovieLens-1M, a movie recommendation dataset obtained from the MovieLens web-
site, a movie recommendation service platform. It contains over 1 million explicit
ratings from more than 6000 users for over 4000 movies. User ratings for movies range
from 1 to 5. In addition to rating information, this dataset also includes some auxiliary
information. Microsoft Satori organized movies and their associated attribute entities
into a knowledge graph, which is used for research and development in a personalized
recommendation system.

• Last-FM, a music recommendation dataset collected from the online music platform
Last.fm. It includes the listening history records of over 1000 users on the Last.fm
website over the course of a year. This dataset covers more than 4000 artists and over
10,000 songs. Additionally, the dataset includes information about artists, songs, labels,
and genres. Microsoft Satori also organized this information into a corresponding
knowledge graph.

• Book-Crossing, a book recommendation dataset provided by the social networking site
Book-Crossing, which is focused on readers. It includes rating and content information
for over 27,000 books available on the website. User ratings for books in this dataset
range from 1 to 10. Similar to the previous two datasets, the original dataset book
content information is also present in the corresponding knowledge graph created by
Microsoft Satori.

Since KGSL is a recommendation algorithm developed based on implicit feedback,
three datasets need to be preprocessed. Firstly, the three datasets are converted from explicit
ratings to implicit feedback. Positive interaction records of users with items are labeled
as 1, indicating that the user has interacted with the item. Negative interaction records,
representing the absence of user–item interaction, are labeled as 0. For the MovieLens-1M
dataset, the rating threshold for its positive evaluation is set to 5, while for the Last-FM
and Book-Crossing datasets, no positive rating threshold is set due to their high sparsity.
Secondly, to fully utilize the auxiliary information of the items, head entities of the triples
in the knowledge graph and the original dataset scores are retained according to the
correspondence between the auxiliary information in the original dataset and the item
entities in the knowledge graph. After the aforementioned preprocessing steps, the specific
statistics information of the three datasets are as shown in Table 2.

Table 2. The statistics of the dataset.

#Users #Items #Interactions #Entities #Relations #Triples

MovieLens-1M 5986 2347 298,856 6729 8 20,195
Last-FM 1872 3846 42,346 9366 60 15,518
Book-Crossing 17,860 14,910 139,746 24,039 10 19,793

For the preprocessed datasets, we employ a 5-fold cross-validation approach to train
and evaluate the model performance. The datasets are divided into five equal parts. In
each iteration, four parts are used for training the model, and the one remaining part is
used for validation. This process is repeated five times, and the final experimental results
are obtained by averaging the validation results from these five iterations.

5.1.2. Evaluation Metrics

KGSL primarily employs Top-K for model evaluation. There are two ways to evaluate
the Top-K metric: sampling evaluation and full evaluation. Sampling evaluation involves
predicting ratings for a fixed number of non-interaction negative samples for each user.
On the other hand, full evaluation predicts ratings for all uninteracted negative samples
for each user, ranks all the negative samples, and generates a Top-K recommendation list.
Performance metrics are then calculated based on this list. Compared to sampling evalu-
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ation, full evaluation provides a more comprehensive and accurate assessment of model
performance. To evaluate model performance, we use Hit Ratio (HR), Recall and Normal-
ized Discounted Cumulative Gain (NDCG), which are obtained by Eqautions (25)–(28),
respectively.

HR =
|U|

∑
u=1

hit(u)
|U| ∗ K

(25)

The denominator consists of the entire test set, while the numerator represents the
sum of the number of items from the Top-K list that belong to the test set for each user.

Recall =
TP

TP + FN
(26)

where TP (True Positive) represents an item that was recommended and also appeared in
the user interaction list, indicating that the recommended item matches the user interest,
and FN (False Negative) represents an item that was not recommended but appeared in the
user interaction list, indicating that the model did not accurately recognize the user interest.

To calculate the Normalized Discounted Cumulative Gain (NDCG), we first need to
calculate the Discounted Cumulative Gain (DCG), as shown in Equation (27).

