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Abstract: The objects in UAV aerial images have multiple scales, dense distribution, and occlusion,
posing considerable challenges for object detection. In order to address this problem, this paper
proposes a real-time multi-scale object detection method based on an improved YOLOv7 model
(ATS-YOLOv7) for UAV aerial images. First, this paper introduces a feature pyramid network, AF-
FPN, which is composed of an adaptive attention module (AAM) and a feature enhancement module
(FEM). AF-FPN reduces the loss of deep feature information due to the reduction of feature channels
in the convolution process through the AAM and FEM, strengthens the feature perception ability, and
improves the detection speed and accuracy for multi-scale objects. Second, we add a prediction head
based on a transformer encoder block on the basis of the three-head structure of YOLOv7, improving
the ability of the model to capture global information and feature expression, thus achieving efficient
detection of objects with tiny scales and dense occlusion. Moreover, as the location loss function of
YOLOv7, CIoU (complete intersection over union), cannot facilitate the regression of the prediction
box angle to the ground truth box—resulting in a slow convergence rate during model training—this
paper proposes a loss function with angle regression, SIoU (soft intersection over union), in order to
accelerate the convergence rate during model training. Finally, a series of comparative experiments
are carried out on the DIOR dataset. The results indicate that ATS-YOLOv7 has the best detection
accuracy (mAP of 87%) and meets the real-time requirements of image processing (detection speed of
94.2 FPS).

Keywords: UAV aerial images; object detection; YOLOv7; AF-FPN; transformer encoder; SIoU

1. Introduction

At present, the development of UAV technology has reached a certain level. Multi-type
and multi-function UAV products have brought great convenience in production and life
contexts, as well as providing broader conditions for scientific research in the fields of
aerial photography, transportation, patrol inspection, mapping, and so on, through the use
of UAVs [1–3]. As an important information resource, UAV aerial image data have been
widely used in artificial intelligence [4], agricultural and industrial production [5], urban
and environmental monitoring [6], military intelligence reconnaissance [7], and other fields,
due to their ease of access, large data scale, rich information, and high value. Therefore, it
is very necessary and meaningful to study UAV aerial imagery.

Using object detection technology [8] to study aerial images is one of the most popular
research directions at present; however, UAV aerial photography is vulnerable to interfer-
ence conditions due to various factors such as the shooting equipment, environment, and
scene, potentially resulting in blurred images, poor contrast, unclear texture, or dramatic
scale changes, thus posing great difficulties for object detection. In order to fully solve this
problem, significant research work on intelligent detection technology has been carried
out. For example, considering the task of the real-time ground multi-scale object detec-
tion of clustered UAVs, one article [9] has improved the basis of the bidirectional parallel
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multi-branch feature pyramid network (BPMFPN) and proposed a new detection model
called BPMFPN. This model strengthens the expression ability of each scale feature layer in
aerial images by constructing a bidirectional parallel pyramid network, then integrates the
detection network into a single detector. The primary detector BPMPN-Det was verified on
the UAVDT data set, and achieved high precision. X. Zhang et al. [10] proposed a real-time
detection model for small objects in UAV imagery based on an improved ASFF-YOLOv5s,
in order to address the impact of objects with large scale differences on real-time detection
in images captured by UAVs. On the basis of the original YOLOv5, the shallow feature fu-
sion was strengthened and the adaptive spatial feature fusion (ASFF) was improved, so that
the model could improve the abilities of multi-scale feature fusion and small object feature
extraction. When X Hou et al. [11] studied how to improve the noisy and high-frequency
images collected by unmanned helicopters. They first used multi-module anchor-free detec-
tors to balance and optimize the training samples, then proposed a confrontation module
with a central weight to solve the problem of weak local features. Their experimental
results proved that the proposed methods were efficient on VisDrone2020. At present, most
multi-level visual detectors based on deep learning have a high false negative rate when
detecting objects in UAV aerial images. B.M. Albaba et al. [12] proposed an integrated
network SyNet based on a pretrained CenterNet and Cascade R-CNN, which combines
multi-level and single-stage detectors to reduce the above phenomena and enhance the
detection performance of single-stage detectors. For the challenging category of tiny targets
in aerial images, anchor-based detectors may reduce the quality of tag allocation. C. Xu
et al. [13] used a new evaluation method based on the normalized Wasserstein distance
(NWD) and a new strategy based on RanKing’s allocation (RKA) to detect small objects.
The RKA is embedded into the anchor detector to improve the label allocation and provide
sufficient training information for the model, such that the detector is more reliable for
training and performance verification. Although object detection technology for aerial
images has been very successful to date, it is still not accurate for high-precision bearing
prediction. For this reason, Q. Ming et al. [14] proposed a detection method based on
task interleaving and direction estimation (TIOENet) by combining a variety of strategies
such as posterior hierarchical comparison (PHA) tags and balanced alignment loss. The
authors used it to solve the misplacement problem in detection progress, the imbalance loss
problem in the prediction process, and the prediction accuracy problem of angle deviation.

Many types of aerial image object detection methods were described above. Consider-
ing these methods, we can see that the current object detection algorithms are specialized
for specific problems and do not have the versatility of multi-field applications. Therefore,
professional research on object detection for drone aerial images needs to be strength-
ened, which would also pave the way for the development of neural networks based on
deep learning.

In order to further improve the performance of detection models for complex UAV
aerial images, this paper proposes a target detection method for UAV aerial images based
on the findings of previous studies. First, we introduce a feature pyramid network, AF-
FPN, to solve the problems of multi-scale objects and small objects generated in large-scene
UAV aerial photography. AF-FPN is used to reduce the information loss in the feature
mapping process and improve the network’s ability to represent the feature layer, such
that the network can reduce the negative impact caused by the difference of object scales
and improve the perception of small objects. Second, in order to address the problem
of dense object arrangement, we strengthen the information capture capability of the
model by adding a transformer encoder detector head, improving the detection accuracy
of the model for such objects. Finally, a new loss function is introduced to improve the
original positioning loss in YOLOv7, such that the model can comprehensively consider
the angle loss.

Based on the above analysis, the main innovations and contributions of this paper can
be summarized as follows:
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• A feature pyramid network, AF-FPN, composed of an adaptive attention module
(AAM) and a feature enhancement module (FEM), is introduced into the YOLOv7
architecture. On one hand, AF-FPN reduces the information loss caused by the
reduction in the number of feature channels during the convolutional mapping process
through the AAM. On the other hand, it strengthens the feature representation during
the sampling process through the FEM. The introduction of AF-FPN can effectively
improve the model’s detection accuracy and speed for multi-scale objects.

• This article adds a detection route based on the transformer encoder module on the
basis of YOLOv7. The four-head detection structure of this module can effectively
alleviate the negative impact caused by a drastic change of object scale, strengthen
the feature perception ability of the network for dense and small targets, and greatly
improve the detection performance of the network.

• A new loss function, SIoU, is introduced into the algorithm to improve the positioning
loss defect of the YOLOv7 loss function, CIoU. SIoU enables the network to fully
consider the difference in overlapping area size and angle loss between the ground
truth box and the prediction box when regressing. The improved model can acceler-
ate the convergence speed and improve the detection accuracy of occluded objects
during training.

• The detection performance of each model on the data set was compared through
ablation experiments, SOTA (state-of-the-art) experiments, and real-time comparison
experiments, and ATS-YOLOv7 was verified to have a rational combination of modules
and efficient detection performance through a balance analysis of precision and speed.

This article is structured as follows: Section 2 mainly discusses the related literature in
the field of object detection. Section 3 introduces the overall workflow and specific details
of the proposed method. Section 4 details the experimental process, including the dataset
selection, comparison experiment, and other work. Section 5 provides the summary and
future outlook of this article.

