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Abstract: When working with objects on a smaller scale, higher detection accuracy and faster
detection speed are desirable features. Researchers aim to endow drones with these attributes in
order to improve performance when patrolling in controlled areas for object detection. In this paper,
we propose an improved YOLOv7 model. By incorporating the variability attention module into the
backbone network of the original model, the association between distant pixels is increased, resulting
in more effective feature extraction and, thus, improved model detection accuracy. By improving the
original network model with deformable convolution modules and depthwise separable convolution
modules, the model enhances the semantic information extraction of small objects and reduces the
number of model parameters to a certain extent. Pretraining and fine-tuning techniques are used for
training, and the model is retrained on the VisDrone2019 dataset. Using the VisDrone2019 dataset, the
improved model achieves an mAPs5q of 52.3% on the validation set. Through the visual comparative
analysis of the detection results in our validation set, we find that the model shows a significant
improvement in detecting small objects compared with previous iterations.

Keywords: drone patrol; control area; object detection; deformable attention; deformable convolution;
depthwise separable convolution; YOLOv7

1. Introduction

With the rapid development of modern drone technology, drones have replaced a great
deal of human labor due to their lightweight, small, and inexpensive characteristics. There
is also a major trend of using drone patrols to monitor areas in important locations such as
factories, outdoor agricultural and sideline breeding production bases, primitive natural
ecological protection areas, large-scale distributed warehouses, and various important
experimental sites [1,2]. For autonomous cruising drones, the basic process of patrol-based
area control through the use of patrols begins with the use of images drone-captured from
the patrol area for detection. Then, the method provides an early warning of the detected
targets in the images. Researchers adopt corresponding measures to perform processing
based on the received warning information. Compared with manual patrols, this method
greatly saves time and energy investment.

However, when comparing the targets captured by drones with those obtained using
general fixed-height camera monitoring, drones have a higher shooting height, and the
images captured by drones show the prominent features of smaller targets. How to improve
the accuracy of small-object detection in drone images has always been a goal pursued
by people.

The traditional object-detection technology, V-] detector [3,4], began to be used in
2001 and is mainly utilized for facial detection. By 2005, the HOG + SVM [5] method
had emerged, which is mainly used for pedestrian detection. Afterward, Ross Girshick
proposed the famous deformable component model [6,7] for object-detection tasks. In order
to achieve good detection results, extensive time is required to design different models
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for different applications, which is a huge workload. The basic process of the traditional
algorithms is shown in Figure 1.

Select windows for Extracting Features . .
detection » froml [naces » Design Classifier

Figure 1. Basic process of object detection. The traditional process of completing an object-detection
task is shown in Figure 1: the first step is to select the detection window, the second step is to extract
the image features, and the third step is to design a classifier.

Object-detection technology is based on deep neural networks. In 2012, the application
of the convolutional neural network AlexNet [8] in the field of object detection began to
receive widespread attention. In 2013, the feature-extraction operator Overfeat [9] was
proposed on the basis of convolutional neural networks. In 2014, Ross Girshick proposed a
two-stage RCNN [10] detection algorithm for object detection, marking the beginning of
two-stage object detection. After 2015, fast RCNN [11] and faster RCNN [12] versions of
RCNN followed. Meanwhile, YOLO [13] had also been developed, with its arrival opening
up a stage of detection algorithm development. In 2016, SSD [14] was proposed, and 2017
to 2018 saw pyramid networks [15] and retina nets [16] being successively proposed. At
the same time, various variants of the YOLO series, such as YOLOv1~YOLOv®6 [13,17-21],
YOLOX [22], and YOLOvV7 [23], have been proposed in recent years. The use of neural
networks for object detection has induced a qualitative leap in accuracy, efficiency, and
adaptability to different scenarios compared with traditional algorithms.

YOLOVvV?7, an object-detection model with a high accuracy and detection rate, was
proposed in July 2022. Our research has improved the existing YOLOv7 model to combine
the characteristic applications of object detection for drone patrols in controlled areas. Our
contribution has the following three aspects:

1.  We propose improving the backbone network of YOLOvV7 by applying a deformable
attention module. Through the application of deformable attention, the constraint
of kernel size in convolution is broken, and the correlation between distant feature
points is enhanced. When extracting image features, richer semantics are formed,
thereby improving the accuracy of detecting small objects in drone-captured images.

2. We further reduce the number of model parameters by utilizing deformable convolu-
tions and deep separable convolutions. This improvement enhances the receptive field
range of the convolution kernel in the model, reduces the total number of model pa-
rameters, enriches the semantic information of the feature map, and further improves
the accuracy of small-object detection.

