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Abstract: Efficiently mining and distinguishing hard negatives is the key to Contrastive Learning
(CL) in various visual understanding tasks. By properly emphasizing the penalty of hard negatives,
Hard Negative Mining (HNM) can improve the CL performance. However, there is no method
to quantitatively analyze the penalty strength of hard negatives, which makes training difficult to
converge. In this paper, we propose a method for measuring and controlling the penalty strength.
We first define a penalty strength metric to provides a quantitative analysis tool for HNM. Then, we
propose a Triplet loss with Penalty Strength Control (T-PSC), which can balance the penalty strength
of hard negatives and the difficulty of model optimization. In order to verify the effectiveness of the
proposed T-PSC method in different modalities, we applied it to two visual understanding tasks:
Image–Text Retrieval (ITR) for multi-model processing, and Temporal Action Localization (TAL) for
video processing. T-PSC can be applied to existing ITR and TAL models in a plug-and-play manner
without any changes. Experiments combined with existing models show that a reasonable control of
the penalty strength can speed up training and improve the performance on higher-level tasks.

Keywords: contrastive learning; hard negative mining; Image–Text Retrieval; Temporal Action
Localization; visual understanding

1. Introduction

Contrastive learning (CL) has achieved great success in visual understanding in recent
years [1–6]. It is widely applied in cross-modal retrieval [7–9], action recognition [10],
instance segmentation [11], and other fields [12–14]. Through contrastive loss, the purpose
of CL is to bring positive pairings together and push negative pairs apart in the feature
embedding space. In other words, given the positive and negative pairings, we can build a
meaningful feature embedding space using a contrastive loss.

The challenges that affect the contrastive learning performance are mainly reflected
in the following two aspects: (1) how to define positive and negative sample pairs;
and (2) how to design appropriate contrastive loss. The first aspect is used to design
supervised learning or self-supervised learning paradigms. A positive sample pair in
supervised contrastive learning is made up of samples from the same category, whereas
a negative sample pair is made up of samples from separate categories. A positive
pair in self-supervised contrastive learning is frequently generated via two perspectives
(e.g., distinct data augmentations) of the same sample, whereas a negative sample pair
is built of a sample and additional samples of other categories or their augmented
samples, according to [15]. The effectiveness of the second element strongly influences
the performance on high-level contrastive learning tasks, which is a major difficulty for
CL. Broadly speaking, contrastive loss is the most significant element influencing the
contrastive learning performance.
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The triplet loss [1] is one of the most widely used contrastive loss functions for visual
understanding tasks. A triplet consists of three parts: an anchor, a positive, and a negative.
Taking image-to-text retrieval as an example, we take each image as an anchor. Captions
that are relevant to the anchor image are positive, while those that are irrelevant are
negative. The case where the anchor is closer to the negative than the positive is penalized
via the triplet loss.

However, in visual understanding tasks, in addition to negative samples that are
completely opposite to positive samples, there are also many negative samples that are very
similar to positive samples in semantics or pixels. Specifically, each anchor has one positive
and many negatives in a single batch. A large proportion of these negatives are further away
from the anchor than the positives. Therefore, these negatives are redundant and are often
called easy negatives. Negatives that are closer to the anchor than the positive are defined
as hard negatives [1]. Ignoring the contrastive learning loss of hard negative samples will
prevent the network from learning discriminative features. In practice, the performance
of triplet loss is highly dependent on Hard Negative Mining (HNM). HNM mines use
hard negatives for triplet loss. Many state-of-the-art visual understanding models [16–21]
employ Triplet loss with Hard Negative Mining (T-HNM) [22] as the optimization objective.
T-HNM enables models to mine hard negative samples on various visual tasks, improving
the performance of high-level tasks.

Nevertheless, some studies observe that HNM can make training difficult to con-
verge [23]. HNM essentially increases the penalty strength for hard negatives. HNM
provides a large gradient-to-hard negatives, which are optimized emphatically. Easy neg-
atives are either barely or not at all optimized. Focusing on optimizing hard negatives
can help the model learn discriminative features [21]. However, is it true that the stronger
the penalty, the better? Existing studies mainly design HNM strategies based on intuition
and lack quantitative analysis. What the appropriate level of penalty strength is for hard
negatives has not been studied.