2. Related Works

With many years of technological innovation and development, the degree of intelli-
gence of human society has been constantly increasing; as such, the demand for network
communication [15], automatic control [16], artificial intelligence, and other technologies
in human life has also grown. Corresponding industrial products have rapidly poured
into the public eye, such as driverless cars [17], VR human–computer interaction [18],
ChatGPT [19], unmanned aerial vehicles, and so on. At present, the most representative
AI technology is profoundly changing all aspects of society and is pushing our world
into a new era. As an important part of artificial intelligence, computer vision—object
detection technology driven by large-scale data—provides important support for various
engineering applications. Therefore, it is of great significance to make full use of object
detection technology in related scientific research.

Based on previous research on object detection models for UAV aerial images, we aim
to make innovative improvements in terms of the following aspects: the YOLO algorithm,
aerial object detection, the transformer for object detection, and the loss function. We have
learned a lot from previous research, as detailed in the following.

2.1. YOLO (You Only Look Once) Algorithm

As early as 1999, W Li et al. in [20], in order to improve the self-organizing mapping
neural network model to better adapt to the parallel computing environment, proposed a
once learning method (all inputs are learned by the model at one time) to replace the tradi-
tional repeated learning method. This kind of human-like learning method improves the
efficiency of image processing and lays the foundation for the development of subsequent
learning. The YOLO algorithm, presented by Joseph Redmon et al. [21], is a representative
one-stage object detection algorithm with the characteristics of high detection accuracy
and fast detection speed. It has undergone several version changes over about 10 years,
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and there are dozens of official versions and related derivative versions. Among them, the
introduction of YOLOv1 [21] in 2015 laid an important foundation for subsequent develop-
ment of the YOLO series. YOLOv7 [22], as the latest version in the YOLO series, has a more
accurate and faster detection performance. It has an updated detection backbone network
and prediction structure on the basis of YOLOv5 [23], making it more stable and efficient
when facing more challenging detection tasks. Researchers have carried out a lot of research
and application work on YOLO series models. For example, YOLO algorithms typically
require high-end hardware; however, it is particularly important to carry out real-time de-
tection under the condition of limited computing resources. For this reason, J. Lee et al. [24]
discussed the relationship between network cameras and real-time processing related to
YOLO detection, and proposed an adaptive-frame-control (AFC) YOLO architecture. This
architecture provides high-precision real-time detection for the network by minimizing
the total service delay function of the AFC. Using road aerial images to study information
such as vehicles, routes, and traffic signs is particularly important for the construction of
digital and information-based roads. Z. Li et al. [25] proposed a detection network based
on YOLOv5 for tiny targets in road aerial images. They introduced an attention mechanism
and the SoftPool module into the architecture to enhance the network’s attention to small
object feature areas and retain more detailed feature information in the convolution process
through pooling operations. In [26], the 6-DOF manipulator (DOF) and the enhanced YOLO
algorithm were used to propose a strategy for the safety inspection of personnel at vehicle
inspection stations. The authors introduced a dense part into the backbone to achieve a
faster detection speed, and improved the network sensitivity by continuously optimizing
the anchor box strategy and residual technology. S. Schneidereit et al. [27] designed YOLO
models with different architectures for training on complex factory environment data sets
in order to embed the YOLO architecture into the Fischertechnik Industry 4.0 application,
allowing for monitoring of the manufacturing process in factories. Additionally, a prior
shape allocation strategy was integrated to fully improve the model performance.

2.2. Aerial Object Detection

Aerial image object detection is one of the most common applications in the field of
computer vision. The dead points in the detection process can be due to various reasons,
for example: (a) the multi-scale difference of an object causes a pixel change, (b) the
distribution of aerial image objects is uneven, (c) the appearance of an object changes
due to the light and shooting angle of the image, and (d) dense objects. To solve these
problems, Vishnu Chalavadi et al. [28] proposed a multi-scale object detection model,
mSODANet, based on hierarchical expansion convolution. They used parallel expansion
convolution to explore multi-level features, allowing the network to learn more context
information. By introducing a hierarchical expansion network, the model can effectively
capture object information and achieves improved detection performance. In [29], the
complexity calculation of the general YOLO was improved. A finite convolution layer
was introduced into the trunk to expand the receptive field, such that the model can fully
learn the characteristics of objects. In the detection part, a discriminant representation is
generated for the network through channel and spatial attention modules. The improved
model has lightweight and real-time characteristics, and can solve the complex background
problem in aerial images. For flood disaster monitoring, remote sensing-based image data
are often ineffective, due to the long revisit period and adverse environmental impacts.
Therefore, K. Yang et al. [30] studied a depth learning detection model based on YOLOv3
for flood-submerged building images. Through LiDAR (light detection and ranging)-
enhanced UAV aerial photography, they collected images with dull light and blurred
background, analyzed thermal bridge information, and then detected the submerged key
buildings and vegetation. For the detection of aerial images, detection methods based on
the anchor frame are popular; however, for images with many small objects, this method
often suffers from repeated detection and omission. Therefore, Q. Ming et al. [31] proposed
a sparse label allocation strategy (SLA) based on the IoU of anchor crossing, and used the
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position-sensitive feature pyramid network (PS-FPN) of the attention module to extract
the position features of small objects, allowing them to be accurately located. Considering
the problem related to the small volume and occlusion of low-altitude objects, low-altitude
detectors based on deep learning cannot effectively extract the context information of small
objects. Thus, the authors of [32] created an extended RESNET module (DRM) and feature
fusion module (FFM) based on the trigeminal network. With these modules, the model
can be applied to low-altitude objects with large-scale changes, and it can well detect the
semantic information of low-altitude object features to achieve a higher rise point. A new
model for dense small object detection in aerial images is proposed in article [33]. The
author combines the backbone of the large selective kernel network (LSKNet) with the
DiffusionDet head of the diffusion network, and designs a weighted focus loss function and
fine-tuning hyperparameters within the network to optimize the model’s regression ability
against challenging targets, providing a new benchmark for high-level object detection in
aerial images.

2.3. Transformer for Object Detection

A transformer was proposed by Vaswani et al. [34] in 2017. It is a neural network
based on a self-attention mechanism, which has been widely used in the field of natural
language processing (NLP) [35] to deal with sequence-to-sequence speech problems. To
date, the transformer has been widely applied to many fields, such as computer vision
and speech recognition, due to its efficient parallel information processing ability [36]. In
the field of vision, the transformer is often combined with a convolutional neural network
(CNN) [37] to handle tasks such as image segmentation, object recognition, and positioning,
and the performance of the resulting model often surpasses that of traditional RCNN and
CNN models. For typical applications, D. Chen et al. [38] used the decreasing attention
gate to improve the transformer, in order to overcome the influence of interference factors
of non-critical objects, and used the attention fusion module to allow the network to
inherit the attention matrix of the previous layer, thus adding weights to the most critical
objects to effectively capture object information. In the field of drone delivery, in order
to overcome the impact of limited training sample data, the authors of [39] proposed a
network framework based on the hybrid con revolutionary transformer (HCT), which uses a
weak supervision mechanism and a small number of sample labels for supervised network
learning to better annotate and detect pixel-level images. In [40], a convolution module with
a converter was introduced. Global features and a shrink map are extracted through the
fusion converter, significantly reducing the amount of calculation in the network. The object
query function of the converter is embedded as a set during learning, but the embedding
position of each learning set cannot be determined manually and it cannot be optimized
centrally. For this reason, Y. Wang et al. [41] designed an object query function based
on anchor points. This design method can query by concentrating objects near anchor
points or predicting multiple objects in one location, thus addressing the difficulty posed
by multiple objects in one area. C. Chen et al. [42] proposed a SwinTD model based on
the Swin transformer [43] for detecting foreign objects in tobacco packaging cutting areas.
They used the Swin transformer to establish a model of the relationship between foreign
objects and the background, while utilizing dense connections to enhance the re-use of
local features, thus avoiding over-fitting. In [44], a new application of a transformer in an
electronic waste detection method was provided. It provided an efficient image conversion
model EWasteNet based on a transformer for accurate classification of electronic waste
using dual stream data. The two data streams are used for edge detection and multi-scale
feature information capture through Sobel operators and atrous spatial pyramid pooling,
respectively. Finally, the feature information is merged and predicted at the decision-
making level through a transformer. The experimental results show that this method can
effectively analyze the characteristics of electronic waste and improve the accuracy of
detecting waste objects.
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2.4. Loss Function