DCG@K =
K

∑
i

2r(i) − 1
log2(i + 1)

(27)

where r(i) represents the relevance between the item located in the ith position in the
recommendation list and the user interest. Typically, r(i) = 1 indicates that the user is
interested (i.e., a real interaction exists with the item), and r(i) = 0 indicates that the user is
not interested (i.e., no interaction exists with the item). Subsequently, dividing the DCG
value by the theoretically maximum value of DCG and then normalizing yields NDCG,
which is defined as shown in Equation (28).

NDCG@K =
DCG@K
IDCG@K

(28)

where IDCG@K represents the Ideal Discounted Cumulative Gain for the best recommen-
dation list predicted by the model for the user. Compared with the HR, Recall and NDCG
take into account not only the quantity of correct samples but also their relative positions
and relevance in the recommendation list. It is a more comprehensive and reliable metric
for evaluating the effectiveness of the recommendation system.

5.1.3. Baselines

In this section, we introduce the baselines compared with the KGSL model. These
recommendation algorithm can be categorized into the following three categories: NN-
based Recommendation System (NeuMF); GNN-based Recommendation System (NGCF,
LightGCN); SSL-based Recommendation System (SGL, MCCLK).

Neural Networks for Recommendation

• NeuMF [8] is an NN-based CF recommendation algorithm. It employs neural net-
works instead of matrix factorization to simulate higher-order interactions and learns
more complex nonlinear interaction features. In the comparative experiments, the
model’s entity embedding dimension is set to 50, and the number of layers in the
graph encoder is set to 2.

Graph Neural Network for Recommendation

• NGCF [14] is a GNN-based recommendation algorithm. It organizes user-item in-
teraction data into the form of a user-item interaction bipartite graph. It utilizes
the information propagation and aggregation mechanism of GNN to explicitly en-
code high-order connectivity between users and items into collaborative information.
Finally, it uses user and item embedding containing high-order collaborative infor-
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mation to make rating prediction. In the comparative experiments, the model’s entity
embedding dimension is set to 50, and the number of layer in the graph encoder is set
to 2.

• LightGCN [13] is a GNN-based recommendation algorithm that builds upon the
NGCF model. It introduces a lightweight graph convolution operation to learn user–
item bipartite graphs. Instead of using non-linear activation functions and feature
transformation operations in graph neural networks, LightGCN replaces them with
simple weighted aggregators. This further enhances the training efficiency of the
recommendation algorithm and the encoding capability of user–item embedding
vectors. In the comparative experiments, the model’s entity embedding dimension is
set to 50, and the number of layers in the graph encoder is set to 2.

Self-Supervised Learning for Recommender Systems

• SGL [50] is an SSL recommendation algorithm based on graph neural networks. Its
SSL task involves data augmentation operations based on graph structure perturbation
on the user–item interaction graph. Then, it maximizes mutual information between
embedding of the same node under different views. In the comparative experiments,
the model’s entity embedding dimension is set to 50, and the number of layers in the
graph encoder is set to 2.

• MCCLK [56] is an SSL recommendation algorithm based on a graph neural network.
It takes a user–item interaction graph and an item–entity knowledge graph as separate
local views, then concatenates them to generate a user–item–entity graph as the global
view. Finally, it designs self-supervised learning tasks based on a multi-level cross-
view contrastive learning mechanism to enhance the recommendation task. In the
comparative experiments, the model’s entity embedding dimension is set to 50, and
the number of layers in the graph encoder is set to 2.

5.2. Performance Comparison with Baselines

The section aims to evaluate the effectiveness of the KGSL model. The performance
of the KGSL model is compared with the baseline approaches on the three datasets using
Recall and NDCG as evaluation metrics in both Top-10 and Top-20 recommendation tasks.
The experimental results are shown in Table 3. In the table, the best results are indicated in
bold, and the sub-optimal results are underlined.

Table 3. Performance comparison of different recommendation models on three datasets.