In order to solve the above-mentioned problems, we revisit hard negative mining
in contrastive learning and propose a method for measuring and controlling the penalty
strength of negatives. We first define a metric for the penalty strength of negatives. Then,
we perform a quantitative analysis of common loss functions. The penalty strength of
hard negatives and the complexity of model optimization are shown to be conflicting.
Too large a penalty strength can lead to difficulties in optimizing. As a result, training is
difficult to converge. To this end, we further propose a Triplet loss with Penalty Strength
Control (T-PSC). A temperature coefficient τ is introduced to control the penalty strength.
We can balance these two contradictory properties by controlling τ. Balancing the two
properties can speed up model convergence and improve the retrieval performance. The
major contributions of this paper are summarized as follows:

• We define a metric for the penalty strength of negatives, which provides a quantitative
analysis tool for HNM.

• We find that the penalty strength of hard negatives and the difficulty of model opti-
mization are contradictory. The design of loss functions needs to balance the two items.

• Experiments on two visual understanding tasks, i.e., Image–Text Retrieval (ITR) and
Temporal Action Localization (TAL), with different modal data as research objects
have verified that T-PSC can accelerate model training and improve the performance
of current visual understanding models. T-PSC can be applied to existing ITR and
TAL models in a plug-and-play manner without any changes.

2. Related Work
2.1. Contrastive Learning

In recent years, contrastive learning has made great progress in visual understanding,
and a meaningful feature embedding space is generated via the contrastive loss [24]. Sim-
CLR [25] proposes a simple framework based on contrastive learning, which learns effective
visual representations by minimizing the distance between differently augmented views of
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the same sample via a contrastive loss. Supervised contrastive learning [2] aims to leverage
label information more effectively than cross entropy, forcing normalized embeddings
from the same class to be closer than embeddings from different classes. MoCo [4] enables
unsupervised contrastive learning to provide competitive results under the common linear
protocol on downstream tasks in a dynamic dictionary look-up manner. MoCo is a general
mechanism for using contrastive losses that can outperform its supervised pre-training
counterpart in some visual understanding tasks. On the basis of MoCo, MoCo v2 [26]
combines an MLP head and the stronger data augmentation proposed in SimCLR. MoCo
v2 establishes stronger baselines that outperform SimCLR and do not require large training
batches. Some recent work explores contrastive learning in broader visual understanding
tasks, such as anomaly detection [27], keypoint detection [28], depth prediction [29], and
so on.

2.2. Image–Text Retrieval

Image–Text Retrieval (ITR) is the main application of vision–language retrieval. ITR
is defined as retrieving relevant items across images and captions [30–32]. Given a query
image, the goal is to find the most relevant caption from the text gallery. The challenge of
ITR is the heterogeneous gap between images and captions. The mainstream approach to
ITR is to learn a model to measure the similarities between images and captions. Then, the
retrieval results are obtained by ranking the similarities.

Existing ITR methods can be divided into two categories according to the image–text
matching methods, i.e., global-level matching methods [17,33,34] and local-level matching
methods [18,30,35]. The global-level matching methods embed the whole images and
sentences into a joint embedding space, and the matching score between the embeddings
of images and sentences can be calculated via a simple similarity metric (e.g., cosine
similarity). DeViSE [36] proposes the first global-level matching model, which employs
CNN and Skip-Gram to project images and sentences into a joint embedding space. The
local-level matching methods obtain the matching score by calculating the cross attention
between the image regions and words. SCAN [16] is known as a stacked cross-attention
network, which measures image–text similarity by aligning the image regions and words.

2.3. Temporal Action Localization

The goal of Temporal Action Localization (TAL) is to find the categories and temporal
boundaries of actions in an untrimmed video. The existing TAL methods can be divided
into two categories: one-stage methods and two-stage methods.

The one-stage TAL method directly extracts features and performs action classification
and regression for video segments. SSAD [37] is inspired by single-shot detection methods
(SSD [38] and YOLO [39]), which abandons the process of generating proposals in the
two-stage TAL and directly predicts the action score and timing boundary of the action.
GTAN [40] introduces Gaussian kernels to dynamically optimize the temporal scale of
each action proposal, which can generate multiple feature maps in different temporal
resolutions. MGG [41] devises two temporal convolutional layers and a bilinear matching
model to obtain segment proposals and frame actionness simultaneously on the RGB
frames. In order to simplify the complexity, ActionFormer [42] proposed an anchor-free
model based on transformers, using feature pyramids and local self-attention to model a
long-term temporal context. TriDet [43] alleviates the problem of boundary prediction by
modeling action boundaries via Trident-head in a way that estimates the relative probability
distribution around the boundary.