The loss function is a necessary evaluation indicator and optimization tool in the field
of machine learning [45], which is used to measure the performance during algorithm
training and detection. It calculates the difference between the results predicted by the
model and the true values through various measurement methods, allowing for continuous
adjustment of the algorithm parameters to bring the algorithm closer to the true state
of the object in the next round of detection. In object detection tasks, reasonable use of
different loss functions can allow for the training of better models. For example, the cross-
entropy loss function [46] can be used to measure and adjust the classification differences of
detection models. Similarly, in regression tasks, the mean squared error loss function [47]
is used to evaluate and optimize localization differences. Overall, the loss function is
crucial for training efficient and reliable detection models. In this regard, researchers have
also carried out a lot of exploration and innovation works. Due to the great contribution
of the feedback mechanism to the development of object detection technology, D. Chen
et al. [48] developed a control distance IoU (CDIoU, IoU—Intersection Over Union) and
related loss function without increasing the model parameter (flop), in order to make up
for the shortcomings of the traditional evaluation system and feedback module. In the
comparison, this new loss function can effectively feedback the loss of distance to the model.
Boundary box regression technology has an impact on the accuracy of object detection.
D. Tian et al. [49] introduced a boundary box regression loss function called absolute size
(AIoU) to improve the accuracy of object detection. They discussed the limitations of the
previous common loss function in the loss of intersection location, then used the AIoU
function, which contains a variety of penalty terms, to improve the regression loss of the
boundary box. In order to improve the accuracy of object detectors in computational
resource-assisted systems (DASs) and maintain efficient detection capabilities in rainy or
other harsh environments, Bhaumik Vaidya et al. [50] developed a de-noising network
with a custom SSIM loss function in the image detection process. The class weight penalty
technique of this network, combined with a trainable color converter, can enhance the
detection accuracy and efficiency with respect to small objects. The loss function plays a
key role in object detection. In [51], the loss function was optimized from the two aspects
of classification and positioning. On one hand, the relationship between the IoU coefficient
and classification loss function was established, and the correlation between classification
and location was used to reduce the misclassification rate. On the other hand, the gradient
inconsistency in DIoU was solved by introducing the Mahalanobis distance between the
prediction box and ground truth box.

3. Methods
3.1. Overview of the Proposed Method

This section describes the overall workflow of the proposed method, ATS-YOLOv7.
As shown in Figure 1, the data were collected first. According to the research content,
we collected a variety of UAV aerial image datasets (e.g., DIOR [52], DOTA [53], UCAS-
AOD [54], and so on) and analyzed the statistics of the data (see Section 4.2 for details).
Second, we determined the required data. We conducted a detailed comparative analysis
of the collected datasets from five aspects: images, categories, instances, quality, and intra-
and inter-class similarities. Then, we determined the datasets required for the model
experiment. Finally, object detection was carried out. This section is mainly divided into
three steps. The first step is feature extraction. The aerial data were preprocessed at the
input of ATS-YOLOv7 and uniformly sized as 640× 640, then sent to the backbone for
object feature extraction, from shallow to deep. The second step is multi-scale feature
fusion. After the feature layer input from the backbone was reduced by the AAM, the
neck FEM and PANet performed the feature enhancement sampling fusion operation. The
transformer module improves the ability of the network to capture context information.
The third step is object prediction. The four detection heads of ATS-YOLOv7 regressed and
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classified the feature layers at different scales from the neck. The internal SIoU function
ensures the high precision capability of the network (see Section 3.2 for details).
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3.2. Improved YOLOv7 Network Model (ATS-YOLOv7)

YOLOv7 has a relatively efficient detection capability and inference speed; however,
its performance may encounter bottlenecks when detecting complex types of aerial objects
such as multi-scale and densely arranged objects. Therefore, this article improves YOLOv7
in three aspects. The specific structure of ATS-YOLOv7 is shown in Figure 2.
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Specifically, first of all, the maximum feature image size output in YOLOv7 is 80× 80,
accounting for one-eighth of the size of the input image; that is, one pixel on the feature
image can map to cover eight pixels of the original image. However, this is not sufficient for
objects with tiny sizes and few pixels. To this end, we added a transformer encoder block
(T-encoder) to the upper image feature processing part of the backbone, and inserted other T-
encoder modules into the model neck to form an additional detection route. The resolution
of the output feature map of this detection route is one-quarter (160× 160) of the input
map. Due to the high resolution of the feature image on the route and the clear texture and
edges of the object, the detection head of this part can detect objects in high-density scenes
and objects of small size with high precision. Second, in order to improve the detection
accuracy for multi-scale objects, AF-FPN is introduced into the neck. AF-FPN reduces the
information loss caused by a reduction of the number of channels in the feature mapping
process through the adaptive attention module (AAM) and feature enhancement module
(FEM), thus enhancing the representation ability of the feature pyramid and enabling the
model to ensure sufficient robustness and efficiency under object size changes. Finally, in
order to enhance the positioning and training performance of the network, we improved
the anchor frame loss function of the YOLOv7 head. SIoU is introduced, based on the
original location loss function CIoU. SIoU allows the model to consider the angle regression
loss between the prediction box and the ground truth box by adjusting the difference in
the overlapping area between the prediction box and ground truth box with a penalty
term. This is beneficial with respect to the convergence speed and detection precision of
the model.

The specific steps of each improvement scheme are detailed in the following sections.

3.2.1. AF-FPN Block

The existence of multi-scale objects in aerial images affects accuracy and real-time
performance in object detection tasks. At present, the classical feature pyramid network
is often introduced by researchers in the face of such problems; however, it is difficult
to achieve a perfect balance between accuracy and real-time performance in practical
applications. Therefore, we introduce an adaptive feature-enhanced pyramid network,
AF-FPN [55]. AF-FPN consists of an adaptive attention module (AAM) and a feature
enhancement module (FEM). On one hand, AF-FPN reduces the loss of context information
in deep features through a reduction of the number of feature channels in the convolution
process through the AAM. On the other hand, the FEM is used to improve the feature
representation of the feature layer, thus enhancing the calculation speed and real-time
performance of the model.

The structure of AF-FPN is shown in Figure 1. In the AF-FPN model, the original
image Po generates the deep feature layer P5 through the backbone network. P5 and the
neck feature layer F6 (F6 is P5, which is generated through the path with the AAM) are
summed and then fused with features from other paths in a step-by-step manner in the
down-sampling process. In the fusion process, the new feature layer expands the receptive
field through the FEM to enhance the information perception ability of the algorithm. The
PANet part is a sampling path added on the basis of FPN, with the purpose of allowing the
network to integrate more levels of features and obtain richer context information.

