
Citation: Li, Y.; Li, Z. An Efficient

Bit-Based Approach for Mining

Skyline Periodic Itemset Patterns.

Electronics 2023, 12, 4874. https://

doi.org/10.3390/electronics12234874

Academic Editor: Andrei Kelarev

Received: 23 October 2023

Revised: 29 November 2023

Accepted: 1 December 2023

Published: 3 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Efficient Bit-Based Approach for Mining Skyline Periodic
Itemset Patterns
Yanzhi Li 1,2 and Zhanshan Li 2,3,*

1 College of Software, Jilin University, Changchun 130012, China; yanzhi21@mails.jlu.edu.cn
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
3 College of Computer Science and Technology, Jilin University, Changchun 130012, China
* Correspondence: lizs@jlu.edu.cn

Abstract: Periodic itemset patterns (PIPs) are widely used in predicting the occurrence of periodic
events. However, extensive redundancy arises due to a large number of patterns. Mining skyline
periodic itemset patterns (SPIPs) can reduce the number of PIPs and guarantee the accuracy of
prediction. The existing SPIP mining algorithm uses FP-Growth to generate frequent patterns (FPs),
and then identify SPIPs from FPs. Such separate steps lead to a massive time consumption, so
we propose an efficient bit-based approach named BitSPIM to mine SPIPs. The proposed method
introduces efficient bitwise representations and makes full use of the data obtained in the previous
steps to accelerate the identification of SPIPs. A novel cutting mechanism is applied to eliminate
unnecessary steps. A series of comparative experiments were conducted on various datasets with
different attributes to verify the efficiency of BitSPIM. The experiment results demonstrate that our
algorithm significantly outperforms the latest SPIP mining approach.

Keywords: data mining; periodic pattern; skyline periodic itemset pattern; bitwise operation

1. Introduction

Data mining plays a significant role in data analysis and knowledge extraction [1];
it has become an efficient tool for pattern discovery due to its applicability in a vari-
ety of circumstances such as association rule mining (ARM) [2], clustering analysis [3],
and classification [4]. Mining frequent patterns (FPs) [2] are fundamental in ARM. The
connection-based algorithm, called Apriori [5], is a classical breadth-first iterative algorithm
for mining FPs. Many algorithms have been developed to accelerate the mining of FP.
Han et al. proposed a depth-first algorithm called FP-Growth [6,7], based on FP-tree. It
uses a prefix tree structure without generating candidates and only scans the dataset twice.
BitTableFI [8], as proposed by Dong et al., employs an efficient bit structure to compress
the dataset.

After the proposal of ARM, many new types of patterns have emerged, including
high-utility patterns [9], periodic itemset patterns (PIPs) [10], subgraph patterns [11], and
sequential patterns [12], etc. Among them, PIPs are one of the most well-studied types of
patterns. For instance, the opportunity for online or offline retailers to recommend suitable
products to their customers is very critical, because the right recommendation may satisfy
the customers, while a completely wrong one may be a turnoff to the customers. Customers
may buy a new product when the old one reaches its expected life or is consumed, therefore,
it is safe to assume that there is a relationship between the lifespan or consumption cycle
of a product and its purchase number and cycle. By tapping into the purchase frequency
and period of a product in customers’ shopping records, retailers cannot only improve
the shopping experience of customers but also allow themselves to better understand the
buying habits of customers, raise the recommendation hit rates, promote similar products,
increase user stickiness, and so on. Accordingly, when the criteria of frequency and period

Electronics 2023, 12, 4874. https://doi.org/10.3390/electronics12234874 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234874
https://doi.org/10.3390/electronics12234874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1159-0539
https://orcid.org/0000-0002-5828-1170
https://doi.org/10.3390/electronics12234874
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234874?type=check_update&version=1

Electronics 2023, 12, 4874 2 of 19

are considered together, the retailers can make advisable marketing strategies. Therefore,
it is very necessary to utilize the periodic itemset patterns in the shopping records in the
decision-making department of retailers.

PIPs can be used to predict the occurrence of periodic events [13], deal with the
seasonality information of products [14], and serve in recommendation systems [15]. PIPs
consider both the frequency and periodicity of an itemset and are regarded as an expanded
derivative of FPs. There are various periodicity measures for PIPs [16], which lead to
different definitions, including the maximum period [17], variance of periods [18], and so
on. In 2021, Chen et al. adopted a measure based on the coefficient of variation to define
PIPs [19]. In their work, an itemset is a PIP if its coefficient of variation is less than or equal
to the threshold of coefficient of variation, indicating that the fluctuation of the period of
the itemset is below the average level. They proposed a probability model for predicting
periodic patterns. The frequency and periodicity influence the prediction accuracy of the
probability model. For an itemset, a higher frequency indicates a wider range of sample
sizes of the periods, and a lower coefficient of variation means less fluctuation. The model
is limited due to the redundancies originating from predicting items that are contained in
different PIPs multiple times. The redundancies are proportional to the number of PIPs.

In 2023, Chen et al. proposed a special sort of PIP, named the Skyline Periodic Itemset
Pattern (SPIP) [20], aimed at making accurate pattern predictions. In SPIPs, PIPs with
either higher frequency or lower coefficient of variation, or both, are preferred. They
provided the definition of SPIP and proposed an effective algorithm named SPIM for
mining SPIPs. Patterns that are not dominated by any other patterns in two dimensions
constitute the skyline of a 2-dimensional dataset [21]. A PIP is an SPIP if there are no other
PIPs with both higher frequency and lower coefficient of variation. By mining SPIPs, we can
significantly reduce the number of patterns while ensuring the accuracy of predictions. The
aim of mining SPIPs is to avoid a vast number of PIPs and relieve users from an overload
of patterns.

SPIM is divided into two steps. The first step is to mine all FPs in advance using FP-
Growth, and then identify SPIPs from the FPs obtained in the first step. Using FP-Growth to
mine FPs makes SPIM consist of two very independent steps. Additionally, the occurrence
sets of an itemset are generated in the second step, even if the itemset has already been
identified as an FP. Confined by these two complicated stages, SPIM consumes massive
computational resources. The running time of SPIM is longer than that of FP-Growth, as
FP-Growth essentially serves as part of SPIM. In terms of memory usage, constructing
FP-trees in FP-Growth consumes significant memory resources. These disadvantages of
SPIM motivate the development of a more efficient SPIP mining approach.

Instead of using separate steps, we found that the identification of SPIP can proceed
as soon as an itemset is recognized as an FP. Additionally, efficient bitwise representa-
tions can accelerate set operations. We present a novel approach called Bitwise Skyline
Periodic Itemset Pattern Mining (BitSPIM) for mining SPIPs. This method utilizes bitwise
representations in an Apriori-like algorithm named BitTableFI [8] to deal with FPs while
incorporating a novel cutting mechanism. Once an itemset is recognized as an FP, the bitset
for its occurrence set is directly used to derive its period list and coefficient of variation,
which are then used to determine whether the itemset is an SPIP. Simulated experiments
were conducted on ten transaction datasets with divergent characteristics to compare the
performance of BitSPIM and SPIM. The experimental results demonstrate the effectiveness
of the proposed method in terms of running time and memory usage. We believe that
BitSPIM could be an influential alternative in mining SPIPs.

2. Related Works

In this section, we review related works and techniques concerning mining SPIPs.
SPIP is a special type of PIP. In the field of PIP mining, different periodicity measures can
lead to various types of PIPs. Maximum period [17] can be used as the periodicity measure
for PIPs, and such PIPs are mined by periodic frequent pattern growth, which utilizes a

Electronics 2023, 12, 4874 3 of 19

tree structure. Fournier-Viger et al. provided various kinds of periodic measures. Three
measures named minimum periodicity, maximum periodicity, and average periodicity are
proposed in [22], and an algorithm named Periodic Frequent Pattern Miner mines PIPs
with the aid of the monotonicity of these three types of periodicity. Additionally, they
introduced the definitions of periodic standard deviation and sequence periodic ratio [23]
to mine PIPs common to multiple sequences. A regularity measure for PIPs is defined using
the variance of periods [18]. Based on the standard deviation, the coefficient of variation is
adopted to measure PIPs in the works of Chen et al. [19]. They then inherited the coefficient
of variation measure to define SPIP in [20].