The two-stage temporal action positioning method requires first generating propos-
als and then performing action recognition and temporal regression. BSN [44] uses a
local-to-global method and uses a three-layer temporal convolutional neural network to
generate all starting and ending timestamps and action probabilities. In order to solve the
problem that existing methods cannot efficiently generate adequately reliable confidence
scores for retrieving proposals, BMN [45] is proposed to generate action confidence for all
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proposals simultaneously. On the premise of BSN, PGCN [46] applies GCN to do message
aggregation among proposals to improve the performance. ContextLoc [47] proposes to
use three networks (L-Net, G-Net, and P-Net) to respectively utilize local context informa-
tion, global context information, and context-aware inter-proposal relations to obtain rich
feature representation.

3. Methodology
3.1. Preliminaries
3.1.1. Contrastive Learning

The goal of CL is to learn a representation of data such that similar instances are close
together in the representation space, while dissimilar instances are far apart [24]. We denote
a sample as Ii and a text as Ti. Take Ii as an anchor; (Ii, Ti) is a positive pair; and (Ii, Tj,i 6=j)
is a negative pair. The mainstream approach to CL is to learn a model to measure the
similarity si,j between Ii and Tj.

3.1.2. Hardness of Negatives

The hardness of the negative pair (Ii, Tj) is defined as hi,j = si,j − si,i, where si,j
denotes the similarity of the negative pair (Ii, Tj), and si,i denotes the similarity of the
positive pair (Ii, Ti). The larger the hardness, the harder it is for the negatives to be
distinguished correctly.

3.1.3. Triplet Loss

Triplet loss [1] is a ranking loss widely used in various visual understanding tasks [48–51].
Given the positive similarity si,i and the negative pair similarity si,j, triplet loss in the
sample-to-text direction can be formulated as follows:

LTriplet,i2t =
B

∑
i=1

B

∑
j=1,i 6=j

[
si,j − si,i + λ

]
+

(1)

Similarly, the text-to-sample direction LTriplet,t2i is symmetrical to LTriplet,i2t:

LTriplet,t2i =
B

∑
i=1

B

∑
j=1,i 6=j

[
sj,i − si,i + λ

]
+

, (2)

where B is the batch size, λ is the margin for similarity separation, [x]+ ≡ max(x, 0). Triplet
loss encourages increasing the similarity of positive pairs. All negatives with LTriplet > 0
are penalized equally, regardless of their hardness.

3.1.4. Hard Negative Mining

Triplet loss with Hard Negative Mining (T-HNM) [22] yields significant performance
gains on visual understanding tasks. Most visual understanding models [52–54] adopt
T-HNM as the optimization objective. T-HNM takes the form of:

LT-HNM,i2t =
B

∑
i=1

B
max

j=1,i 6=j

[
si,j − si,i + λ

]
+

. (3)

Only the negative with maximum hardness is penalized. Despite the performance
gain, some studies observe that LT-HNM makes training difficult to converge [1].

3.2. Metric for the Penalty Strength of Negatives

HNM essentially increases the penalty strength for hard negatives. HNM provides
a large gradient-to-hard negatives. Focusing on optimizing hard negatives can help the
model learn discriminative features. However, is it true that the stronger the penalty,
the better?
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To clear up the above doubt, we first define a metric for the penalty strength of
negatives. For dissimilar loss functions, the gradients with respect to the negative pairs
are different. When using gradient descent for optimization, pairs with large gradients are
optimized emphatically. Therefore, the gradient can directly reflect the penalty strength.
We denote the gradient of the loss L with respect to si,j as gi,j = ∂L/∂si,j. The penalty
strength of the negative pair (Ii, Tj) is defined as:

pi,j =
gi,j

∑B
k=1,i 6=k gi,k

, (4)

where pi,j is the ratio of the gradient of si,j to the total gradient.
The gradient of LTriplet,i2t with respect to si,j is:

gTriplet,i2t
i,j =

∂LTriplet,i2t

∂si,j
= I{hi,j > −λ}, (5)

where I{x} is an indicator function; if x is true, I{x} = 1, otherwise I{x} = 0. The gradient
with respect to all si,j satisfying hi,j > −λ is the same. Figure 1 left shows the optimization
processes of LTriplet. All negatives satisfying hi,j > −λ are penalized equally. Based on
Equations (4) and (5), the relationship between pi,j and hi,j can be obtained, as shown
in Figure 2a. hi,j is uniformly sampled in [−1, 1]. For LTriplet, when hi,j > −λ, pi,j of all
negatives is equal.