Dataset Metric NeuMF NGCF LightGCN SGL MCCLK KGSL Improve (%)

MovieLens-1M

Recall@10 21.468 21.607 24.316 24.609 24.738 25.875 4.60%
NDCG@10 18.734 21.223 22.097 22.733 22.931 23.834 3.94%
HR@10(%) 9.002 10.019 10.696 6.326 7.923 11.058 3.38%
Recall@20 29.818 30.556 32.916 33.470 33.835 34.852 3.01%
NDCG@20 23.224 24.293 26.417 27.269 27.331 27.786 1.66%
HR@20(%) 6.717 7.343 7.708 4.921 5.791 7.914 2.67%

Last-FM

Recall@10 19.363 27.396 27.927 28.141 27.993 29.585 5.13%
NDCG@10 13.944 20.635 20.760 20.948 20.901 22.181 5.89%
HR@10(%) 3.866 4.770 5.968 4.072 4.536 5.937 -0.52%
Recall@20 25.641 29.865 34.814 29.994 35.903 37.362 4.06%
NDCG@20 14.801 16.453 22.563 19.554 23.012 24.141 4.91%
HR@20(%) 2.832 3.473 4.027 2.533 2.817 4.078 1.27%

Book-Crossing

Recall@10 7.701 7.915 9.263 8.904 9.535 9.952 4.37%
NDCG@10 4.767 4.498 5.795 5.363 6.051 6.174 2.03%
HR@10(%) 1.348 1.128 1.564 1.102 1.381 1.594 1.92%
Recall@20 10.955 9.230 11.251 10.821 11.537 12.088 4.78%
NDCG@20 5.745 4.737 6.414 5.906 6.442 7.161 11.16%
HR@20(%) 0.896 0.783 1.028 0.689 0.937 1.054 2.73%



Electronics 2023, 12, 4869 17 of 23

The HR metric is expressed as a percentage value. From the experimental results in
Table 3, we have the following observations and analysis: (1) In the Top-10 recommendation
task, KGSL outperforms all five compared baseline methods on all three datasets, except
for the HR metric on the Last.fm dataset. On the MovieLens-1M dataset, KGSL achieves an
improvement of 4.60% in Recall@10 and an improvement of 3.94% in NDCG@10 compared
to the suboptimal method MCCLK. In terms of the HR@10 metric, KGSL improves by 3.38%
compared to LightGCN. On the Last-FM dataset, KGSL achieves an improvement of 5.13%
in Recall@10 and an improvement of 5.89% in NDCG@10 compared to the suboptimal
method SGL, while showing a slight decrease of 0.52% in the HR@10 metric compared to the
best-performing method. On the Book-Crossing dataset, KGSL achieves an improvement of
4.37% in Recall@10 and an improvement of 2.03% in NDCG@10 compared to the suboptimal
method MCCLK, and outperforms LightGCN by 1.92% in the HR@10 metric.

(2) In the Top-20 recommendation task, KGSL also outperforms all five baseline meth-
ods on all three datasets. Across the three datasets, KGSL achieves a 3.01%, a 4.06%
and a 4.78% improvement in Recall@20 and 1.66%, 4.91% and 11.16% improvement in
NDCG@20 compared to the suboptimal method MCCLK. Compared with the second-best
LightGCN on HR@20, there are improvements of 2.67%, 1.27% and 2.73%, respectively.
These experiments demonstrate that the self-supervised learning task of KGSL is effective
in assisting the model to better train the recommendation task. This self-supervised learn-
ing task leverages semantic similarity among items to generate effective self-supervised
signals, effectively expanding the existing supervised information in model training. This
improves the KGSL ability to learn embedding for users and items, resulting in more
accurate recommendation.

(3) From Table 3, it is evident that on all three datasets, GNN-based methods (KGSL,
MCCLK, SGL, LightGCN, NGCF) outperform the neural network-based method (NeuMF).
This demonstrates the superiority of graph neural networks in modeling collaborative
information between users and items on the user–item interaction graph compared to
modeling user–item interactions using deep neural networks.

(4) In the Top-10 recommendation task, the self-supervised models, SGL and MCCLK,
achieved higher Recall values and NDCG values on the three data sets, but the values were
slightly lower than those of the neural network model LightGCN in HR indicators. In the
Top-20 recommendation task, SGL outperformed LightGCN only on the MovieLens-1M
dataset, while MCCLK performed better than LightGCN on all three datasets, except for
the HR metric. In both recommendation tasks, the KGSL model performed consistently
better than LightGCN on all three datasets, and showed slight improvements compared to
the MCCLK model in the evaluation metrics. This demonstrates the effectiveness of the
self-supervised learning task proposed in KGSL in assisting with the recommendation task.
The self-supervised learning task of KGSL not only leverages the user–item interaction
graph to find self-supervised signals, but also utilizes the semantic similarity in the item
similarity graph to generate self-supervised signals. To some extent, it mitigates the
instability resulting from relying on a single source for generating self-supervised signals.
Therefore, it is possible to enhance model training and alleviate the impact of data sparsity
by employing more effective and diverse self-supervised signals, ultimately improving the
accuracy of recommendations.