Mining FPs is a fundamental procedure in mining SPIPs. Depth-first search and
breadth-first search are two main methods for mining FPs, known as candidate generation
and pattern growth, respectively [24]. Depth-first algorithms search for FPs in a bottom-up
manner. Starting from itemsets containing a single item, larger FPs with more items are
recursively generated by appending items according to the total order. Han et al. proposed
a depth-first algorithm called FP-Growth [6,7], based on the FP-tree, to compress database
transactions. This method consumes a significant amount of running time in creating
multiple subtrees. Additionally, the performance of the algorithm is affected by the storage
consumption from recording a substantial number of FP-tree nodes.

As for breadth-first search, Apriori [5] proposed by Agrawal et al., is a classical breadth-
first FP mining algorithm. It is a fundamental iterative algorithm that uses a layer-by-layer
search to find FPs, employing an iterative search pattern and a test-and-generate approach.
Based on the Apriori algorithm, several algorithms have been developed to compress the
database, allowing for the quick generation of candidate itemsets and the calculation of
their support. T-Apriori [25] uses an overlap strategy when counting support to ensure
high efficiency. BitTableFI [8], proposed by Dong et al., employs an efficient bit structure to
compress the database.

Apart from approaches like BitTableFI for mining FPs, bitwise representations and
operations are exploited in various works in mining metadata. Index-BitTableFI [26] is an
improved version of BitTableFI, which utilizes heuristic information provided by an index
array. SPAM [27], aimed at mining sequential patterns, employs a bitmap representation of
the database. In IndiBits [28], proposed by Breve et al., the binary representation of data
similarities is used, and bitwise operations are employed to update the Binary Attribute
Satisfiability (BAS) Distance Matrix. For mining frequent closed itemsets, algorithms for
efficiently calculating the intersection between two dynamic bit vectors [29] are proposed.
CloFS-DBV [30] also utilizes dynamic bit vectors to mine frequent closed itemsets. The
computation of support is based on dynamic bit vectors when generating new patterns.
These bit vectors can also be used in mining web access patterns [31]. Trang et al. proposed
two algorithms named MWAPC and EMWAPC, which are based on the prefix-web access
pattern tree (PreWAP) structure for mining web access patterns with a super-pattern
constraint. In DPMmine [32], vector column intersection bitwise operations are used to aid
the algorithm in mining colossal pattern sequences.

3. Background and Preliminaries

Let I = {i1, i2, . . . , im} denote a set of finite items, |I| is the number of items in I. The
items are discrete real numbers or symbols. As shown in Figure 1, there are mapping
relations that map these discrete numbers and symbols into a group of continuous items.
In our paper, we assume that there exist mapping relations that map the real numbers or
symbols into a series of continuous integers starting from 1. The relevant definitions of
mining SPIPs are presented as follows:

Definition 1. A transaction Tk is a set of items in I, i.e., Tk ⊆ I. Tk holds a unique index k called
the transaction identifier.

Electronics 2023, 12, 4874 4 of 19

3

11

19

61

1

2

3

4

(a)

a

c

e

q

1

2

3

4

(b)

Figure 1. The diagram of the mapping relations. (a) Map the discontinuous numbers to continuous
items. (b) Map the symbols to continuous items.

A transaction dataset DB = {T1, T2, . . . , Tn} comprises n transactions. |DB| is the
number of transactions in DB. Table 1 shows an example transaction dataset DB1 containing
five transactions denoted by T1 to T5, where I = {1, 2, 3, 4, 5}, |DB1| = 5. Example 1 shows
the relationship between Tk and I, where 1 ≤ k ≤ 5. Transactions represent a shopping list
of products from the retailer that are purchased by a customer; I can be used to represent
the whole set of products on the shopping list. The transaction dataset can be extracted
from the database of the retailer, which is served as the shopping record in a time interval.

Table 1. Example transaction dataset DB1.

Transaction Items

T1 1, 2, 3, 5
T2 1, 3, 4, 5
T3 1, 2, 3, 4, 5
T4 3, 4, 5
T5 2, 3, 4

Example 1. For the set of items T1 = {1, 2, 3, 5} in Table 1, since T1 ⊆ I, T1 is a transaction. For
another set of items {1, 2, 6, 8}, which is not a subset of I, it is not a transaction.

Definition 2. An itemset, X, is a non-empty set, and X ⊆ I. An itemset, X, containing n items is
called an n-itemset. n is the size of the itemset. Specifically, {i} is a 1-itemset that contains a single
item i.

Example 2. X1 = {3} and X2 = {2, 3} are two itemsets with sizes of 1 and 2. Thus, the two itemsets
are also called a 1-itemset and a 2-itemset, respectively.

Definition 3. The occurrence set OX for an itemset X is a set of transaction identifiers, OX =
{k |X ⊆ Tk, Tk ∈ DB}.

Example 3. In Table 1, T1, T3, and T5 incorporate X = {2, 3}, so OX = {1, 3, 5}.

Definition 4. The frequency FreqX for an itemset X is the ratio of the size of OX to the number of
transactions in the dataset, FreqX = |OX |/|DB|. Given a frequency threshold θ, an itemset X is a
frequent pattern if FreqX ≥ θ.

Example 4. For DB1 in Table 1 with a frequency threshold θ = 0.7, for X1 = {2, 3} and X2 =
{3, 4}, OX1 = {1, 3, 5} and OX2 = {2, 3, 4, 5}. Thus, FreqX1

= 0.6 and FreqX2
= 0.8. Since

FreqX2
= 0.8 > 0.6, X2 is a frequent pattern. Similarly, X1 is not a frequent pattern since

FreqX1
= 0.6 < 0.7.

Electronics 2023, 12, 4874 5 of 19

Definition 5. The period list PerX for an itemset X is the set of periods of X: PerX = {wp+1 −
wp | ∀p ∈ {1, . . . , |OX | − 1}, wp ∈ OX}.

Definition 6. The coefficient of variation CX of an itemset X is the ratio of the standard deviation
of PerX to the mean of PerX: CX = std(PerX) / mean(PerX). std(∗) and mean(∗) represent the
standard deviation and mean, respectively.

Example 5. X1 = {1, 2} and X2 = {3, 6} in DB2, as shown in Table 2, OX1 = {1, 4, 6, 8, 11}. Thus
by Definition 5, PerX1 = {3, 2, 2, 3}. The standard deviation and the mean of PerX1 are 0.5 and 2.5,
respectively, CX1 = std(PerX1) / mean(PerX1) = 0.2. Similarly, OX2 = {3, 4, 5, 12} and PerX2 =
{1, 1, 7}, CX2 = 0.943.

Table 2. Example transaction dataset DB2.

Transaction Items Transaction Items

T1 1, 2, 5, 6, 8 T7 2, 3, 4
T2 1, 4, 5, 6 T8 1, 2, 3, 7
T3 1, 3, 6, 7 T9 3, 5, 7, 8
T4 1, 2, 3, 6 T10 2, 3, 4
T5 3, 4, 6, 8 T11 1, 2, 7, 8
T6 1, 2, 6, 7 T12 3, 4, 6, 7, 8

The coefficient of variation is a suitable metric for measuring the periodicity of pat-
terns [19]. It reflects the fluctuation in the appearance of patterns in the transaction dataset.
Patterns with a lower coefficient of variation exhibit better periodicity, while a higher
coefficient of variation indicates irregularity in occurrence. We follow the approach of
Chen et al. in introducing the coefficient of variation as a measure of periodicity [19].

Definition 7. For a transaction dataset, a frequency threshold θ, and a coefficient of variation
threshold δ, an itemset X is a periodic itemset pattern if X is a frequent pattern and CX ≤ δ. The
set of PIPs is denoted by PIP:

PIP = {X |X ∈ FP, CX ≤ δ}.