The structure of the AAM is shown in Figure 3. The working process of the AAM
can be divided into two parts. The first part is adaptive pooling. P5 (size S = H ×W)
obtains the context features at three different scales (α1 × S, α2 × S, α3 × S) through the
average pooling operation of the adaptive pooling layer. Here, α is the pooling coefficient,
with a size in the range of [0.1, 0.5], which changes adaptively with a change in the object
size. Then, a 1× 1 convolution is used to make the three context features have the same
channel dimension, and a scale feature layer is obtained through bilinear interpolation
and up-sampling operations, which is convenient for feature fusion in the following steps.
In the second part, feature fusion, the concat layer of the spatial attention mechanism
merges context feature channels at different scales, and the merged feature layer obtains the
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corresponding spatial weight map of the feature layer through the 1× 1 convolution layer,
the ReLU function activation layer, the 3× 3 convolution layer, and the sigmoid function
activation layer of the spatial attention mechanism in turn. The spatial weight graph and
the merged feature graph are separated into three context features through the Hadamard
product operation, and are then summed with P5 to obtain the feature graph F6 with rich
context information. AF-FPN can effectively reduce the information loss caused by the
reduction of feature channels through the AAM, allowing feature maps with rich context
information to be obtained.
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The structure of the FEM is shown in Figure 4. Its working process can also be divided
into two parts. The first part is multi-branch convolution. This part includes a dilated
convolution layer, a BN layer, and a ReLU function activation layer. The main function
of the multi-branch convolution layer is the dilated convolution operation, which can
adaptively learn the receptive fields of different sizes in each feature map according to the
objects of different scales in the input image, thus improving the detection accuracy of the
model for multi-scale objects. The dilated convolution kernels of the three branches are the
same size (3× 3), while the expansion rate ξ varies (3, 5, 7). The expansion rate calculation
formula is shown in Equations (1) and (2):

ξ1 = t× (k− 1) + 1 (1)

ξn = t× (k− 1) + ξn−1 (2)

where ξn is the expansion rate of a branch (n = 1, 2, 3), t is the convolution step size (where
the step size is 1), and k is the convolution kernel size.

During the processing, the internal elements of the dilated convolution kernel are
distributed according to the expansion rate interval, which is different from the adjacent
distribution of the internal elements of the standard convolution kernel, and the spatial
size depends on the expansion rate. The expansion characteristics of the receptive field of
the dilated convolution kernel do not cause a loss of resolution and coverage of the image.
The relationship between the expansion rate of the dilated convolution kernel and the size
of the receptive field is shown in Equation (3):

Rq = (ξn − 1)× (k− 1) + k (3)

where Rq represents the size of the receptive field of a certain branch (q = 1, 2, 3).
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The second part is the branch pool layer. The object information in each parallel branch
receptive field is fused by average pooling to avoid the need for additional parameters in
the model calculation. This operation is used during the training of the model. By balancing
the feature representation of different branches, the accuracy of multi-scale objects can be
enhanced by a single branch during the test. The branch pool layer output and branch
number expression are shown in Equation (4):

Fo =
1
B

B

∑
i=1

Fi (4)

where Fo is the output of the branch pooling layer fusing the characteristic information of
each branch, B is the number of branches to be fused in this layer (B = 3), and Fn is the
characteristic information of a branch (i = 1, 2, 3).

3.2.2. Prediction Head Based on Transformer Encoder

In order to improve the detection ability of the model to deal with tiny and high-
density occluded objects, we added an additional prediction head on the basis of the three
prediction heads of YOLOv7. This four-head structure, shown in Figure 3, can effectively
alleviate the negative impact caused by drastic changes in object scale.

This prediction head combines a transformer encoder block [56] (T-encoder), where
the structure of the T-encoder is shown in Figure 5. We introduce it into YOLOv7 to
improve the capture ability of the model for different local information and explore the
feature representation ability of the self-attention mechanism. T-encoders are stacked by N
encoders, where each encoder contains two sub-layers: a multi-head self-attention (MSA)
layer and a multi-layer perceptron (MLP) layer. Each sub-layer is residually connected
and arranged in sequence. The T-encoder mainly uses the self-attention mechanism of
the MSA layer to capture the global dependencies between input patch sequences, obtain
rich context semantic information, and enhance the model expression ability after further
processing by MLP.
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Specifically, in each layer l of the encoder, the input sequence Zl−1 of the previous
layer normalizes the input of each example on the feature dimension through layer normal-
ization (LN), in order to prevent drastic changes in the value of each layer, thus improving
the stability and generalization of the model in terms of feature representation. Then, the
output of the previous layer LN passes through the MSA layer to obtain a new sequence
Zl. Finally, the Zl output, as a new input, is normalized and submitted to the MLP layer
again to generate a set of the latest patch-embedded Zl

′. Residual links are added between
each sub-layer to enable the model to learn the residual function, addressing the problem
of gradient disappearance in the processing flow of MSA. MLP is shown in Equations (5)
and (6):

Zl = MSA(LN(Zl−1)) + Zl−1, l = 1 · · · N (5)

Zl
′ = MLP(LN(Zl)) + Zl , l = 1 · · · N (6)

The structure of MSA is shown in Figure 6. In the vision transformer [57] application,
MSA measures the importance of the patch embedding in each part of the image through
the self-attention mechanism, in order to capture the context semantic information between
each part of the image. As MSA has multiple self-attention heads, it is called “multi-head
self-attention”, and it uses them to learn different parts of the input image. Each self-
attention header in MSA contains three functions: query (Q), key (K), and value (V). These
three functions belong to three complete connection layers. The self-attention mechanism
calculates the attention scores of different patches embedded by these three functions, and
utilizes these scores to determine the importance of different embedded patches. These
scores are used for the weighted value of the trade-off, and the output represents the
weighted sum of the self-attention mechanism. The MSA layer also includes a dot-product
attention layer, a multi-head attention layer, concatenation, and a linear projection layer.

Specifically, the MSA layer first applies linear projection to the input sequence
z = x1, x2, x3, · · ·, xn embedded in the patch to generate corresponding matrices for Q,
K, and V, where each input sequence has D dimensions, the matrix is of size D× H, and
H represents the number of heads. By learning the weight matrices Wq, Wk, and Wv, the
values of Q, K, and V can be obtained, as shown in Equation (7):

Q = zWq, K = zWk, V = zWv (7)

Then, the attention score is obtained by using the self-attention mechanism, Q, K and
V, as shown in Equation (8), where Q and K are dot products calculated and scaled by
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the square root of their dimensions. The so f tmax function is applied to the last dimension
corresponding to the attention score.

Attention(Q, K, V) = so f tmax

QKT√
D
H

V (8)

Finally, the output of the self-attention mechanism is cascaded through the head and
transformed to the original dimension using linear projection. The final output of the MSA
layer is realized through the learnable weight matrix Wo, and the final output is shown in
Equation (9):

MSA(z) = concat(Attention1, Attention2, · · ·, AttentionH)Wo (9)
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The structure of MLP is shown in Figure 7. It consists of two linear transformation
layers and a non-linear activation function layer. Each layer is fully connected, and the
two linear transformations are separated by the non-linear activation function. The MLP
layer is responsible for transforming the representation input from the MSA layer to a
higher dimensional feature space. Specifically, first, in the first linear transformation layer,
the learnable weight matrix W1 is multiplied by the input embedded patch X, and the
multiplied result is added to the offset b1 to obtain MLP1. The above process is shown in
Equation (10):

MLP1 = zW1 + b1 (10)
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Second, after the output of the previous layer passes through the Gaussian error linear
unit layer—that is, the GELU non-linear activation function layer—then MLP2 is obtained.
The above process is shown in Equations (11) and (12):

MLP2 = GELU(MLP1) (11)

GELU(x) = xP(X ≤ x) = xΦ(x) = x · 1
2

[
1 + er f

(x/√
2
)]

(12)

where P(X ≤ x) is the cumulative distribution function, representing the mean value of
the Gaussian distribution at x, and er f is the error function.