5.3. Ablation Study of the KGSL Framework

In this section, to further validate the effect of the self-supervised learning task on
KGSL performance, which is constructed by utilizing the semantic-based item similarity
graph for data augmentation, we designed two variant models of the KGSL model in
the Top-10 recommendation task, namely KGSL-NS and KGSL-NK. KGSL-NS is used to
eliminate the data augmentation operation of the user–item interaction graph. It exclusively
utilizes GNN for node representation operation and does not include self-supervised learn-
ing on semantic-based item similarity graphs. KGSL-NK is a without-data augmentation
operation for the semantic-based item similarity graph and without a self-supervised signal
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for the user–item interaction graph. The results of the ablation experiment are shown in
Table 4.

From Table 4, we observe that KGSL-NK outperforms KGSL-NS on the three datasets.
This demonstrates that employing self-supervised learning through data augmentation on
its own data can generate more and more effective information. This provides additional
self-supervised signals that alleviate data sparsity issues and enhance the performance
of the recommendation model. In addition, KGSL demonstrates the best performance.
This indicates that constructing self-supervised learning tasks based on item semantic
similarity effectively enhances the quality of self-supervised signals. This, in turn, helps to
avoid interference from noisy data in the model, resulting in more accurate and effective
recommendation outcomes.

Table 4. Performance compared with model variants of KGSL.

Dataset Metrics KGSL-NS KGSL-NK KGSL

MovieLens-1M Recall@10 24.238 24.729 25.875
NDCG@10 22.074 22.738 23.834

Last-FM Recall@10 27.829 28.445 29.585
NDCG@10 20.586 21.163 22.181

Book-Crossing Recall@10 9.415 9.495 9.952
NDCG@10 5.884 6.122 6.174

5.4. Hyperparameter Sensitivity Analysis

In this section, extensive experiments were conducted on four key hyperparameters
used in the KGSL model: the self-supervised learning scale weight coefficients β, the
number of self-supervised signals K, the number of layers of the graph neural network
encoder L, and the embedding dimension of the entities d.

Experiments were conducted with different settings of the self-supervised learning scale
weight coefficients β on the three datasets, and the results obtained are shown in Figure 5.

(a) MovieLens-1M (b) Last-FM (c) Book-Crossing 

Figure 5. KGSL performance w.r.t. the SSL Scale Weight Coefficient β on three datasets.

In analyzing the influence of β on the model, K = 30 was set on MovieLens-1M
and Last-FM, and K = 40 on Book-Crossing. From Figure 5, it can be observed that
KGSL is highly sensitive to the value of β. When β takes smaller values, the model
achieves desirable performance, while larger values lead to performance degradation. In
a comprehensive analysis, for the three datasets, the weight coefficients of controlling
self-Supervised Learning tasks were set to β = 0.001.

The results obtained from the experiments conducted on the three datasets with
different number of self-supervised signals K are shown in Figure 6.
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(a) MovieLens-1M (b) Last-FM (c) Book-Crossing 

Figure 6. KGSL performance w.r.t. the number of self-supervised signals K on three datasets.

In analyzing the effect of K on KGSL, we set β = 0.001. As can be seen in Figure 6, as
the number of self-supervised signal increases, the performance of KGSL improves slowly
to the maximum and then declines on the Last-FM and Book-Crossing datasets. However,
on the MovieLens-1M dataset, the KGSL performance improves faster to the highest point
and then decreases. This phenomenon can be explained from the perspective of the dataset.
When the number of items is relatively small, the impact of the self-supervised signals
generated based on item semantic similarity on KGSL performance is more significant as
the item quantity increases. This indicates that such an approach can provide high-quality
self-supervised signals, effectively mitigating data sparsity. Combining the results from
Figure 6 and the characteristics of the datasets, the number of self-supervised signals for
MovieLens-1M, Last-FM, and Book-Crossing datasets is set to K = 30, K = 30, K = 40,
repectively.