3. We propose the application of image-data augmentation, transfer learning, fine-tuning,
and label-smoothing training in the model-training stage. For the VisDrone dataset
used by our application target, the Mosaic image-data augmentation method was used
to solve the limitation of small data volume. During the training process, strategies
such as transfer learning, fine-tuning, and label smoothing are utilized to accelerate
the model training speed and enhance the robustness of the model.

The overall structure of the article is as follows: The second part introduces the
literature related to the research described in the article. The third part provides a specific
introduction to the modification of the model and the methods used. The fourth part
introduces and analyzes the dataset used and introduces the relevant metrics for the
model training. The fifth part introduces the specific methods we used to train the model,
analyzes the training results, and tests the effectiveness of the model improvement through
ablation and comparative experiments. We visualize and discuss some experimental groups.
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The sixth part summarizes the article and proposes further research on the application
in the future.

2. Related Work

In this section, we mainly introduce relevant research on the use of deep neural
networks for object-detection technology in recent years, the modules related to improving
the performance of deep neural network models involved in model improvement in this
article, and the relevant methods for improving the quality of model training.

2.1. Object-Detection Algorithm Based on Deep-Learning Networks

Object detection is an important task in the field of computer vision, with a primary
task of classifying and locating targets. Deep-learning networks, with their outstanding
ability to automatically extract features from a large amount of data through supervised
methods, have replaced the traditional target detection approach of manual feature ex-
traction and classification. The direction of object detection based on deep learning can
be roughly divided into three categories: two-stage object detection, single-stage object
detection, and transformer-based object detection [24,25].

The two-stage object-detection algorithm selects instance bounding boxes based on
the image, and then performs secondary correction based on the bounding-box area to
obtain detection results. The detection accuracy is high, but its speed is slow. This type
of algorithm starts with the RCNN [10], and is subsequently improved using the fast
RCNN [11] and the faster RCNN [12]. Algorithms such as FPN [15] and mask RCNN [26]
offer improvements to address the shortcomings of the faster RCNN, further enriching
its components and improving its performance. However, this type of method has the
disadvantage of not being able to achieve end-to-end training and slow prediction time,
and it cannot handle large datasets.

Compared with the two-stage object-detection algorithm, the single-stage object-
detection algorithm directly calculates the image to generate detection results. Despite its
accuracy limitations, this method quickly generates results end-to-end and is currently
a widely used algorithm. This type of algorithm originated from YOLOv1 [13], which
was subsequently improved by SSD [14] and Retinanet [16]. In the following period,
YOLOv1 was successively improved, resulting in the versions YOLOv2 [17], YOLOV3 [18],
YOLOV4 [19], YOLOV5 [20], YOLOV6 [21], YOLOX [22], and YOLOV? [23]. These improved
versions gradually enhanced the prediction accuracy of the single-stage target detection
algorithm and also accelerated the inference speed.

The transformer-based method [27] mainly utilizes the attention mechanism to model
the relationship between targets, incorporating relationship information into features and
thus achieving feature enhancement. Relationship Net [28] and DETR [29] have proposed
a new object-detection architecture based on a transformer with the aim of ushering in a
new era of object detection. However, due to the large overall training parameters and
long training practice of these models, further development is still needed—a hot topic in
current research.

2.2. Module for Improving the Performance of Deep Neural Network Models

In this article, deformable convolution [30], deformable attention [31], depthwise
separable convolution [32], and a new activation Mish function [33] are used to improve
the overall performance of the model. Among these, deformable convolution introduces
learnable offsets compared with traditional convolution operations, increasing the receptive
field range of large convolutional kernels and enhancing the ability to extract semantic
information. Deformable attention utilizes the idea of deformable convolution, employing
the location of learnable sampling points, not to mention efficient attention mechanisms,
for local and sparse processing to accelerate network convergence and to solve the problem
of limited feature resolution in processing. Depthwise, separable convolution generates
feature maps for channel volumes through convolution kernels of different layers, resulting
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in significantly smaller model parameters. Mish is a self-regularized non-monotonic
neural activation function, and a smooth activation function allows gradient information
to be better transmitted via deep neural networks, resulting in better accuracy and better
generalization ability of the model.

There are many improvement measures in neural networks for target detection tasks,
such as using a data augmentation network based on cropping [34] to improve detection
performance and changing the internal structure of the transformer to improve perfor-
mance [35]. This article uses the popular YOLOv7 network [36-39] as the basis based on
the characteristics of the task. Unlike other improvement methods, we use modules with
sparse network parameters such as the attention mechanism and deformable convolution
to improve the network and explore an improvement method that improves accuracy and
reduces the number of parameters.