Finally, the output processed by the non-linear activation function layer enters the
second linear transformation layer. The operation at this time is similar to that in the first
linear transformation layer: MLP2 is multiplied by the new learning weight matrix W2,
then the result is added to the new offset b2 to obtain MLP3. The above process is shown in
Equation (13):

MLP3 = MLP2W2 + b2 (13)

As the T-encoder is composed of multiple encoders in series, the MLP layer is followed
by the new MSA layer and MLP layer, and the series process is repeated N times until
the model learns the rich context information and complex abstract deep features of the
input image. After the encoder block finishes the above operations, in order to generate the
image representation y, the encoder selects the first embedded patch of sequence z0

N and
performs layer normalization. This process is shown in Equation (14):

y = LN
(

z0
N

)
(14)

3.2.3. Improved Loss Function: SIoU

The location loss function CIoU of YOLOv7 considers the aspect ratio, distance, and
overlapping area between the prediction box and the ground truth box, but fails to consider
the vector angle between them, which greatly affects the convergence speed and detection
performance during model training. Therefore, in order to improve the positioning accuracy
and convergence speed when the model detects multi-scale and dense objects, we propose
the use of a new loss function, SIoU [58], to optimize the model training loss.

Specifically, in addition to the characteristics of CIoU, SIoU can also consider the
vector angle and direction between the prediction label and the ground truth label, and re-
defines the penalty measurement when analyzing the regression model. Its comprehensive
consideration of the training loss helps the model to be more robust and converge faster.
Besides the distance cost ∆, shape cost Ω, and IoU cost, SIoU also introduces the angle cost
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Λ. The angle cost Λ is considered when calculating the distance cost ∆. The definition of
SIoU is shown in Equation (15):

LboxSIoU = 1− IoU +
∆ + Ω

2
(15)

The above four cost parameters determine the main functions of SIoU and are re-
defined by SIoU. The parameter relationship of SIoU is shown in Figure 8. The definitions
of the various parameters are as follows: First, for the angle cost Λ, its definitions are shown
in Equations (16)–(19):

Λ = 1− 2× sin2
(

arcsin
(

CH
σ

)
− π

4

)
= cos

(
2×

(
arcsin

(
CH
σ

)
− π

4

))
(16)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt

cy − bcy

)2
(17)

CH = max
(

bgt

cy , bcy

)
−min

(
bgt

cy , bcy

)
(18)

CH
σ

= sin(α) (19)

where CH is the vertical height difference between the center of the ground truth box and
the center of the prediction box, σ is the distance between them, arcsin

(
CH
σ

)
is the angle α,(

bgt

cx , bgt

cy

)
represents the center point of the ground truth box, and

(
bcx , bcy

)
represents the

center point of the predicted box. After analysis, it can be concluded that, when α is π
2 or 0,

the angle cost Λ is also 0. If α < π
4 , α should be minimized first; otherwise, β should be

minimized first.
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Second, the distance cost ∆ is determined by the distance between the prediction
box center BPR and the ground truth box center BGT , and is affected by the angle cost Λ.
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Considering the above definition of the new angle cost Λ, it is necessary to re-define the
distance cost ∆. Its definition is shown in Equations (20) and (21):

∆ = ∑
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy (20)

ρx =

 bgt

cx − bcx

CW1

2

, ρy =

 bgt

cy − bcy

CH1

2

, γ = 2−Λ (21)

It can be seen that the contribution of the distance cost decreases sharply with a
decrease of α in the angle cost. However, when α approaches π

/
4, the contribution of the

distance cost also increases. The value γ indicates that, with an increase in angle, the time
factor becomes the priority factor for calculating the distance value. CW1 and CH1 represent
the width and height of the minimum boundary rectangle circumscribed by the prediction
box and the ground truth box, respectively.

Furthermore, the shape cost Ω is defined as shown in Equations (22) and (23):

Ω = ∑
t=W,H

(
1− e−Wt

)θ
=
(

1− e−WW
)θ

+
(

1− e−WH
)θ

(22)

WW =

∣∣W −Wgt
∣∣

max(W, Wgt)
, WH =

∣∣H − Hgt
∣∣

max(H, Hgt)
(23)

where W and H refer to the width and height of the predicted box, respectively, and Wgt

and Hgt refer to the width and height of the ground truth box, respectively. As an important
weight in the shape cost, the value of θ is used to determine the uniqueness of the shape
cost in the dataset.

Finally, the IoU cost is defined as shown in Equation (24):

IoU =

∣∣area(BPR ∩ BGT)
∣∣

|area(BPR ∪ BGT)|
× 100% (24)

where area(BPR ∩ BGT) is the intersection of the prediction box and the ground truth box,
and area(BPR ∪ BGT) is the union of the two. The ratio of the two constitutes the IoU cost.
The specific relationship is depicted in Figure 9.
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4. Experiments and Results
4.1. Experimental Platform and Parameter Settings

Considering the limited computing resources of UAV platforms, and in order to
maximize the data processing ability of the proposed mining model, for hardware we chose
an Intel Core i9-12900kf CPU@3.20 GHz as the CPU. For software, we chose the Windows
11 operating system, PyTorch 2.0.0 as the deep learning framework, and CUDA 11.8 as
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the GPU accelerator. The hardware and software settings of the experimental platform are
detailed in Table 1.

Table 1. Experimental platform configuration.

Parameter Name Configuration

Operating System Windows 11
Integrated development environment PyCharm

CPU Intel Core i9-12900KF CPU@3.20 GHz
GPU NVIDIA GeForce RTX 4090 (24G)

GPU accelerator CUDA 11.8
Deep learning frame PyTorch 2.0.0
Scripting language Python 3.9.16

Neural network accelerator cuDNN v8.2.2

During model training, the AdamW optimizer was used to train ATS-YOLOv7. Con-
sidering the memory limitations of the experimental platform, the initialization parameters
were set as follows. The cosine annealing strategy was used to update the learning rate,
the weight decay regularization parameter was 0.0005, and the momentum was 0.937. The
specific parameter settings used during training are given in Table 2.

Table 2. Training parameter configuration.

Parameter Name Configuration

Initial Learning rate 0.001
Cosine annealing hyperparameter 0.2

Neural network optimizer AdamW
Size of input images 640× 640

Batch size 16
Momentum 0.937

Weight decay 0.0005
Training epochs 1000

4.2. Data Set

As the performance of a data-driven visual object detection model largely depends on
the quality of data, the selection of an appropriate data set is particularly important. Models
with different detection functions correspond to different data sets, and the requirements
of UAV aerial image data corresponding to this paper are as follows:

â The scale of aerial data is large. UAVs collect a large amount of image data during the
execution of aerial photography missions. If the detection model lacks a large amount
of data support during the training period and there is not enough data to optimize
a large number of parameters, the trained model will not have high generalization
ability or robustness.

â The types of objects are comprehensive, and there may be many types of objects in
aerial images. On one hand, in terms of the object scale, large, medium, and small
objects will exist in the image; on the other hand, in terms of object types, aerial
objects are varied, including objects such as ships, courts, cars, bridges, and so on.
The consideration of comprehensive object types is conducive to training an efficient
detection model.