The results obtained from the experiments conducted on the three datasets with
different numbers of graph encoder layers L are shown in Figure 7.

(a) MovieLens-1M (b) Last-FM (c) Book-Crossing 

Figure 7. KGSL performance w.r.t. the Neural Network Encoder Layer L on three datasets.

As seen in Figure 7, it can be observed that as the number of encoder layers in-
creases, the NDCG values show a declining trend on the Book-Crossing dataset, while on
MovieLens-1M and Last-FM, it initially increases and then decreases. The Recall value
reaches its maximum at L = 2, and as L increases further, there is a significant drop in
model performance. This phenomenon suggests that longer relationship chains are not
practically meaningful when inferring item similarity, and they can lead to lower-quality



Electronics 2023, 12, 4869 20 of 23

self-supervised signals for the model. Therefore, the number of network layers was set
L = 2 for all three datasets.

In the Top-10 recommendation task, we investigated the impact of entity embedding
dimension d on the KGSL model. The experimental results are shown in Figure 8. As d
increases, there is a corresponding increase in model performance, indicating that a higher
dimension d can encode more information between items and entities during knowledge
representation learning. However, as d continues to increase, model performance starts to
decline. This suggests that an excessively high embedding dimension d can lead to over-
fitting in the knowledge representation learning process, resulting in lower-quality entity
embedding. This, in turn, affects the construction of the semantic-based item similarity
graph, and prevents the self-supervised learning task from acting as an effective assistant to
the main task. Based on the experimental results, we set the representation dimensions for
the three datasets Movie-, Lens-M, Last-FM, and Book-Crossing as d = 16, d = 32, d = 32,
respectively.

(a) MovieLens-1M (b) Last-FM (c) Book-Crossing 

Figure 8. KGSL performance w.r.t. the entity embedding dimension d on three datasets.

5.5. Study on the KGSL Effectiveness

In this section, the training process of KGSL is analyzed under the Top-10 recommen-
dation task. The loss variation curves of KGSL training on the three datasets are shown in
Figure 9, where the horizontal coordinate indicates the number of training iteration epochs
and the vertical coordinate indicates training loss LKGSL of the model.

(a) MovieLens-1M (b) Last-FM (c) Book-Crossing 

Figure 9. The loss cureve of KGSL.

Since the convergence speed of KGSL on the three datasets is inconsistent, the maxi-
mum training iteration numbers for KGSL on MovieLens-1M, Last-FM, and Book-Crossing
are set to 120, 100, and 150, respectively. As seen from Figure 9, during the early stages
of model training, the training loss decreases sharply on all three datasets. However, as
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the number of training iterations increases, the training loss gradually levels off. This
demonstrates that the KGSL model converges effectively and is relatively easy to train.

6. Conclusions

In this work, we analyzed the limitations of recommendation algorithms based on
graph neural networks and proposed the Knowledge-Aware Graph Self-Supervised Learn-
ing (KGSL) algorithm. First, we constructed a semantic-based item similarity graph and
designed data augmentation views. Then, we utilized LightGCN to learn node representa-
tions within the graph and created an unlabeled dataset. We designed a self-supervised
learning task that combines structure and semantics information, providing additional
self-supervised signals to the model. Finally, we introduced a joint optimization strategy
that combines self-supervised and supervised learning, creating an end-to-end model.
During the model training process, the KGSL model leverages self-supervised learning to
predict extra self-supervised signals from raw data, aiding in the learning of node represen-
tations, and mitigating the challenges posed by data sparsity. In addition, we harnessed
item embeddings containing diverse information from raw data to seek self-supervised
signals. This enhances model ability to learn representations of items that users have not
interacted with, which in turn better models user preferences and improves the accuracy
of KGSL recommendations. Finally, extensive experiments were conducted to validate
the model performance on three real and widely used recommendation datasets. The
results demonstrate that KGSL has certain advantages compared to state-of-the-art models.
Furthermore, we conducted ablation experiments to confirm the positive impact of the
constructed self-supervised tasks on the model’s recommendation performance.
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