Example 6. X1 = {1, 2} and X2 = {3, 6} in DB2, as shown in Table 2, with a frequency threshold
θ = 0.2 and a coefficient of variation threshold δ = 0.5. Both X1 and X2 are FPs, as their frequencies
are beyond 0.2. As CX1 = 0.2 < 0.5, by Definition 7, X1 is a PIP. Similarly, X2 is not a PIP since
CX2 = 0.943 > 0.5.

Definition 8. For two itemsets (X and Y) in a transaction dataset, X is dominated by Y if
FreqX < FreqY and CX ≥ CY, or FreqX ≤ FreqY and CX > CY. ‘X is dominated by Y’ is
equivalent to ‘Y dominates X’.

Example 7. For X1 = {1, 2}, X2 = {3, 6}, and X3 = {3} in DB2, as shown in Table 2, the frequency
and the coefficient of variation of X1, X2, and X3 are listed in Table 3. By Definition 8, neither X2
nor X3 dominate X1, as CX1 < CX2 and CX1 < CX3 . Neither X1 nor X2 dominate X3 as FreqX3

> FreqX1 and FreqX3 > FreqX2 . As FreqX2 < FreqX1 and CX2 > CX1 , X2 is dominated by X1.
Similarly, it is dominated by X3.

Table 3. The frequency and the coefficient of variation of X1, X2, and X3 in DB2.

Pattern Frequency Coefficient of Variation

X1 0.416 0.2
X2 0.333 0.943
X3 0.667 0.351

Electronics 2023, 12, 4874 6 of 19

Definition 9. For a transaction dataset, DB, a frequency threshold, θ, and a coefficient of variation
threshold, δ, an itemset, X, is an SPIP if X is a periodic itemset pattern and X is not dominated by
other itemsets in DB. The set of SPIPs is denoted by SPIP:

SPIP = {X |X ∈ PIP, ∃/ Y s.t. Y dominates X}.

By Definitions 8 and 9, the aim of mining SPIPs is to explore the patterns that are more
frequent or have better periodicity or both.

4. BitSPIM: The Proposed Method
4.1. The Preliminaries of Bitwise Representation

In our approach, bitsets and efficient bitwise representations are introduced to deal
with set operations.

Definition 10. The bitset for a set, X, is denoted by BSX . BSX [i] is the ith bit of BSX . If an item
i ∈ X, then BSX [i] is assigned as 1. Otherwise, it is assigned as 0:

BSX [i] =

{
1 i ∈ X
0 i /∈ X

The Set operation and Clear operation are used to assign 1 and 0 to the bits in the bitset,
respectively.

|X| and |BSX | are the sizes of X and BSX , respectively. |BSX | equals the number of
bits assigned, as 1 in BSX. Obviously, |BSX | = |X|. By Definition 10, a mapping relation
between the set and its bitwise representation is established. This relation enables the
efficient use of bitwise operations when handling sets. For example, the intersection
operation and union operation between sets are equivalent to performing “&” and “|||” on
their bitsets, respectively.

Definition 11. The value of a bitset BSX denoted by VBSX is the binary number of BSX .

As shown in Example 8, the bitsets can be regarded as binary numbers; thus, the value
of bitsets can directly be compared.

Example 8. For X1 = {2, 3, 5} and X2 = {3, 4, 5} in DB1, BSX1 and BSX2 are 01101 and 00111,
respectively. VBSX1

> VBSX2
as 01101 > 00111.

The transactions are also sets of items. If an item i is in a transaction Tk, BSTk [i] is
assigned as 1. Hereby, the bitset for a transaction is obtained. For a dataset DB, the bitwise
representation of DB is derived by obtaining the bitsets for all transactions. The bitwise
representation of DB1 is shown in Table 4.

Table 4. Bitwise representation of DB1.

Transaction Items BSTk

T1 1, 2, 3, 5 11101
T2 1, 3, 4, 5 10111
T3 1, 2, 3, 4, 5 11111
T4 3, 4, 5 00111
T5 2, 3, 4 01110

Definition 12. The head of an itemset X denoted by headX is the minimal item in X, it corresponds
to the first 1 bit in BSX. Accordingly, the tail of an itemset, X, denoted by tailX, is the maximal
item in X, and it corresponds to the last 1 bit in BSX .

Electronics 2023, 12, 4874 7 of 19

Example 9. As shown in Figure 2, for the 3-itemsets X1 = {2, 3, 4} and X2 = {2, 3, 5} in DB1,
headX1 = headX2 = 2, tailX1 = 4 and tailX2 = 5.

0 1 1

BSX1

1 0 0 1 1

BSX2

0 1

1 The bit corresponding to the head 1 The bit corresponding to the tail

Figure 2. Diagram of Example 9. The bits corresponding to the head and the tail of X1 and X2 are
colored, respectively.

Definition 13. Given a transaction dataset, DB, and its bitwise representation, I is the set of items
in DB; for an item i ∈ I, the column Coli for i is the bitset for the occurrence set O{i}, where
Coli = BSO{i} .

By Definitions 3 and 10, with BSOX , the frequency of X can be calculated as |BSOX |
= |OX |. For an itemset X, Algorithm 1 shows the procedures to obtain the bitset for OX.
Initially, BSOX equals ColheadX (line 4). Then, BSOX is obtained by performing bitwise “&”
operations on the columns for other items in X (lines 5 to 9). The worst time complexity
of Algorithm 1 is O(|I|2/64), where |I| is the number of items in the dataset. Example 10
provides an illustration of acquiring BSOX for an itemset X in Table 1.

Algorithm 1 GetOccur

1: Input: BSX : bitset
2: Output: BSOX : bitset
3: headX ← the head of X
4: BSOX ← ColheadX
5: for each i ∈ BSX do
6: if i > headX then
7: BSOX ← BSOX & Coli
8: end if
9: end for

10: return BSOX

Example 10. By Table 4, for an itemset X = {2, 4} in Table 1, Col2 = 10101, Col4 = 01111. As
shown in Figure 3, by performing “&” on Col2 and Col4, BSOX is 00101.

X = {2, 4}

0 1 0BSX 1 0

1 1 1 0 1 0

1 0 1 1 1 0

1 1 1 1 1 1

0 0 1 1 1 0

0 1

Col2

1 1

Col4

0 1

BSOX

Bitwise representation of DB1

Figure 3. Diagram of Example 10. Given the bitwise representation of DB1, X = {2, 4} and
BSX = 01010. Col2, Col4, and BSOX are colored. BSOX = Col2 & Col4 = 00101.

Electronics 2023, 12, 4874 8 of 19

Definition 14. For an itemset, X, the prefix for X is denoted by PX. It is a bitset equal to BSX
while the last 1 bit is Cleared.

For two k-itemsets, X and Y, if X and Y have the same prefix, they have k− 1 items
in common and can be merged into a new (k + 1)-itemset Z. By Definition 12, the two
k-itemsets, X and Y, and the new (k + 1)-itemset, Z, have an identical head, and the tail of
Z is the larger one between tailX and tailY. Example 11 provides an illustration.

Example 11. As shown in Figure 4, for the 3-itemsets X1 = {2, 3, 4} and X2 = {2, 3, 5} in
DB1, since PX1 = PX2 = 01100, by merging X1 and X2, a new 4-itemset X3 is generated and
BSX3 = 01111, headX3 = headX1 = headX2 = 2. As tailX2 > tailX1 , tailX3 = tailX2 = 5.

0 1 1

BSX1

1 0

0 1 1

BSX2

0 1

0 1 1

PX1 (PX2)

0 0

0 1 1

BSX3

1 1

1

The bit corresponding to the head

1

The bit corresponding to the tail

Figure 4. Diagram of Example 11. The bitset for X1, X2, and X3, as well as the prefix for X1 and X2

are depicted. The bits corresponding to the head and the tail of the itemset are colored, respectively.

In this paper, we specify that only itemsets with the same prefix can be merged.

4.2. Our Theories and Data Structure

Based on the aforementioned preliminary definitions and concepts, we introduce the
critical knowledge and basic data structure to induce our proposed method. In BitSPIM,
SPIPs are identified iteratively. We mark the iteration that generates the SPIPs of size k as
kth iteration.