2.3. Related Strategies for Improving Model Training Effectiveness

Image-data augmentation [40] refers to the use of a certain image-processing method
to process data that change the shape, color, chromaticity, angle, position, etc., of a graph,
thereby increasing the capacity of the dataset and enhancing the model’s generalization
ability. Transfer learning [41] and fine-tuning [42] methods use the weights of previously
trained models to initialize the weights of the new model put forward for training. The
result is that the training stands at a starting point explored in the early stage. This ap-
proaches the optimization goal, thereby accelerating the convergence of the model. The
label-smoothing training method is a regularization measure that enhances the generaliza-
tion ability of the model, and it is a popular method in multi-objective loss calculation in
model training.

3. Methodology

In this section, we provide a detailed description of the improvements made to the
YOLOv?7 [23] model, as well as the advantages and roles of the modules used in the
model improvements.

3.1. Framework Structure of the Proposed Model

Due to the fast movement speed and high flying altitude of drone patrols compared
with regular fixed-altitude cameras, it is necessary to meet certain requirements for image
processing and detection speed and accuracy. YOLOV? is an algorithm proposed in recent
years that can perform real-time image processing, and its speed is higher than that required
for ordinary object-detection algorithms, with the same processing accuracy. We chose the
YOLOV7 model for this purpose. In response to the fact that there are many small targets
in the application field of drone patrols in the control area, as well as some shortcomings in
the accuracy of YOLOv7's small-target detection model, we combined relevant knowledge
to improve it.

The left side of Figure 2 represents the backbone network part of the model, an area
primarily responsible for the feature extraction of input graphics, obtaining certain semantic
information from the input images, and preparing for the object-detection task in the early
stage. The red, yellow, and blue rectangular blocks on the bottom left represent the R, G, and
B channels of the original input image. The lines in the figure represent the corresponding
operation and processing procedure, and the text next to the lines signifies the abbreviation
of the corresponding processing module. The yellow cubes of different sizes in the figure
are feature maps generated after processing by the processing module. The numerical
annotation form of the feature map is H x W x C, where H, W, and C represent the pixel
height, pixel width, and number of channels of the feature map, respectively. Their order is
consistent with the coordinate direction at the bottom left corner of the map. In the middle
section of Figure 2—dubbed the “Neck”—we find a network that integrates features from
different layers of feature map outputs from the backbone network. On the right side,
we see the section referred to as the “Head”, performing detection operations on feature
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maps. During the training process of the model, this area is responsible for calculating the
detection errors and losses and for outputting the detection results during the detection
application process. The formula at the bottom right corner of the figure is a graphical
explanation for the combination of a number of modules.
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Figure 2. Architecture of our improved model.

Regarding the YOLOV? original framework, our improvements to the model primarily
focus on three aspects: Firstly, in the backbone network section, we introduce a deformable
attention module to replace the third processing module in the original model. At the same
time, considering that the parameter quantity of the deformable attention module is related
to the number of input and output channels, we reduce this number in the third module of
the backbone network, while maintaining the same pixel height and width during the input
and output. Secondly, in the input part of the neck, we introduce a deformable convolution
module to replace the original processing module. By using deformable convolution, we
reduce the number of model parameters and increase the ability to extract semantic feature
information. Thirdly, we use variable depthwise separable convolutions to replace the
ordinary convolutions in the original model throughout the entire network, while using
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Mish activation functions to replace the SiLU activation functions in the original model.
The modified parts are compared with the original network and highlighted in yellow in
Figure 2.

3.2. The Modules We Used
3.2.1. Deformable Attention Module

In Figure 3, Query, Value, and Key represent the basic elements required to perform
the attention mechanism operations. In Figure 3, Offset describes a set of paranoid param-
eters used to calculate Value. The values of Offset and Key are obtained through linear
transformation using the Query feature, and the specific value of Value is obtained via
Offset. On the right side of the figure, Query, Value, and Key obtain the final result for
the input feature x. For Figure 3, the mathematical equation for deformable attention is
Equation (1) [31]:

M /
DeAttn(zg,x) = Yooty Win | 1 k=0, Amgk Woux(pg + Apmgi) | M

In Formula (1), z; represents the feature vector of Query, x represents the input feature
map, M represents the total number of attention heads, m represents the m-th attention
head, and W, represents the weight of a linear transformation. Additionally, (), represents
the entire set of k values; A, represents the weight of the k-th Key elements, which

is a normalized weight vector; W,, prime represents the encoding of the Key element;
pq represents the position without bias changes; and Ap,, represents the specific offset
value. The engineering implementation of the formula utilizes two fully connected neural
networks to generate the offset value and attention weights. These two fully connected
networks share weights for all the input features, and the weights of the fully connected
network are obtained through learning.

Query Feature x [ '* j 1
- ‘ Linear
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Figure 3. Deformable attention module.