â High-quality aerial images. The need for high-quality images can be viewed from
two aspects. First, high-quality images provide good texture details and high res-
olution. Second, images collected in complex environments or with insufficiently
performing cameras may suffer from complex backgrounds and blurred images, due
to rain and snow weather, fuselage jitter, and so on. This type of image makes the
model training closer to the real scene, so they can also be called high-quality. In this
article, we also focus on the statistics of these types of images.
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We selected several standard aerial image data sets, including DIOR, DOTA, UCAS-
AOD, U-AIR [59], UAV-123 [60], UAVDT [61], NWPU VHR-10 [62], and OIRDS [63],
and collected statistics on the data sets in the following five aspects: images, categories,
instances, quality, and intra-class differences and inter-class similarities (Icdaics). The
results are shown in Figure 10.
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From Figure 10, it can be seen that the DIOR dataset presented the best comprehensive
performance in these five aspects. In particular, DIOR contains a large number of images
(23,463), rich object types (20), and a large number of sample instances (192,472). Therefore,
we chose it as the data basis for the model experiment in this paper. The dataset is divided
into training set, verification set, and test set according to the ratio of 6:2:2. The statistics of
DIOR, in terms of specific sample number and type, are shown in Figure 11.
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4.3. Evaluation Metrics

We selected a variety of indicators to evaluate the performance of the model and
improve the modules, as follows: precision, recall, F1 score, AP (average precision), mAP
(mean AP), and FPS (frames per second).

For the binary classification problem, the classification results regarding the combi-
nation of the ground truth box and the predicted box can be divided into four sample
categories: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN). The confusion matrix of the classification results is presented in Table 3.

Table 3. Confusion matrix for the classification results.

Labeled Predicted Confusion Matrix

Positive Positive TP
Positive Negative FN

Negative Positive FP
Negative Negative TN

Precision (P) and recall (R) can be obtained from the data combination of the binary
classification confusion matrix, defined as follows:

P =
TP

TP + FP
(25)

R =
TP

TP + FN
(26)

Precision represents the proportion of all true positive samples in the tested positive
samples, while the recall rate represents the ability of the model to correctly detect positive
samples. The P–R curve can be obtained by taking the precision and recall rate as the vertical
and horizontal axes, respectively. In order to evaluate the comprehensive classification and
recall ability of the classifier, the F1 score is obtained as the harmonic average of the above
two indicators. The higher the F1 score, the more effective the test method is. The F1 score
is defined as follows:

F1 =
2× P× R

P + R
(27)

AP refers to the average detection accuracy of various objects, and its size is the area
bounded by the P–R curve and the horizontal axis. mAP measures the overall detection
performance of the model for all kinds of objects, according to different thresholds (this
paper takes the mAP of 0.5, with the mAP ranging from 0.5 to 0.95). It is the average of all
object categories of AP, and is considered the best indicator for judging the comprehensive
detection performance of a model. The specific definitions of AP and mAP are shown in
Equations (28) and (29), respectively:

AP =
∫ 1

0
P(R)× dR× 100% (28)

mAP =
1
n

n−1

∑
i=1

AP(i)× 100% (29)

where P(R) represents the accuracy on the P–R curve, n represents the object type of the
set model detection, and i represents a certain object to be detected.
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FPS is an important index of the speed. It represents the number of frames per second
that can be processed in the process of model reasoning. In order to verify the real-time
performance of the model, the FPS of a model should ideally be greater than 30. FPS
is composed of three parts: the initial image processing time (Pre), the model reasoning
running time (Inf ), and the non-maximum suppression time (NMS). Its definition is shown
in Equation (30):

FPS = 1000/(Pre + In f + NMS) (30)

4.4. Experiment and Results Analysis
4.4.1. Precision–Recall Rate Experiment

We conducted a precision–recall experiment to verify the performance of the pro-
posed method in two aspects: first, the impact of data set size and number of object
categories on precision–recall and, second, the impact of the new algorithm, formed by
combining the improved modules with YOLOv7, on the precision–recall rate. In this ex-
periment, first of all, we combined three types of improved modules—namely, AF-FPN,
T-encoder, and SIoU—with YOLOv7 to obtain the comparison models YOLOv7 + AF-FPN,
YOLOv7 + T-encoder, and YOLOv7 + SIoU. Second, we trained and tested the above
three models, the overall improved model ATS-YOLOv7, and the baseline model YOLOv7
on six different types of aerial photography data sets, then assessed the experimental data
to draw P–R curves, as shown in Figure 12.

From the P–R curves, it can be seen that the performance of the five types of detection
models differed on the different data sets. Overall, the detection ability increased with
increasing data set size and object types. Among them, the five detection models had the
best precision–recall rate on the DIOR data set, and the worst performance on the UCAS-
AOD data set. After analysis, it was found that the data size and number of object types
in the DIOR data set were the largest of the six data sets involved in the experiment, with
23,463 images and 20 object types, while the UCAS-AOD data set had only 2420 images
and 2 object types. Therefore, by observing the experimental results, it can be concluded
that comprehensive aerial photography data are very necessary for the development of a
detection model, as this can enable the model to fully learn object features, capture key
information, and adjust the training parameters to improve the model generalization and
detection capabilities.

From the perspective of the performance of the improved module combined with the
baseline model, ATS-YOLOv7 performed best in terms of P–R ratio on the six data sets,
followed by YOLOv7 + AF-FPN and YOLOv7 + T-encoder, while YOLOv7 + SIoU per-
formed slightly worse and YOLOv7—the original model—performed the worst. It can be
seen that YOLOv7 was overall improved, in terms of feature information extraction, object
location, resistance to redundant interference, and drastic scale changes, after integrating
the three types of models, and the comprehensive performance of the model was greatly
improved. Although YOLOv7 + AF-FPN, YOLOv7 + T-encoder, and YOLOv7 + SIoU
improved over the baseline, to different degrees, they cannot guarantee comprehensiveness
of the detection process and high accuracy of the detection results for complex aerial im-
ages captured by UAVs. Therefore, in general, the ATS-YOLOv7 method proposed in this
paper performed well in multi-category aerial image data sets, presenting good detection
performance when processing multi-type aerial objects.
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4.4.2. Ablation Experiment

In order to further verify the effectiveness and rationality of each improved module
when combined with YOLOv7, we conducted ablation research on the DIOR dataset. The
baseline model was YOLOv7 and each progressive module was trained based under the
same experimental settings. The respective contributions of the models are intuitively
shown in Table 4, in which “

√
” indicates that the improved module was added, while a

blank space indicates that the module was not selected.

Table 4. Ablation results considering the improved modules. The data unit is percentage (%).

Baseline AF-
FPN

T-
Encoder SIoU Dataset Parameters FPS APt APs APm APl mAP@0.5 mAP@0.5:0.95

YOLOv7 DIOR

71.4 M 110 59.1 63.3 79.1 83.7 73.1 58.7√
72.2 M 100.7 70.3 73.1 82.2 85.5 74.3 63.3√
74.4 M 109 72.1 75.1 80.7 85.1 75.8 65.8√
71.4 M 100.3 62 72.7 78.1 79.3 71.3 60.1√ √
75.7 M 90.4 66.3 78.2 88.3 93.9 80.5 66.8√ √
75.2 M 92.6 60.1 74.3 85.9 90.6 79.7 64.7√ √
75.4 M 96.1 63.3 77.5 85.1 88.1 73.1 62.1√ √ √
80.9 M 94.2 72.8 79 90.3 94 81.3 70.3