Anchor                  Positive                  Negative for training Negative not for training

  
Figure 1. The orange arrow indicates that the positive is pulled closer to the anchor. From left, middle
and right: Triplet, T-HNM and T-PSC. The blue arrow indicates that the negative is pushed away
from the anchor. The thickness of the blue line indicates the penalty strength.
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Figure 2. The penalty strength of hard negatives and model optimization difficulty are contradictory.
(a) Penalty strength of negatives. (b) Model optimization difficulty.

The gradient of LT-HNM,i2t with respect to si,j is:

gT-HNM,i2t
i,j =

∂LT-HNM,i2t

∂si,j
=

{
1, hi,j = ĥi, hi,j > −λ,
0, otherwise.

(6)
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where ĥi = maxB
j=1,i 6=j hi,j. LT-HNM only provides the gradient for the hardest negative.

As shown in Figure 1 middle, LT-HNM only penalizes the negative most similar to the
anchor. As shown in Figure 2b, pi,j > 0 only when hi,j is the largest. The steeper the curve,
the stronger the penalty for hard negatives. LT-HNM has the largest penalty strength for
hard negatives.

3.3. Model Optimization Difficulty

Most models [35,55–57] adoptLT-HNM as the optimization objective. However,LT-HNM
can make model training difficult to converge. Various studies show that optimizing with
hard negatives leads to optimization difficulties [1]. To quantitatively analyze the optimiza-
tion process of the model, we define the optimization difficulty as follows:

d(t) =
∑B

i=1 ∑B
j=1,i 6=j I{hi,j > 0}
B · (B− 1)

, (7)

where t is the number of iterations of training. Negative pairs satisfying hi,j > 0 are hard
negative pairs. d(t) is the ratio of the number of hard negative pairs to the total number of
negative pairs. A batch contains B · (B− 1) negative pairs. d(t) can reflect the optimization
difficulty of the current batch. The more hard negatives, the more difficult it is to optimize.

We quantitatively analyze the optimization difficulty of different loss functions in the
early stages of training, as shown in Figure 2b. We conduct experiments on a classic ITR
model, VSE++ [22]. The optimization difficulty of LTriplet is quickly reduced to a lower
level. In contrast, the optimization difficulty of LT-HNM is always large. Nearly half of the
negative pairs are hard negative pairs. LT-HNM with maximum penalty strength leads to a
large number of hard negatives in training. This shows that the penalty strength and model
optimization difficulty are contradictory. Too large a penalty strength leads to difficulties in
optimizing the model. A small penalty strength can reduce the optimization difficulty, but
it also reduces the performance.

3.4. Penalty Strength Control

To balance the two contradictory properties, we propose T-PSC, which is inspired by
the contrastive loss [58] used in pre-training models [59]. Contrastive loss takes the form of:

LContrastive,i2t = −
B

∑
i=1

log
exp(si,i/τ)

∑B
j=1 exp

(
si,j/τ

) , (8)

where τ is a temperature coefficient. LContrastive can be transformed into a form of pair
similarity optimization:

LContrastive,i2t =
B

∑
i=1

log

(
1 +

B

∑
j=1,i 6=j

exp
((

si,j − si,i
)
/τ
))

. (9)

From Equation (9), we can see that LContrastive,i2t, like LTriplet,i2t, is optimizing (si,j −
si,i). τ can control the penalty strength of hard negatives. The penalty strength increases as
τ decreases.