Definition 15. Given dataset DB, X and Y are two itemsets in DB, |X| = |Y|. If VBSX > VBSY ,
then BSX � BSY.

� reflects the relative position of the bitsets. If BSX � BSY, BSY is after BSX.
Obviously, the transitivity of � between bitsets is satisfied. For three bitsets, BSX, BSY,
and BSZ, if BSX � BSY and BSY � BSZ, then BSX � BSZ.

Corollary 1. For two bitsets, BSX and BSY, if BSX � BSY, then VPX ≥ VPY .

Proof. We denote VtailX as the value of the binary number for the bitset with the only 1
at the tail of X, VPX = VBSX − VtailX , VPX > VtailX and accordingly, VPY = VBSY − VtailY ,
VPY > VtailY . If BSX � BSY, then |X| = |Y| and VBSX > VBSY . If VtailX < VtailY , then
VPX > VPY . If VtailX ≥ VtailY , assume VPX < VPY , as VPX > VtailX and VPY > VtailY ,
VPX + VtailX < VPY + VtailY , in other words, VBSX < VBSY , which is contradictory with
BSX � BSY. The assumption is invalid and Corollary 1 is proved.

Definition 16. The ItemsetList L is an ordered list; its containing elements are unique bitsets with
identical sizes. The � relation holds between any two of the bitsets in L.

Electronics 2023, 12, 4874 9 of 19

PIPs and SPIPs are contained in the sets named Spip and Sslp, respectively. The
notations and functions of the ItemsetLists and sets in BitSPIM are shown in Table 5:

Table 5. The notations and functions of different ItemsetLists and sets in BitSPIM.

Notation Function

Sslp containing SPIPs
Spip containing PIPs
Lcur representing the bitsets to kth iteration
Lnext transferring the bitsets to (k + 1)th iteration

Theorem 1. Suppose BSX and BSY are two bitsets in L and BSX � BSY. If PX 6= PY, then
there exists no BSZ, such that PX = PZ and BSY � BSZ.

Proof. Since BSX � BSY, VPX ≥ VPY by Corollary 1. As PX 6= PY, there is

VPX > VPY . (1)

Suppose there exists BSZ, such that PX = PZ and BSY � BSZ, then VPY ≥ VPZ and
VPX = VPZ , there is

VPY ≥ VPX . (2)

Obviously, (1) and (2) contradict each other. Consequently, Theorem 1 is proved.

Theorem 1 is the basic efficient cutting mechanism. An illustration of Theorem 1 is
provided in Example 12.

Example 12. By Table 1, for five itemsets, X1 = {1, 2, 3}, X2 = {1, 2, 5}, X3 = {1, 3, 4}, X4 = {1, 3, 5},
and X5 = {2, 4, 5} in DB1, their bitsets and prefixes are shown in Figure 5. BSX1 to BSX5 are
contained in L and there is BSX1� BSX2� BSX3� BSX4� BSX5 . According to Theorem 1,
since PX1 6= PX3 , neither the prefix for X4 nor that of X5 equals PX1 . As depicted in Figure 5,
different types of bitsets are colored with different colors, respectively. BSX1 and the bitsets that
have the same prefix with BSX1 are marked in blue; the first bitset that has a different prefix with
BSX1 is marked in green, and the bitsets that are not processed according to Theorem 1 are marked
in gray.

11100

BSX1

11001

BSX2

10110

BSX3

10101

BSX4

01011

BSX5

Figure 5. Diagram of Example 12. The bitsets in L are presented. Different types of bitsets are colored
with different colors.

4.3. Mining SPIPs Efficiently

In this section, a detailed illustration of BitSPIM is provided. We demonstrate our
proposed method with an example of mining SPIPs in the DB2 dataset, as shown in Table 2,
with a frequency threshold θ = 0.4. For simplicity, the coefficient of variation threshold δ is
set to ∞, which implies that all FPs are also PIPs.

4.3.1. Identification of SPIPs with Bitset

We follow the key steps of the identification of SPIPs described in [20] while several
modifications are adopted. According to Chen et al., the identification of SPIPs does not
proceed until all FPs are obtained, and at that moment, the occurrence set of each itemset is
discovered.

Rather than acquiring all FPs in advance before the identification of SPIPs, in BitSPIM,
once an itemset, X, is recognized as an FP, the identification of whether X is an SPIP is

Electronics 2023, 12, 4874 10 of 19

executed immediately. The bitset for OX , denoted by BSOX , can be directly utilized, which
has already been obtained when calculating FreqX. The steps of judging whether an FP
is an SPIP are described in Algorithms 2 and 3. The function of Algorithm 2 is to remove
all itemsets in Sslp that are dominated by an itemset X. Suppose |Sslp| is the maximal
number of itemsets in Sslp; the worst time complexity of Algorithm 2 is O(|Sslp|). Freqmax
and Cmin record the current maximal frequency and the minimal coefficient of variation of
the itemsets in Sslp, respectively. The steps of Algorithm 3 are as follows:

Algorithm 2 ClearNonSPIP

1: Input: Sslp: Set, X: Itemset
2: Output: Sslp: Set
3: for each Y ∈ Sslp do
4: if Y is dominated by X then
5: Sslp ← Sslp − {Y}
6: end if
7: end for
8: return Sslp

Algorithm 3 CheckSPIP

1: Input: BSX : Bitset, BSOX : Bitset, δ: Double, Spip: Set, Sslp: Set
2: Output: Lcur: List
3: PerX ← the period list of X
4: CX ← the coefficient of variation of X
5: if CX > δ then
6: return Sslp, Spip
7: end if
8: Spip ← Spip ∪ {X}
9: if Freqmax < FreqX , Cmin > CX then

10: Freqmax = FreqX , Cmin = CX
11: Sslp ← {X}
12: else
13: if Freqmax < FreqX then
14: Freqmax = FreqX
15: else if Cmin > CX then
16: Cmin = CX
17: else if ∃Y ∈ Sslp s.t. Y dominates X then
18: return Sslp, Spip
19: end if
20: Sslp ← call Algorithm 2 (Sslp, X)
21: Sslp ← Sslp ∪ {X}
22: end if
23: return Sslp, Spip

(1) With BSOX , by Definitions 5 and 6, PerX and CX are acquired (lines 3 to 4), respectively.
(2) If CX > δ, by Definition 7, X is not a PIP, and the algorithm terminates (line 6).

Otherwise, X is added to Spip (line 8).
(3) If Freqmax < FreqX and Cmin > CX, by Definition 7, X dominates all itemsets in Sslp.

Therefore, X is the only element in Sslp; the value of Freqmax and the value of Cmin are
updated with FreqX and CX , respectively (lines 9 to 11).

(4) If Freqmax < FreqX and Cmin ≤ CX, or, Freqmax ≥ FreqX and Cmin > CX, X may
dominate some itemsets in Sslp and none of the itemsets in Sslp can dominate X. Sslp
contains X and the itemsets that are not dominated by X. Specifically, in the former
case, the value of Freqmax is updated with FreqX, and in the latter case, the value of
Cmin is updated with CX (lines 13 to 16 and lines 20 to 21).

Electronics 2023, 12, 4874 11 of 19

(5) If Freqmax ≥ FreqX and Cmin ≤ CX , X may be dominated by some itemsets in Sslp. If
any itemset dominates X (line 17), X is not an SPIP and the identification of X stops
(line 18), X is not in Sslp. Otherwise, Sslp contains X and the itemsets that are not
dominated by X (lines 20 to 21).

In Algorithm 3, as Algorithm 2 is invoked and PerX is utilized, the worst-case time
complexity of Algorithm 3 is O(max{|I|, |Sslp|}), where |Sslp| represents the maximal
number of itemsets in Sslp.