During the experiment, we used a variety of evaluation methods according to the
AP and mAP, including APt, APs, APm, APl , mAP@0.5, and mAP@0.5 : 0.95. In particular,
APt, APs, APm, and APl represent the average precision for tiny, small, medium, and large
targets, respectively, while mAP@0.5 and mAP@0.5 : 0.95 represent the average value of
AP for all scale objects when the SIoU threshold was set at 0.5 and the average value of
AP for all scale objects when the step size was 0.05 from 0.5 to 0.95, respectively. These
two types of mAP are increasingly difficult for each detection model, and they can be
used as an important indicator to measure the comprehensive detection capability of a
model. For convenience of expression in the following, we denote YOLOv7 + AF-FPN by
1©, YOLOv7 + T-encoder by 2©, YOLOv7 + SIoU by 3©, and the other models by 4©, 5©, 6©,

and 7© in turn.
From Table 4, the following observations can be made. First, compared to YOLOv7,

the models with single improvement modules presented improvements in all six indicators,
with 2© having the highest increases in APt, APs, mAP@0.5, and mAP@0.5 : 0.95 (13%,
11.8%, 9.7%, and 7.1% higher, respectively). This indicates that YOLOv7 is more sensitive
to the features of tiny and small objects when facing drastic variations in object scale, and
its detection ability is improved after adding the T-encoder prediction head. Although the
parameters were increased by 3 M, this did not affect the real-time requirements of the
network. Second, in the models with two improved modules, the six indicators of 4© were
the most improved over those of YOLOv7, which were 7.2%, 14.9%, 9.2%, 10.2%, 7.4%, and
8.1% higher, respectively. Due to the new AF-FPN architecture of the neck of the model
and the additional detection heads, the parameters increased by 4.3 M, but the network
reduced the information loss in the convolution process and strengthened the feature
expression, which was conducive to the detection of complex object types. Finally, it can be
seen that the baseline model YOLOv7 had the largest difference when compared with the
comprehensive improvement 7© (ATS-YOLOv7), being 13.7%, 15.7%, 11.2%, 10.3%, 8.2%,
and 11.6% lower, respectively. From the above analysis, it can be seen that YOLOv7 could
detect and recognize multi-scale objects and densely occluded objects well after adding the
AF-FPN module, T-encoder module, and optimizing the SIoU loss in training. Although 7©
presented the largest increase in parameter quantity, it also managed to meet the real-time
requirements in accordance with the FPS standard. The various kinds of modules can play
a coordinated role in improving YOLOv7, verifying that the comprehensively improved
YOLOv7 model proposed in this article is scientific and efficient.
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Based on the above analysis, in order to highlight the advantages of ATS-YOLOv7
over YOLOv7 and, more specifically, to analyze the differences between the two models in
terms of accuracy for various objects, we used the confusion matrix to assess their detection
results. The confusion matrix is shown in Figure 13. The horizontal axis in the figure
represents the ground category labels, the vertical axis represents the predicted category
labels, and the cross term is the result of their classification accuracy. In order to observe the
visual detection results, we abbreviated the name of each object in the data set, as detailed
in Table 5. In order to save the detection time occupied by multiple similar objects, we
selected 10 representative objects from the 20 object categories of DIOR for testing.
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Table 5. Abbreviation of object categories.

Object Name Airport Train station Tennis court Wind mill Bridge Expressway service area

Abbreviation AT TS TC WM BE ESA

Object Name Harbor Stadium Basketball
court Golf course Ship Expressway toll station

Abbreviation HR SM BC GC SP ETS

Object Name Vehicle Airplane Baseball field Storage tank Dam Ground track field

Abbreviation VE AE BF ST DM GTF

Object Name Chimney Overpass - - - -

Abbreviation CY OS - - - -

Overall, among the detected object categories, ATS-YOLOv7 had a higher classification
accuracy for most objects when compared to YOLOv7, and the maximum difference in
accuracy between the two was 12%. The overall false detection rate of ATS-YOLOv7 was
lower than that of YOLOv7. Specifically, the performance difference between the two models
in terms of large object detection (e.g., ETS, GTF, and SM) was not obvious, and both had
high classification ability. In terms of medium objects (BE and OS), ATS-YOLOv7 had 5% and
3% higher accuracy, respectively. In terms of small objects (VE, CY, and AE), ATS-YOLOv7
had 5%, 3%, and 5% higher accuracy, respectively. The two presented the greatest difference
for tiny objects (ST and SP), where ATS-YOLOv7 had 12% and 6% higher accuracy than
YOLOv7, respectively. These results indicate that YOLOv7 with three detection heads is not
sensitive to tiny objects, while the ATS-YOLOv7 model with AF-FPN and T-encoder has
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improved attention due to the feature layer and can fully mine the feature information of
objects, allowing it to perform better on more difficult objects.

4.4.3. Comparison with the State-of-the-Art

In this section, we compare the performance of the proposed method with a variety of
SOTA visual detection models, including one- and two-stage models, on the DIOR data set,
in order to illustrate the advantages of the ATS-YOLOv7 algorithm in terms of the current
aerial image detection task. The chosen experimental models included RetinaNet [64],
Scaled-YOLOv4 [65], YOLOv5 [22], TPH-YOLOv5 [66], HR-Cascade++ [67], O2DETR [68],
DBAI-Net [69], YOLOv7 [23], and GLENet [70]. The specific test results for each model are
given in Table 6. Each object is marked according to the scale size to display the differences
in detection results, such as large (l), medium (m), small (s), and tiny (t).

Table 6. Statistical results of AP, F1 Score, and mAP for ATS-YOLOv7 and various SOTA models.

Object
Category

Method (AP/F1)

GLENet Scaled-
YOLOv4 YOLOv5 TPH-

YOLOv5
HR-

Cascade++ O2DETR
DBAI-

Net RetinaNet YOLOv7 Ours

AT (m) 89/83 84/77 64/69 85/79 67/74 74/69 80/76 79/72 89/86 90/83
TS (l) 88/85 87/75 68/71 90/87 83/72 78/71 71/65 84/76 84/79 87/83

TC (m) 92/83 71/64 61/70 84/80 62/70 86/84 77/72 75/70 90/84 89/86
WM (l) 75/71 76/72 70/75 73/78 75/66 88/85 87/83 63/67 89/83 78/76

BE (m, l) 87/80 60/55 62/70 64/70 78/81 76/80 70/68 70/59 76/71 89/82
ESA (l) 93/88 79/75 65/78 82/80 64/69 73/60 89/84 89/75 87/83 90/85
HR (l) 87/71 80/73 67/58 64/56 74/78 79/75 74/78 78/71 74/78 88/82
SM (l) 91/87 72/70 70/78 75/78 86/79 81/76 90/84 90/86 87/84 83/88

BC (m, l) 92/67 76/71 61/53 66/57 78/81 88/81 82/78 67/71 85/79 95/87
GC (l) 89/83 85/78 61/70 84/72 63/68 74/62 85/81 76/84 90/86 87/81
SP (t) 59/54 70/64 51/60 58/4s9 47/61 66/58 64/58 48/61 67/62 71/65