Although LContrastive can control the penalty strength, it is not directly suitable for
visual understanding tasks that require high feature discriminability, such as ITR and TAL.
Both ITR and TAL require the model to correctly distinguish between positive and negative
samples to achieve a high performance, including effectively identifying positive samples
and hard negative samples. However, LContrastive does not increase (si,i − si,j) sufficiently.
As a result, LContrastive does not provide the strong discriminative information required
for the visual understanding task. The results on the training set do not generalize well
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to the test set. Following LTriplet that uses a margin λ for better similarity separation, we
introduce the margin λ into LContrastive and propose our T-PSC:

LT-PSC,i2t = τ
B

∑
i=1

log

(
1 +

B

∑
j=1,i 6=j

exp
((

si,j − si,i + λ
)
/τ
))

. (10)

In particular, LT-HNM is a special form of LT-PSC:

LT-HNM = lim
τ→0+

LT-PSC. (11)

The gradient of LT-PSC,i2t with respect to si,j is:

gT-PSC,i2t
i,j =

∂LT-PSC,i2t

∂si,j
=

exp
((

hi,j + λ
)
/τ
)

1 + ∑B
j=1,i 6=j exp

((
hi,j + λ

)
/τ
) . (12)

Based on Equations (4) and (12), the relationship between pi,j and hi,j can be obtained.
As shown in Figure 2a, LT-PSC assigns a large penalty strength to hard negatives and a small
one to easy negatives. The penalty strength can be controlled by τ. As shown in Figure 2b,
as τ decreases, the penalty strength increases and the optimization difficulty increases
accordingly. Choosing an appropriate τ, such as τ = 10−2, can achieve a large penalty
strength and a small optimization difficulty. Two contradictory properties are balanced.

4. Experiments

We utilize the proposed T-PSC to conduct experiments on visual understanding tasks
in a plug-and-play manner. In order to verify the effectiveness of T-PSC in different
modalities, we applied it to two tasks: ITR and TAL. ITR focuses on the matching degree of
image–text pairs, while TAL tends to the semantic similarity of similar video frames. From
the perspective of contrastive learning, the purpose of both tasks is to pull positive pairs
together and push negative pairs apart in the feature embedding space. We first introduce
our training details and evaluation metrics, then perform extensive ablation studies on
different aspects of the ITR task and provide a better understanding of how T-PSC measures
and controls the penalty strength of negatives. Finally, we apply T-PSC to existing ITR and
TAL models and obtain performance improvements.

4.1. Datasets and Experiment Settings

Image–Text Retrieval (ITR). Our method is evaluated using two benchmarks: Flickr30K [60]
contains 31,000 images; each image is annotated with five sentences. We use 29,000 images
for training, 1000 images for validation, and 1000 images for testing. MS-COCO [61] con-
tains 123,287 images; each image is annotated with five sentences. We use 113,287 images
for training, 5000 images for validation, and 5000 images for testing. For the performance
evaluation of ITR, we use Recall@K (R@K) and Average Recall@K (Avg.), with K = {1, 5, 10}
as the evaluation metric. R@K indicates the percentage of queries for which the model
returns the correct item in its top K results. Avg. represents the mean value of R@K.
Temporal Action Localization (TAL). Our method is evaluated using two benchmarks:
THUMOS14 [62] and ActivityNet-1.3 [63]. THUMOS14 consists of 200 validation videos
and 213 test videos for TAL. Without a loss of generality, we apply training on the validation
subset and evaluate the model performance on the test subset [64]. ActivityNet-1.3 contains
10,024 videos and 15,410 action instances for training, 4926 videos and 7654 action instances
for validation, and 5044 videos for testing. Following the standard practice [65], we train
our method on the training subset and test it on the validation subset.
Experiment Settings. For T-PSC, the hyperparameters are set to λ = 0.2 and τ = 10−2 for
all the datasets used in this paper.
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4.2. Ablation Studies

We conducted ablation experiments on the ITR model to verify the impact of different
parameters on the cross-modal performance of T-PSC.

4.2.1. Impact of Hyperparameters

There are two hyperparameters, i.e., margin λ and temperature coefficient τ, in T-
PSC that can be tuned. We experiment with several combinations of hyperparameters
on Flickr30K using VSE++. All experiments on the effects of hyperparameters are shown
in Figure 3.
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Figure 3. Impact of hyperparameters on Flickr30K. (a) The impact of Margin λ on the image-to-text
task (τ = 10−2). (b) The impact of Margin λ on the text-to-image task (τ = 10−2). (c) The impact
of Temperature coefficient τ on the image-to-text task (λ = 0.2). (d) The impact of Temperature
coefficient τ on the text-to-image task (λ = 0.2).