4.3.2. First Iteration

The aim of first iteration is to generate bitsets for frequent 1-itemsets and identify
SPIPs of size 1 (if any). Algorithm 4 illustrates the process of first iteration. I is the set of
items in the transaction dataset. To guarantee the � relation between any two bitsets in the
ItemsetLists, the items in I are in ascending order. Initially, the values of Freqmax and Cmin
are set to 0 and ∞, respectively (line 3). Lcur, Spip, and Sslp are empty (line 4). For each
item i in I, all bits in BS{i} are Cleared except that the ith bit is set to 1 (lines 6 to 7). Then,
by Algorithm 1, BSO{i} is formulated on line 8. As BS{i} contains one 1 bit, the process of
lines 5 to 9 in Algorithm 1 is omitted. Freq{i} is computed by Definition 4 (line 9). If Freq{i}
is not less than the frequency threshold θ, {i} is an FP and BS{i} is added to the end of
Lcur (line 11). Algorithm 3 is then invoked to identify whether {i} is an SPIP, as discussed
in Section 4.3.1.

Algorithm 4 First iteration

1: Input: I: Set, θ: Double, δ: Double
2: Output: Lcur
3: Freqmax = 0, Cmin = ∞
4: Lcur ← an empty List, Spip ← ∅, Sslp ← ∅
5: for each i ∈ I do
6: BS{i} ← an empty Bitset
7: Set BS{i}[i]
8: BSO{i} ← call Algorithm 1(BS{i})
9: Freq{i} ← |BSO{i} |/|DB|

10: if Freq{i} ≥ θ then
11: Add BS{i} to the end of Lcur
12: call Algorithm 3 (BS{i}, BSO{i} , Spip, Sslp, δ)
13: end if
14: end for
15: return Lcur

When Algorithm 4 stops, all infrequent 1-itemsets are eradicated and will not be
involved in the subsequent iterations. Lcur becomes the input to the second iteration. In
Algorithm 4, Algorithms 1 and 3 are invoked for each item i in I. Thus, the worst time
complexity of Algorithm 4 is O(|I| * (max{|I|, |Sslp|} + |I|2/64)).

An illustration of first iteration is provided for mining SPIPs in the DB2 dataset,
as shown in Table 2, with a frequency threshold θ = 0.4 and the coefficient of variation
threshold δ = ∞. Table 6 shows the frequencies and the coefficients of variation for all eight
1-itemsets in DB2, denoted by {1} to {8}.

On line 5 of Algorithm 4, the items in I are in ascending order, the bitsets for all
1-itemsets, {1} to {8}, are sequentially processed by Algorithm 4. As the threshold of the
coefficient of variation is set to ∞, the coefficients of variation for all 1-itemsets are not
larger than ∞. Consequently, lines 5 to 7 of Algorithm 3 are skipped. Initially, for BS{1},
as Freqmax = 0 and Cmin = ∞, {1} is added to Sslp, Freqmax = 0.583 and Cmin = 0.447. As
Freqmax = Freq{2} and Cmin = C{2}, lines 17 to 21 of Algorithm 3 are used to process {2}; {2}
can also be added to Sslp as {1} does not dominate {2}. Freqmax and Cmin remain invariant.

Electronics 2023, 12, 4874 12 of 19

As Freqmax < Freq{3} and Cmin > C{3}, lines 9 to 11 of Algorithm 3 are used to process
{3}; {3} dominates {1} and {2} and is added to Sslp while {1} and {2} are removed from Sslp.
Freqmax = 0.667 and Cmin = 0.351. As Freqmax > Freq{4} and Cmin > C{4}, lines 15 to 16 and
20 to 21 of Algorithm 3 are used to process {4}; {3} stays in Sslp as it is not dominated by
{4}. After {4} is processed, Sslp contains {3} and {4}, Freqmax = 0.667 and Cmin = 0.2. As
Freq{5} is less than the frequency threshold, {5} is not an SPIP as it is not an FP (line 10
of Algorithm 4). For itemsets {6} to {8}, their frequencies are less than Freqmax. Moreover,
they can be dominated by some itemsets in Sslp (line 17 of Algorithm 3). At the end of 1st
iteration, {3} and {4} are two SPIPs. According to lines 10 to 11 of Algorithm 4, Lcur contains
the bitsets for {1} to {8} except {5}, as the frequency of {5} is less than θ. Lcur is then used as
the input to the second iteration.

Table 6. The frequency and the coefficient of variation of eight 1-itemsets in DB2. Freqmax, Cmin, and
Sslp denote the maximal frequency, the minimal coefficient of variation, and the set of SPIPs after
itemset {i} is processed. I is the set of items in DB2, i ∈ I.

Itemset ({i}) Frequency Coefficient of Variation Freqmax Cmin Sslp

{1} 0.583 0.447 0.583 0.447 {1}
{2} 0.583 0.447 0.583 0.447 {1}, {2}
{3} 0.667 0.351 0.667 0.351 {3}
{4} 0.416 0.2 0.667 0.2 {3}, {4}
{5} 0.25 0.75 0.667 0.2 {3}, {4}
{6} 0.583 1.016 0.667 0.2 {3}, {4}
{7} 0.5 0.415 0.667 0.2 {3}, {4}
{8} 0.416 0.472 0.667 0.2 {3}, {4}

4.3.3. kth Iteration (k > 1)

As shown in Algorithm 5, in kth iteration, SPIPs of size k are obtained, and frequent
(k + 1)-itemsets are generated and used as the input to (k + 1)th iteration. kth iteration
activates as Lcur covers the bitsets for all frequent (k − 1)-itemsets. The procedures of
Algorithm 5 are as follows:

(1) When Lcur is not empty, Algorithm 5 runs iteratively (line 3).
(2) Lnext is set to empty (line 4).
(3) For each BSX in Lcur, PX is preliminarily constructed (line 6). According to Definition 14,

PX is equal to BSX while the last 1 bit is substituted by 0 (lines 7 to 8).
(4) To generate new (k + 1)-itemsets, for each BSY after BSX in Lcur, if PX differentiates

from PY, all bitsets after BSY have a different prefix compared to that of BSX, ac-
cording to Theorem 1; thus, no bitset can be combined with BSX . Therefore, none of
the bitsets after BSY will be further processed while determining which bitsets can
be merged with BSX (line 11). Otherwise, X and Y can be merged as they share an
identical prefix. This approach of limiting the traversal of bitsets avoids extensive,
pointless searches on itemsets that are inevitably unable to be merged.

(5) When BSY processes an identical prefix, the last bit that indicates the tail is the only
discrepancy between them. The combination of BSX and BSY focuses on the last
1-bit rather than trivially performing a bitwise “|||” operation on BSX and BSY. A new
bitset BSN is constructed for the (k + 1)-itemset, which initially equals BSX (line 13).

(6) The tailYth bit in BSN is set to 1 (line 14).
(7) Resembles 1st iteration, FreqN is calculated by Algorithm 1 and Definition 4 (lines 15

and 16).
(8) If FreqN is greater than or equal to the frequency threshold, BSN is added to the end

of Lnext (line 18).
(9) With BSN and BSON , Algorithm 3 is invoked to examine whether itemset N is an

SPIP (line 19).

Electronics 2023, 12, 4874 13 of 19

(10) While Lnext covers the bitsets for all (k+ 1)-itemsets, the bitsets in Lnext are transferred
to Lcur (line 23). This step declares both the end of kth iteration and the beginning of
(k + 1)th iteration.

Algorithm 5 kth iteration (k > 1)

1: Input: Lcur: List, θ: Double, δ: Double
2: Output: Lcur: List Sslp: Set, Spip: Set
3: while Lcur is not an empty List do
4: Lnext ← an Empty List
5: for each BSX ∈ Lcur do
6: PX ← BSX
7: tailX ← the tail of X
8: Clear PX [tailX]
9: for each BSY ∈ Lcur and BSX � BSY do

10: if PX 6= PY then
11: break
12: end if
13: BSN ← clone BSX
14: Set BSN [tailY]
15: BSON ← call Algorithm 1(BSN)
16: FreqN ← |BSON | / |DB|
17: if FreqN ≥ θ then
18: Add BSN to the end of Lnext
19: call Algorithm 3 (BSN , BSON , Spip, Sslp, δ)
20: end if
21: end for
22: end for
23: Lcur ← Lnext
24: end while
25: return Lcur, Sslp, Spip

When Lcur is an empty list, no frequent (k + 1)-itemset is generated in kth iteration,
(k + 1)th iteration will not proceed, and the algorithm terminates; all SPIPs are identified.