ETS (l) 93/81 90/86 57/66 78/67 73/60 94/86 92/88 88/84 92/86 95/90
VE (t, s) 63/75 79/66 81/76 82/75 72/78 80/77 76/72 58/64 74/69 84/78
AE (s) 89/63 71/59 46/61 71/67 52/74 80/73 75/70 80/76 87/82 83/77
BF (m) 88/80 84/70 75/68 84/81 88/84 89/85 86/82 87/82 85/79 89/84
ST (t, s) 74/63 48/62 64/58 54/49 61/68 57/69 64/59 45/57 57/54 76/73
DM (m) 91/80 88/75 69/78 71/84 65/82 83/81 80/75 87/76 87/82 92/86
GTF (l) 96/91 84/88 66/80 94/85 90/92 86/92 88/85 74/87 89/86 97/94
CY (t, s) 71/68 75/68 54/68 61/74 80/72 78/68 59/64 52/61 75/69 80/75
OS (m) 90/76 79/82 65/73 87/81 61/64 90/85 82/78 89/74 83/77 91/85

mAP 85 77 64 75 71 80 79 74 82 87

From the experimental results, it can be seen that the detection results of the various
models for large- and medium-sized objects were generally higher than those for small
and tiny objects, indicating that small and tiny objects are extremely challenging in the
field of object detection. Our proposed model, ATS-YOLOv7, presented the best overall
performance among various visual models (mAP of 87%, F1 score overall higher than other
models), being especially superior to other models for small and tiny objects. Specifically,
the 10 models had high detection results for large- and medium-sized objects, such as
stadiums, bridges, sports fields, airports, and so on. Among them, GLENet obtained the
best results (mAP of 90%), 26% higher than the worst YOLOv5 model. The difference
between ATS-YOLOv7 and the best-performing model was only 0.4%, indicating that the
method proposed in this article also has efficient performance for large- and medium-
sized objects. However, for small and tiny objects, such as cars, ships, and chimneys,
ATS-YOLOv7 presented the highest score compared to other models, being 4.9% higher
in accuracy than the second scoring model YOLOv7. These results demonstrate that
our proposed AF-FPN module, T-encoder module, and SIoU can efficiently enhance the
detection of medium and large objects by improving upon YOLOv7, and that the proposed
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model demonstrates superior performance when considering tiny and challenging objects
in UAV aerial images.

Based on the above experimental results, we visualized the detection results of four typ-
ical challenging objects when using RetinaNet, Scaled-YOLOv4, YOLOv5, TPH-YOLOv5,
HR-Cascade++, O2DETR, DBAI-Net, YOLOv7, GLENet, and ATS-YOLOv7 models, as
shown in Figure 14.
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Figure 14a shows the results of each model for multi-scale targets in a large scene. The
objects in the picture are a ground track field, a basketball court, a tennis court, a golf course,
and a car. Their dimensions vary from large to small, and their positions are scattered. It
can be seen from the figure that ATS-YOLOv7 had the fewest misdetected objects, while
HR-Cascade++ had the most misdetected objects, and the rest of the models had varying
degrees of misdetection. This can be explained by the adaptive feature enhancement
network, AF-FPN, of ATS-YOLOv7 helping the network reduce the negative impact on the
network when multiple objects at varying scales change violently in large scenes, helping
the detection performance of the network to remain stable.

Figure 14b shows the results of each model for tiny-scale ship targets. Observing the
detection results, as ATS-YOLOv7 adds a detection route based on the T-encoder module
to form a four-head detection structure, the network had a strengthened ability to capture
the context information of the object area, making it more sensitive to the characteristics of
tiny objects. Therefore, its detection results were the best, while the other models seriously
missed some objects.

Figure 14c shows the results of the various models for densely arranged aircraft targets.
From the perspective of prediction, the detection rate of YOLOv7 was the lowest, while the
detection rate of ATS-YOLOv7 was the highest. Statistically, it was found that the detection
result of ATS-YOLOv7 was about 10% better than that of YOLOv7. Therefore, after adding
the AF-FPN, T-encoder, and SIoU functions to ATS-YOLOv7, the regression positioning
and feature extraction abilities of the model were greatly improved. In the face of densely
arranged objects with a similar background, it can maintain a high robustness and detection
level.

Figure 14d shows the results of each model for storage tank targets with a fuzzy
background. It can be seen that ATS-YOLOv7 detected and recognized storage tanks in
fuzzy states better than the other models, as a result of the self-attention mechanism and
adaptive feature strengthening mechanism in ATS-YOLOv7. However, in this state, if the
storage tank is similar to the background, ATS-YOLOv7—like most other models—had
trouble detecting the storage tank. In the future, we hope to further study TPH-YOLOv5 to
improve our model architecture in this regard.

In general, for objects with a large scale, significant features, and a clear background,
the networks could easily extract their rich feature information, then classify and locate
them more accurately. However, for those complex objects with a tiny scale and fuzzy
background, the network detection task becomes very difficult. Thus, the current aerial
object detection network model not only relies on training on a large volume of data, but
also requires comprehensive aerial data types and an advanced model architecture. On this
basis, the model generalization and detection ability can be better improved.

The following shows some of the test results of our method on other aerial datasets.
As shown in Figure 15, in general, ATS-YOLOv7 still has a high detection performance for
challenging objects on other datasets. A few cases of missed detection are caused by similar
backgrounds and small differences in the number of pixels, which is also what we need to
pay attention to in the future.

Above, the detection accuracy of each model for objects in different scenes and types
was analyzed in detail. Next, real-time experiments and result statistics were carried out,
according to the FPS value obtained by each model. The real-time performance of a model
is an important criterion for evaluating its comprehensive performance. The experimental
results are shown in Figure 16.
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As each network did not use the images in the DIOR validation set during training,
we selected some images from the validation set for experiments, in order to make the
experimental results more consistent with a real scenario. It can be seen, from the figure,
that ATS-YOLOv7, YOLOv7, and TPH-YOLOv5 were the fastest in terms of reasoning
speed, reaching 94 fps, 110 fps, and 105 fps, respectively. This result indicates that these
three models had the highest speed advantage for the objects in the validation set. However,
in terms of accuracy (see Table 6), ATS-YOLOv7 reached 87%, 5% higher than YOLOv7. As
for the reasoning speed of ATS-YOLOv7, although presented no advantage over YOLOv7
and ATS-YOLOv7, it had little difference in comparison with them. As the object detection
task of an UAV aerial image is an application project, we should consider the reasoning
speed and detection accuracy comprehensively when exploring the real-time nature of the
model, seeking a balance between the two. Based on this, from a comprehensive point of
view, ATS-YOLOv7 has both accuracy and speed advantages and, so, is the most applicable
model among these models.
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5. Conclusions

This article proposed an improved YOLOv7 based solution strategy, called ATS-
YOLOv7, to address the challenges faced by existing detection models in drone aerial
image object detection tasks, with a focus on solving the problem of multi-scale objects.
First, the adaptive feature enhancement pyramid network AF-FPN is utilized to reduce
the loss of deep feature information and improve the model’s feature sensitivity, thereby
enhancing the model’s detection speed and accuracy for multi-scale objects. Second, the
additional detection head of the transformer encoder block enhances the model’s ability
to capture global information and enhances its ability to detect objects at a very small
scale. Moreover, an SIoU loss with angle regression ability is proposed in this paper,
which improves the regression ability and speed of model detection. Finally, through a
series of experiments on aerial image datasets, we verified that ATS-YOLOv7 has the best
detection accuracy (mAP of 87%) while maintaining a real-time image processing ability
(94.2 FPS). In addition, we have also detected various typical targets on other datasets using
ATS-YOLOv7 and achieved good results. Therefore, overall, the method proposed in this
paper has high reliability and generalization ability when performing challenging target
detection tasks in drone aerial images, and can effectively apply to real scenarios for drone
aerial image target detection.

We discovered some areas in which improvements can be made through future re-
search. First, the number of types of aerial objects needs to be increased, such that the
trained network can better meet the object requirements of UAV aerial photography. Sec-
ond, the scale of aerial images in bad weather needs to be compensated, in order to allow
the model to better respond to complex and changeable application scenarios. Third, the
network structure needs to be further adjusted and the number of parameters should be
reduced, in order to realize a lightweight model. Fourth, in the future, we will study
unsupervised models to fully utilize data and use unsupervised models to reduce complex
data annotation work and improve our development efficiency.
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