We test the impact of λ by fixing τ to 10−2. Figure 3a,b are the performance impact
curves of hyperparameter λ on image-to-text and text-to-image, respectively. It can be seen
from these two pictures that when λ = 0.2, the ITR model achieves the best performance.
LT-PSC degenerates into LContrastive when λ = 0. When λ > 0, the performance of LT-PSC is
always better than LContrastive. It shows the significance of the margin for ITR.

We test the impact of τ by fixing λ to 0.2. Figure 3c,d are the performance impact
curves of hyperparameter τ on image-to-text and text-to-image, respectively. As shown
in these two pictures, when τ ≤ 10−2, the performance of LT-PSC is always higher than
LT-HNM. According to Figure 2, when τ ≤ 10−2, the penalty strength of LT-PSC for hard
negatives is comparable to that of LT-HNM. At the same time, the optimization difficulty
of LT-PSC is lower than LT-HNM. When τ = 10−1, the performance of LT-PSC is lower than
LT-HNM. According to Figure 2, when τ = 10−1, the penalty strength of LT-PSC for hard
negatives is not large enough. In particular, when τ = 10−2, LT-PSC can achieve a large
penalty strength and a small optimization difficulty. Two contradictory properties are
balanced. At this point, the best performance is achieved.
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4.2.2. Impact of Loss Functions

T-PSC is designed based on triplet loss and contrastive loss. Therefore, we compare
LT-PSC with LTriplet, LT-HNM, and LContrastive. We conduct experiments on VSE++ [22]. We
reproduce VSE++ with all experimental settings identical to [34]. Experimental results
are shown in Table 1. LT-PSC outperforms all three loss functions. As for Avg., LT-PSC
is 5.9%p, 2.3%p, and 1%p ahead of LTriplet, LContrastive, and LT-HNM in the image-to-text
sub-task, respectively. At the same time, the performance of LT-PSCis 3.8%p, 2.5%p, and
1%p higher than LTriplet, LContrastive, and LT-HNM in the text-to-image sub-task, respectively.
Both LT-HNM and LContrastive are special forms of LT-PSC. As a more flexible form, LT-PSC
exhibits an optimal performance.

Table 1. Comparisons with related loss functions on Flickr30K.

Eval Task Image-to-Text (%) Text-to-Image (%)
Loss R@1 R@5 R@10 Avg. R@1 R@5 R@10 Avg.
LTriplet 56.3 85.1 91.4 77.6 43.4 72.9 82.4 66.2
LT-HNM 64.0 88.8 94.6 82.5 47.0 76.0 83.9 69.0
LContrastive 61.4 88.4 93.9 81.2 44.6 74.5 83.5 67.5
LT-PSC 66.5 90.0 94.0 83.5 48.4 76.9 84.6 70.0

4.2.3. Comparisons with Existing Loss Functions

There are several loss functions proposed for ITR: SSP [66], Meta-SPN [67], AOQ [68],
and NCR [69]. We compare T-PSC with these losses on Flickr30K. The experimental results
are shown in Table 2. Compared with these losses, T-PSC improves most evaluation
metrics. T-PSC does not need to introduce many hyperparameters like SSP. Compared
with Meta-SPN and NCR, T-PSC does not need to train an additional weight assignment
network for loss functions. T-PSC also does not need to mine hard negatives on the entire
dataset like AOQ. Overall, T-PSC achieves an impressive performance with a simple and
easy-to-implement modification.

Table 2. Comparisons with existing ITR loss functions on Flickr30K.

Eval Task Image-to-Text (%) Text-to-Image (%)
Model R@1 R@5 R@10 Avg. R@1 R@5 R@10 Avg.
BFAN [70] 68.1 91.4 95.9 85.1 50.8 78.4 85.8 71.7
+ SSP [66] 71.3 92.6 96.2 86.7 52.5 79.5 86.6 72.9
+ AOQ [68] 73.2 94.5 97.0 88.2 54.0 80.3 87.7 74.0
+ Meta-SPN [67] 72.5 93.2 96.7 87.5 53.3 80.2 87.2 73.6
+ T-PSC 74.3 93.8 96.7 88.3 54.5 80.8 87.5 74.3
SGRAF [71] 77.8 94.1 97.4 89.8 58.5 83.0 88.8 76.8
+ NCR [69] 77.3 94.0 97.5 89.6 59.6 84.4 89.9 78.0
+ T-PSC 78.3 95.0 97.4 90.2 60.4 85.0 90.6 78.7