Suppose |Lcur| is the maximal number of bitsets in Lcur, the worst time complexity of
an arbitrary kth iteration is O(|Lcur|2 * (max{|I|, |Sslp|} + |I|2/64)).

We provide an illustration of 2nd iteration for mining SPIPs in the DB2 dataset, as
shown in Table 2 with a frequency threshold θ = 0.4 and the coefficient of variation threshold
δ = ∞. Lcur contains the bitset for {1}, {2}, {3}, {4}, {6}, {7}, and {8}. Algorithm 3 only
checks if X1 = {1, 2} and X2 = {1, 6} are SPIPs, as among all the 2-itemsets, only X1 and X2
are FPs with a frequency beyond θ. For simplicity, Table 7 merely gives the frequency and
the coefficient of variation of X1 and X2 in Table 2.

At the beginning of 2nd iteration, Freqmax = 0.667 and Cmin = 0.2. As FreqX1 < Freqmax
and CX1 = Cmin, lines 17 to 21 of Algorithm 3 are used to process X1. Neither {3} nor {4}
dominates X1 and X1 cannot dominate {3} or {4}; thus. {3}, {4}, and X1 = {1, 2} are
SPIPs. Freqmax and Cmin remain invariant. Similarly, for X2 = {1, 6}, as FreqX2 ≤ Freq{4}
and CX2 > C{4}, X2 is dominated by {4}; thus, it is not an SPIP. At the end of 2nd iteration,
Sslp contains three SPIPs: {3}, {4}, and {1, 2}. Lcur contains two bitsets for X1 and X2, which
are used as the inputs of 3rd iteration.

In 3rd iteration, only a bitset for a 3-itemset X3 = {1, 2, 6} can be merged. As X3 is not
an FP, Lcur is an empty list at the end of 3rd iteration (line 4 and line 23 of Algorithm 5). 4th
iteration starts with an empty Lcur, the algorithm terminates as 4th iteration stops (line 3 of
Algorithm 5), and the final SPIPs in Table 2 with θ = 40% and δ = ∞ are {3}, {4} and {1, 2}.

Electronics 2023, 12, 4874 14 of 19

Table 7. The frequency and the coefficient of variation of X1 and X2 in DB2. Freqmax, Cmin, and Sslp
show the maximal frequency, the minimal coefficient of variation, and the set of SPIPs after itemset
Xi is processed.

Itemset (Xi) Frequency Coefficient of Variation Freqmax Cmin Sslp

X1 = {1, 2} 0.416 0.2 0.667 0.2 {3}, {4}, {1, 2}
X2 = {1, 6} 0.416 0.346 0.667 0.2 {3}, {4}, {1, 2}

5. Empirical Evaluation

We conducted a series of experiments to compare the performances of BitSPIM and
SPIM on a Windows 10 PC equipped with an AMD Ryzen 3950X processor, with 64 GB
of memory. The CPU clock speed is locked to 3.5 GHz to avoid the adverse effects of
CPU overclocking. The characteristics of the datasets involved in our experiments are
presented in Table 8, including four synthetic datasets and six real datasets. All datasets in
the experiments are downloaded from the website SPMF (http://www.philippe-fournier-
viger.com/spmf, accessed on 1 September 2023).

As SPIM [20] is the state-of-the-art and the only algorithm focusing on mining SPIPs,
we primarily compare the running time and memory usage between our approach and
SPIM. All datasets used in SPIM are included in our experiments. Additionally, as FP-
Growth is a fundamental component of SPIM, the running time of FP-Growth is also
considered to further explore the effectiveness of BitSPIM. For simplicity, all δ in our experi-
ment are set to ∞, which implies that all frequent patterns are also periodic itemset patterns.
In the first experiment, the numbers of PIPs and SPIPs identified by both algorithms were
recorded. The second experiment focuses on the running time of BitSPIM, SPIM, and
FP-Growth. Finally, we compare the performance in terms of memory usage between
BitSPIM and SPIM.

Table 8. The characteristics of the empirical datasets.

Dataset # Trans # Items AveLen Density

T10I4D100K 100,000 870 10 1.15%
T20I6D100K 99,922 893 19.9 2.23%
T25I10D10K 9976 929 24.77 2.67%
C20D10K 10,000 192 20 10.42%
Chainstore 1,112,949 46,086 7.23 0.02%
Foodmart 4141 1559 4.42 0.28%
OnlineRetail 541,909 2603 4.37 0.17%
Kosarak 990,002 41,270 8.1 0.02%
BMS-WebView-1 59,602 497 2.51 0.51%
BMS-WebView-2 77,512 3340 4.62 0.14%

“#” represents “the number of”, “Trans” represents “Transactions”, “AveLen” represents “Average Length”.

5.1. Number of Patterns

To verify that the SPIPs obtained by the proposed method are complete and correct,
we counted the number of PIPs and SPIPs obtained by BitSPIM and SPIM. The results
show that, on all datasets involved in the experiment, the PIP and SPIP numbers mined by
BitSPIM are always consistent with those obtained by SPIM for various values θ, verifying
the correctness of the proposed method.

5.2. Running Time

The running time of BitSPIM is compared with that of SPIM and FP-Growth. In SPIM,
FPs are identified in advance using FP-Growth before the recognition of SPIPs; thus, the
running time of FP-Growth can be recorded. Figure 6 demonstrates the running times of
BitSPIM, SPIM, and FP-Growth on different datasets with various frequency thresholds
θ when δ = ∞. In each subfigure representing the running time on different datasets, the

http://www.philippe-fournier-viger.com/spmf
http://www.philippe-fournier-viger.com/spmf

Electronics 2023, 12, 4874 15 of 19

range of θ includes the approximate frequency threshold value, where BitSPIM and SPIM
have the same running times. The horizontal axis indicates the value of θ, and the vertical
axis represents the running time. The red curve, blue curve, and gray curve indicate the
running times of BitSPIM, SPIM, and FP-Growth, respectively. The circles on the red curve,
the triangles on the blue curve, and the squares on the gray curve represent the running
times of our method and that of SPIM and FP-Growth on the specific θ, respectively. The
intersection points of the red and blue curves mean the running times of BitSPIM and SPIM
are identical. This is projected on the horizontal axis by a dotted line parallel to the vertical
axis. The horizontal coordinate of the intersection point indicates the frequency threshold
at which the two algorithms have the same running time.

As shown in Figure 6, except at the smaller thresholds, BitSPIM outpaces SPIM in
terms of running time across most of the threshold ranges. The curve of the running time
for BitSPIM is steeper than that of SPIM. Observing the gradient of the running time curve,
as θ increases, once θ goes beyond the horizontal coordinate of the intersection point of
BitSPIM’s curve and SPIM’s curve, the running time of BitSPIM is consistently less than that
of SPIM. For example, as shown in Figure 6g, the horizontal coordinate of the intersection
point is 0.215% on the OnlineRetail dataset. It can be concluded that BitSPIM runs faster
than SPIM at 99.785% of the threshold range.

The improvement achieved by BitSPIM over SPIM with respect to running time is
significant on datasets T20I6D100K, Chainstore, OnlineRetail, and Kosarak. For example,
on the T20I6D100K dataset, when the frequency threshold is 0.3%, BitSPIM is approximately
2 times faster than SPIM. For frequency thresholds beyond 0.6%, SPIM takes at least 4 times
longer than BitSPIM. On datasets T25I10D10K, C20D10K, Foodmart, and BMS-Webview-1,
although the improvement is not as pronounced, BitSPIM still shows an advantage over
SPIM on the majority of frequency thresholds. Since BitSPIM utilizes the basic idea of
Apriori, it is acknowledged that BitSPIM can be outpaced by SPIM at small frequency
thresholds. In fact, the experimental results support the conclusion of [33] that no algorithm
is an absolute and clear winner, able to outperform all others across all datasets and the
entire range of thresholds. Overall, BitSPIM is observed to require less running time
compared with SPIM for the majority of frequency thresholds

Mining FPs is fundamental to the identification of SPIPs. SPIM identifies SPIPs
from all FPs mined by FP-Growth, and as a result, SPIM naturally takes longer to run
than FP-Growth. However, BitSPIM does not adopt separate steps to mine FPs and can
demonstrate better performance compared with FP-Growth. On datasets like T20I6D100K,
Chainstore, OnlineRetail, and Kosarak, BitSPIM runs faster than FP-Growth for the majority
of frequency thresholds. Although on datasets such as T10I4D100K, Foodmart, and BMS-
Webview-2, BitSPIM does not show much superiority over FP-Growth, it can still be
observed that there is an intersection between the red curve and gray curve, representing
the running times of BitSPIM and FP-Growth, respectively. This indicates that BitSPIM
can outperform FP-Growth at some frequency thresholds. The comparison between the
running times of BitSPIM and FP-Growth further demonstrates the superior performance
of our approach over SPIM.

0.08 0.10 0.12 0.14

1,000

1,200

1,400

1,600

(0.083, 1,361)

BitSPIM
SPIM
FP_Growth

(a) T10I4D100K.

0.2 0.4 0.6 0.8 1.0
0

3,000

6,000

9,000

12,000

(0.157, 8,438)

BitSPIM
SPIM
FP_Growth

(b) T20I6D100K.

Figure 6. Cont.

Electronics 2023, 12, 4874 16 of 19

0.12 0.16 0.20 0.24 0.28

4,000

8,000

12,000

16,000

(0.14, 9,937)

BitSPIM
SPIM
FP_Growth

(c) T25I10D10K.

2 4 6 8 10
0

5,000

10,000

15,000

20,000

25,000

(1.548, 19,239)

BitSPIM
SPIM
FP_Growth

(d) C20D10K.

0.2 0.3 0.4 0.5

1,000

2,000

3,000

4,000 (0.156, 3,876) BitSPIM
SPIM
FP_Growth

(e) Chainstore.

0.31 0.32 0.33 0.34 0.35 0.36 0.37

2

4

6

8

10

12

(0.327, 8)

BitSPIM
SPIM
FP_Growth

(f) Foodmart.

0.2 0.4 0.6 0.8 1.0

200

400

600

800 (0.215, 769) BitSPIM
SPIM
FP_Growth

(g) OnlineRetail.

0.3 0.4 0.5 0.6

1,500

3,000

4,500

6,000

7,500

(0.27, 6,192)
BitSPIM
SPIM
FP_Growth

(h) Kosarak.

0.064 0.066 0.068 0.070 0.072
100

200

300

400

(0.065, 293)

BitSPIM
SPIM
FP_Growth

(i) BMS-Webview-1.

0.16 0.18 0.20 0.22 0.24

150

200

250

300

350

(0.182, 242)

BitSPIM
SPIM
FP_Growth

(j) BMS-Webview-2.

Figure 6. Running time (ms) with different frequency thresholds θ (%) on empirical datasets. The
horizontal axis and the vertical axis in each subfigure represent the value of θ and the running
time, respectively. The intersection points of the red and blue curves in each subfigure are projected
on the horizontal axis by a dotted line parallel to the vertical axis.

5.3. Memory Usage

The results comparing the average memory usage of BitSPIM and SPIM with different
frequency thresholds θ on empirical datasets are presented in Table 9. The better results are
highlighted in bold. The coefficient of variance threshold δ is set to ∞ and the same range of
frequency thresholds as in the running time experiment are adopted. As shown in Table 9,
except on datasets with a large number of transactions and items, such as Chainstore and
Kosarak, BitSPIM outperforms SPIM in terms of average memory usage.

Electronics 2023, 12, 4874 17 of 19

Table 9. Average memory usage (MB) of BitSPIM and SPIM on empirical datasets. The better result
in each row is marked in bold.

Dataset SPIM BitSPIM

T10I4D100K 3021.2 247.1
T20I6D100K 3496.2 381.8
T25I10D10K 5237.8 2255.2
C20D10K 4360.1 2072.8
Chainstore 5371.6 6558.1
Foodmart 4308.7 1670.0
OnlineRetail 5286.1 2936.9
Kosarak 4622.1 5667.4
BMS-WebView-1 5112.3 1697.8
BMS-WebView-2 4781.4 1805.1

5.4. Discussion

From the results, the proposed method shows better performance, as it consumes
less time compared with SPIM for the vast majority of frequency threshold values across
different datasets. Regarding memory usage, BitSPIM generally consumes less memory
than SPIM, except on datasets with an extensive number of transactions and items.

The advantages of the proposed method can be summarized as follows: (1) The
bitset representation of the transaction dataset is more compact than the original dataset.
(2) Bitwise operations are involved in mining SPIPs by mapping ordinary sets to bitsets.
The generation of new itemsets and the calculation of their frequency can be realized
by performing efficient bitwise operations. (3) A novel cutting technique avoids many
unnecessary operations. When certain conditions are met, the loop stops without exploring
the entire search space. (4) The off-the-shelf occurrence set of the itemset can be utilized
directly when identifying whether an FP is an SPIP. (5) Space for constructing FP-trees is
saved as FP-Growth is not used in identifying FPs.

However, due to the inherent drawbacks originating from Apriori, BitSPIM repeatedly
scans the dataset to generate new bitsets and calculate the frequency of the itemsets. This
leads to higher time consumption at smaller thresholds. On datasets with numerous
transactions and items, a large number of bitsets need to be stored and operated in BitSPIM;
thus, in such cases, it is outperformed by SPIM in terms of memory usage.

6. Conclusions

In this paper, we propose a more efficient approach for mining SPIPs, called BitSPIM,
compared with the SPIM algorithm. Apart from utilizing a novel bitwise representation that
is capable of mining SPIPs, BitSPIM adopts a cutting mechanism to reduce the search space.
We evaluate the performance of our approach in comparison with the latest algorithm for
mining SPIPs on a variety of real and synthetic datasets. The results demonstrate that
BitSPIM is faster and consumes less memory than SPIM in most cases. We believe that our
approach is a significant alternative in mining SPIPs and can be applied to diverse fields
within ARM.

Author Contributions: Y.L. implemented the experiment and wrote the first draft of the paper, Z.L.
provided funding for the paper and revised it. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under grant
no. 62276060, Development and Reform Committee Foundation of Jilin province of China under
grant no. 2019C053-9.

Data Availability Statement: The datasets are available at the following links: http://www.philippe-
fournier-viger.com/spmf (accessed on 1 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

http://www.philippe-fournier-viger.com/spmf
http://www.philippe-fournier-viger.com/spmf

Electronics 2023, 12, 4874 18 of 19

References
1. Baralis, E.; Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Grimaudo, L.; Pulvirenti, F. NEMICO: Mining Network Data

through Cloud-Based Data Mining Techniques. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility
and Cloud Computing, London, UK, 8–11 December 2014.

2. Agrawal, R. Mining association rules between sets of items in large databases. In Proceedings of the ACM Sigmod International
Conference on Management of Data, Washington, DC, USA, 25–28 May 1993.

3. Le, H.S. A novel kernel fuzzy clustering algorithm for Geo-Demographic Analysis. Inf. Sci. Int. J. 2015, 317, 202–223.
4. Nguyen, L.; Nguyen, N.T. Updating mined class association rules for record insertion. Appl. Intell. 2015, 42, 707–721. [CrossRef]
5. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference on

Very Large Data Bases, Santiago, Chile, 12–15 September 1994.
6. Han, J.; Jian, P. Mining frequent patterns without candidate generation. ACM Sigmod Rec. 2000, 29, 1–12. [CrossRef]
7. Han, J.; Jian, P.; Yin, Y.; Mao, R. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.