4.3. Comparisons with Existing ITR and TAL Models
4.3.1. Improvements to Existing ITR Models

T-PSC can plug-and-play to improve the performance of existing ITR models. We
conduct experiments on three classic ITR models: VSE++ [22], BFAN [70] and SGRAF [71].
Except for replacing the loss function, the other experimental settings are the same. Table 3
shows the improvements to these models on Flickr30K. In the image-to-text sub-task,
the Avg. of T-PSC is 0.5%p, 3.2%p and 0.4%p higher than VSE++, BFAN and SGRAF,
respectively, while the improvement in the text-to-image sub-task is 0.9%p, 2.6%p and
1.9%p. As shown in Table 4, on MS-COCO, applying T-PSC to VSE++, BFAN and SGRAF



Electronics 2023, 12, 4884 10 of 16

can improve Avg. by 0.4%p, 0.7%p and 0.5%p in image-to-text sub-task. While the
improvement in the text-to-image sub-task is 0.3%p, 0.5%p and 0.7%p. T-PSC can be easily
integrated into the existing ITR model and improve the retrieval performance.

Table 3. Experimental Results on Flickr30K.

Eval Task Image-to-Text (%) Text-to-Image (%)
Model R@1 R@5 R@10 Avg. R@1 R@5 R@10 Avg.
SCAN [16] 67.4 90.3 95.8 84.5 48.6 77.7 85.2 70.5
VSRN [17] 71.3 90.6 96.0 86.0 54.7 81.8 88.2 74.9
VSE++ [22] 69.4 90.7 95.4 85.2 52.1 79.0 85.5 72.2
+ T-PSC 70.7 90.8 95.6 85.7 52.9 79.8 86.7 73.1
BFAN [70] 68.1 91.4 95.9 85.1 50.8 78.4 85.8 71.7
+ T-PSC 74.3 93.8 96.7 88.3 54.5 80.8 87.5 74.3
SGRAF [71] 77.8 94.1 97.4 89.8 58.5 83.0 88.8 76.8
+ T-PSC 78.3 95.0 97.4 90.2 60.4 85.0 90.6 78.7

Table 4. Experimental Results on MS-COCO.

Eval Task Image-to-Text (%) Text-to-Image (%)
Model R@1 R@5 R@10 Avg. R@1 R@5 R@10 Avg.
SCAN [16] 72.7 94.8 98.4 88.6 58.8 88.4 94.8 80.7
VSRN [17] 76.2 94.8 98.2 89.7 62.8 89.7 95.1 82.5
VSE++ [22] 73.0 94.5 98.2 88.6 58.3 88.1 94.4 80.3
+ T-PSC 74.0 94.6 98.4 89.0 58.7 88.6 94.4 80.6
BFAN [70] 74.9 95.2 98.3 89.5 59.4 88.4 94.5 80.8
+ T-PSC 76.2 95.8 98.7 90.2 60.7 88.6 94.7 81.3
SGRAF [71] 79.6 96.2 98.5 91.4 63.2 90.7 96.1 83.3
+ T-PSC 79.9 97.0 98.8 91.9 65.1 90.8 96.0 84.0

4.3.2. Improvements to Existing TAL Models

To maintain the plug-and-play nature, we introduce our earlier work [72] on generating
boundary-aware proposals in TAL, which is the same as T-PSC and uses contrastive learning
with the hard negative mining strategy. Instead of using cosine similarity, we conduct the
experiments on T-PSC to verify the contrastive loss performance on video. Specifically,
the main approach is to use the T-PSC loss function proposed in this paper to replace the
cosine similarity loss function used via BAPG. The experiment results of our T-PSC with
the state-of-the-art method in THUMOS14 are shown in Table 5.

As can be seen from Table 5, after replacing the cosine similarity loss function in
BAPG with T-PSC, the model performance is improved compared to both the original
model and BAPG. Especially when tIoU = 0.7, taking TriDet as an example, T-PSC can
obtain a gain of 0.1% based on BAPG, which is 1.05% compared to the original TriDet.
The experiment results of our T-PSC with the state-of-the-art method in ActivityNet-1.3
are shown in Table 6. It can be seen from the data in Table 6 that T-PSC comprehensively
improves the performance of the existing model. Although the videos in ActivityNet-1.3
are more complicated and variable than THUMOS14, T-PSC can still improve the original
TriDet model and BAPG model by 0.3% and 0.1% at tIoU = 0.8, respectively. The experiment
results show that T-PSC is effective and can improve the TAL performance.
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Table 5. Performance comparison on THUMOS14 in terms of mAP at different tIoU thresholds. The
“Avg” column denotes the average mAP in [0.3:0.1:0.7].

Model
THUMOS14 (%)

0.3 0.4 0.5 0.6 0.7 Avg.
BMN [45] 56.00 47.40 38.80 29.70 20.50 38.50

G-TAD [73] 54.50 47.60 40.30 30.80 23.40 39.30
A2Net [74] 58.60 54.10 45.50 32.50 17.20 41.60
VSGN [75] 66.70 60.40 52.40 41.00 30.40 50.20

ContextLoc [47] 68.30 63.80 54.30 41.80 26.20 50.90
AFSD [76] 67.30 62.40 55.50 43.70 31.10 52.00
TadTR [77] 74.80 69.10 60.10 46.60 32.80 56.70

Actionformer [42] 81.96 77.41 71.08 58.91 43.74 66.62
+ BAPG [72] 82.09 77.66 71.45 59.51 44.35 67.01

+ T-PSC 82.19 77.70 71.48 59.62 44.65 67.13
TriDet [43] 83.53 79.60 72.12 60.76 45.40 68.28

+ BAPG [72] 83.60 79.72 72.49 61.49 46.35 68.73
+ T-PSC 83.72 79.81 72.52 61.56 46.45 68.81

Table 6. Performance comparison on ActivityNet v1.3 in terms of mAP at different tIoU thresholds.
The “Avg” columns denote the average mAP in [0.5:0.05:0.95].

Model
ActivityNet v1.3 (%)

0.5 0.6 0.7 0.8 Avg.
BMN [45] 50.11 44.21 37.61 28.83 33.91

G-TAD [73] 50.42 43.98 38.13 29.42 34.13
Actionformer [42] 54.67 48.25 41.85 32.91 36.56

+ BAPG [72] 54.80 48.38 41.97 32.93 36.61
+ T-PSC 54.89 48.40 42.01 32.95 36.65

TriDet [43] 54.71 48.54 42.34 32.93 36.76
+ BAPG [72] 54.85 48.58 42.50 33.15 36.83

+ T-PSC 54.95 48.62 42.58 33.26 36.89

4.4. Convergence Analysis

Figure 4 compares the performance of LT-HNM and LT-PSC during training. As shown
in Figure 4a, LT-PSC has a better convergence than LT-HNM. LT-PSC decreases rapidly in the
early phase of training. On the contrary, LT-HNM decreases slowly since the optimization of
LT-HNM is too difficult. Figure 4b,c shows that LT-PSC can achieve a higher performance
faster. On the one hand, LT-PSC reduces the model optimization difficulty by controlling
the penalty strength. Thus, model training is accelerated. On the other hand, LT-PSC still
provides a relatively large penalty strength for hard negatives. Coupled with better training
behavior, the final retrieval performance is also improved.
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Figure 4. Training behavior on Flickr30K. (a) Loss. (b) Avg. of image-to-text. (c) Avg. of text-to-image.

5. Conclusions

By revisiting hard negative mining in contrastive learning, this paper proposes T-PSC
to effectively distinguish hard negative samples in visual understanding tasks. In order to
overcome the side effects of convergence difficulties caused by traditional hard negative
mining methods, we define a metric for the penalty strength of negatives. We can use
the penalty strength of hard negatives to quantitatively analyze and find the appropriate
level for visual understanding models. Moreover, we can employ T-PSC to balance the
penalty strength of hard negatives and the difficulty of model optimization. We find that a
reasonable control of the penalty strength can speed up training and obtain discriminative
visual presentations. Our T-PSC is flexible and can seamlessly combine with the current
visual understanding models in a plug-and-play manner. In order to confirm that the
characteristics of T-PSC can be generally applied to various tasks of visual understanding,
we conduct extensive experiments. By combining it with models in the field of Image–Text
Retrieval, we verify the feature representation capabilities of T-PSC in both the image and
text modalities. By combining it with models in the field of video temporal localization, we
discover the effectiveness of T-PSC in the video modality. In future work, we will explore
the adaptive control of the penalty strength to avoid complicated parameter tuning and
find the optimal penalty intensity for different visual understanding tasks.
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