Data Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]
8. Jie, D.; Min, H. BitTableFI: An efficient mining frequent itemsets algorithm. Knowl.-Based Syst. 2007, 20, 329–335.
9. Lin, J.C.; Li, T.; Fournier-Viger, P.; Hong, T.; Su, J. Efficient Mining of High Average-Utility Itemsets with Multiple Minimum

Thresholds. In Proceedings of the Advances in Data Mining. Applications and Theoretical Aspects—16th Industrial Conference,
ICDM 2016, New York, NY, USA, 13–17 July 2016; Proceedings; Lecture Notes in Computer Science; Perner, P., Ed.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9728, pp. 14–28. [CrossRef]

10. Lee, G.; Yang, W.; Lee, J. A parallel algorithm for mining multiple partial periodic patterns. Inf. Sci. 2006, 176, 3591–3609.
[CrossRef]

11. Elseidy, M.; Abdelhamid, E.; Skiadopoulos, S.; Kalnis, P. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph.
Proc. VLDB Endow. 2014, 7, 517–528. [CrossRef]

12. Hosseininasab, A.; van Hoeve, W.; Ciré, A.A. Constraint-Based Sequential Pattern Mining with Decision Diagrams. In Proceedings
of the The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Cambridge, MA, USA, 2019; pp. 1495–1502. [CrossRef]

13. Chanda, A.K.; Saha, S.; Nishi, M.A.; Samiullah, M.; Ahmed, C.F. An efficient approach to mine flexible periodic patterns in time
series databases. Eng. Appl. Artif. Intell. 2015, 44, 46–63. [CrossRef]

14. Rana, S.; Mondal, M.N.I. An Approach for Seasonally Periodic Frequent Pattern Mining in Retail Supermarket. In Proceedings of
the International Conference on Smart Data Intelligence, ICSMDI 2021, Tamil Nadu, India, 29–30 April 2021.

15. Zhou, H.; Hirasawa, K. Evolving temporal association rules in recommender system. Neural Comput. Appl. 2019, 31, 2605–2619.
[CrossRef]

16. Chen, G.; Li, Z. Discovering periodic cluster patterns in event sequence databases. Appl. Intell. 2022, 52, 15387–15404. [CrossRef]
17. Tanbeer, S.K.; Ahmed, C.F.; Jeong, B.; Lee, Y. Discovering Periodic-Frequent Patterns in Transactional Databases. In Proceedings

of the Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference, PAKDD 2009, Bangkok, Thailand,
27–30 April 2009; Proceedings; Lecture Notes in Computer Science; Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B., Eds.;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 5476, pp. 242–253. [CrossRef]

18. Rashid, M.M.; Karim, M.R.; Jeong, B.; Choi, H. Efficient Mining Regularly Frequent Patterns in Transactional Databases. In
Proceedings of the Database Systems for Advanced Applications—17th International Conference, DASFAA 2012, Busan, Republic
of Korea, 15–19 April 2012; Proceedings, Part I; Lecture Notes in Computer Science; Lee, S., Peng, Z., Zhou, X., Moon, Y., Unland,
R., Yoo, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7238, pp. 258–271. [CrossRef]

19. Chen, G.; Li, Z. A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation.
Entropy 2021, 23, 1430. [CrossRef] [PubMed]

20. Chen, G.; Li, Z. Discovering Skyline Periodic Itemset Patterns in Transaction Sequences. In Proceedings of the Advanced Data
Mining and Applications—19th International Conference, ADMA 2023, Shenyang, China, 21–23 August 2023; Proceedings, Part I;
Lecture Notes in Computer Science; Yang, X., Suhartanto, H., Wang, G., Wang, B., Jiang, J., Li, B., Zhu, H., Cui, N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2023; Volume 14176, pp. 494–508. [CrossRef]

21. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans. Database Syst. 2005,
30, 41–82. [CrossRef]

22. Fournier-Viger, P.; Lin, C.W.; Duong, Q.H.; Dam, T.L.; Voznak, M. PFPM: Discovering Periodic Frequent Patterns with Novel
Periodicity Measures. In Proceedings of the 2nd Czech-China Scientific Conference 2016; IntechOpen: London, UK, 2017.

23. Fournier-Viger, P.; Li, Z.; Lin, J.C.; Kiran, R.U.; Fujita, H. Efficient algorithms to identify periodic patterns in multiple sequences.
Inf. Sci. 2019, 489, 205–226. [CrossRef]

24. Nagarajan, K.; Kannan, S.; Sumathi, K. Maximal Frequent Itemset Mining Using Breadth-First Search with Efficient Pruning.
In Proceedings of the International Conference on Computer Networks and Communication Technologies, Alghero, Italy,
29 September–2 October 2019.

25. Yuan, X. An improved Apriori algorithm for mining association rules. AIP Conf. Proc. 2017, 1820, 080005.
26. Song, W.; Yang, B.; Xu, Z. Index-BitTableFI: An improved algorithm for mining frequent itemsets. Knowl.-Based Syst. 2008,

21, 507–513. [CrossRef]

http://doi.org/10.1007/s10489-014-0614-1
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1007/978-3-319-41561-1_2
http://dx.doi.org/10.1016/j.ins.2006.02.010
http://dx.doi.org/10.14778/2732286.2732289
http://dx.doi.org/10.1609/aaai.v33i01.33011495
http://dx.doi.org/10.1016/j.engappai.2015.04.014
http://dx.doi.org/10.1007/s00521-017-3217-z
http://dx.doi.org/10.1007/s10489-022-03186-z
http://dx.doi.org/10.1007/978-3-642-01307-2_24
http://dx.doi.org/10.1007/978-3-642-29038-1_20
http://dx.doi.org/10.3390/e23111430
http://www.ncbi.nlm.nih.gov/pubmed/34828128
http://dx.doi.org/10.1007/978-3-031-46661-8_33
http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.1016/j.ins.2019.03.050
http://dx.doi.org/10.1016/j.knosys.2008.03.011

Electronics 2023, 12, 4874 19 of 19

27. Ayres, J.; Flannick, J.; Gehrke, J.; Yiu, T. Sequential PAttern mining using a bitmap representation. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002;
ACM: New York, NY, USA, 2002; pp. 429–435. [CrossRef]

28. Breve, B.; Caruccio, L.; Cirillo, S.; Deufemia, V.; Polese, G. IndiBits: Incremental Discovery of Relaxed Functional Dependencies
using Bitwise Similarity. In Proceedings of the 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, 3–7 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1393–1405. [CrossRef]

29. Vo, B.; Hong, T.; Le, B. DBV-Miner: A Dynamic Bit-Vector approach for fast mining frequent closed itemsets. Expert Syst. Appl.
2012, 39, 7196–7206. [CrossRef]

30. Tran, M.; Le, B.; Vo, B. Combination of dynamic bit vectors and transaction information for mining frequent closed sequences
efficiently. Eng. Appl. Artif. Intell. 2015, 38, 183–189. [CrossRef]

31. Prasanna, K.; Seetha, M. Efficient and Accurate Discovery of Colossal Pattern Sequences from Biological Datasets: A Doubleton
Pattern Mining Strategy (DPMine). Procedia Comput. Sci. 2015, 54, 412–421. [CrossRef]

32. Van, T.; Yoshitaka, A.; Le, B. Mining web access patterns with super-pattern constraint. Appl. Intell. 2018, 48, 3902–3914.
[CrossRef]

33. Goethals, B.; Zaki, M.J. Advances in frequent itemset mining implementations: Report on FIMI’03. ACM Sigkdd Explor. Newsl.
2004, 6, 109–117. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/775047.775109
http://dx.doi.org/10.1109/ICDE55515.2023.00111
http://dx.doi.org/10.1016/j.eswa.2012.01.062
http://dx.doi.org/10.1016/j.engappai.2014.10.021
http://dx.doi.org/10.1016/j.procs.2015.06.048
http://dx.doi.org/10.1007/s10489-018-1182-6
http://dx.doi.org/10.1145/1007730.1007744

	Introduction
	Related Works
	Background and Preliminaries
	BitSPIM: The Proposed Method
	The Preliminaries of Bitwise Representation
	Our Theories and Data Structure
	Mining SPIPs Efficiently
	Identification of SPIPs with Bitset
	First Iteration
	kth Iteration (k > 1)

	Empirical Evaluation
	Number of Patterns
	Running Time
	Memory Usage
	Discussion

	Conclusions
	References