By combining Figure 3 with Formula (1), we concluded that deformable attention
is an attention mechanism based on sparse spatial sampling. In traditional attention
mechanisms, the number of Keys and Queries is equal to the number of all Value figures.
The difference between this model and those used in traditional attention is that the
deformable attention is based on different Value values. The numbers and values of Keys
and Queries required for this are generated via network learning, and the original dense
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network structure changes. This greatly reduces the computational complexity required for
the attention mechanisms and reduces the number of model parameters. The learned Key
and Query not only reduce the redundancy of output features, but also further enhance the
feature-extraction capabilities.

3.2.2. Deformable Convolution Module

Figure 4 is a schematic diagram of variable convolution, with an input feature map
on the left and an output feature map on the right. In the left feature map, the blue lines
represent small squares, thus signifying ordinary convolutional kernels. In the figure, the
ordinary convolutional kernel is a rectangle of 3 x 3. The green square is a deformed
convolutional kernel that has an irregular scattered shape. The upper part of the figure
represents the offset generated via convolution, and the ordinary convolutional kernel shifts
relative to its original position under the effect of the offset. The mathematical expression
of deformable convolution is Equation (2):

y(Py) = Y w(Py)-X(Po+ Py + APy) )
P,eR

where Py represents the center position of a point in the input feature map, P, represents the
relative position of the convolutional kernel relative to the center point Py, AP, represents
the calculated offset of each point in the convolutional kernel relative to their original
positions, and w represents the weight of the convolution kernel.

Conv e —_—>

/ offset

Offset field

Feature
Feature input output

Figure 4. Deformable convolutional module.

Figure 4 shows that, compared with ordinary convolution kernels, deformable convo-
lution kernels expand the receptive field and provide richer semantic information in the
output feature maps. Features that originally required multiple layers of convolution to
generate now require only one layer. This convolution method has a promoting effect on
the detection of small objects.

3.2.3. Depthwise Separable Convolution Module

The left half of Figure 5 represents the depth convolution portion, which, in contrast
to ordinary convolution kernels, produces feature maps of multiple channels via only
one convolution operation. However, this operation performs a convolution procedure
on each channel of the input layer independently and without effectively utilizing the
feature information of different channels at the same spatial position. The right half of
the figure utilizes the convolution kernel of 1 x 1 to obtain new features, fully integrating
the information between multiple channels. However, there is no information exchange
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between the internal points of the feature map with a single channel. The combination
of the two convolution methods in Figure 5 fully utilizes the unique advantages of each
convolution method in a complementary fashion. This convolution operation greatly
reduces the number of model parameters compared with ordinary convolution operations.

Depthwise Convolution Pointwise Convolution
F?amie o Feature
mnput .~ | output
/ //
/ /

s “ Kernel x1 Kernelx6

s

2 |

[

| | V4 1 f

of ,
] | 3 10
‘ ‘ 3 10
4
2] 4
4 10 10
H || ‘ 4
WLl | 7
4 6
LIV 3
3
C

Figure 5. Depthwise Separable Convolutional Module.

3.2.4. Mish Activation Function

Equation (3) is the mathematical expression for the Mish activation function [33], and
the function image drawn based on the mathematical expression is shown in Figure 6.

y(x) = x x tanh(In(1+e")) (3)

1.5

0.5

-0.5

X

Figure 6. Mish activation function curve.

The curve of the Mish activation function for x within the range [—5, 5] is shown in
Figure 6. The Mish function increases without boundaries along the positive direction of
the x-axis as x increases, avoiding the saturation caused by capping. Along the negative
direction of the x-axis, the function value gradually approaches zero. This allows for better
gradient flow with slight negative values, avoiding hard zero boundaries similar to those
in the ReLU activation function [43]. The smooth activation function of the Mish function
improves information penetration into the neural network, resulting in better accuracy and
model generalization as a whole.
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4. Dataset and Training Metrics

In this section, we will introduce and analyze the dataset used before explaining the
relevant metrics of the training model.

4.1. Dataset Used

According to the drone patrol mission, primary drone targets include people, vehicles,
and other types of transportation. The categories in the VisDrone2019 dataset are similar to
those employed in our mission, which is the main reason why we chose the VisDrone2019
dataset for training. The VisDrone2019 dataset contains 10,209 static images (6471 for
training, 548 for validation, and 3190 for testing) captured using drone platforms at dif-
ferent locations and heights. There are 10 predefined categories of objects in the dataset
(pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle). Their
statistical results are shown in Figure 7, and the bounding boxes of the different categories
of objects in each image are manually annotated [44]. We conducted statistical analysis on
the number of different types of objects used in the model training section of the dataset,
and their distribution is shown in Figure 8.

160,000 144,865
140,000
120,000
100,000
80,000

60,000

79,337

40,000 24950 27,059 29,642

20,000

12,871
3243 4,803 5926 104z I I I

e e S e o \S
K{\c‘]c\ ‘{\c‘lc\ o \o'\c‘]c’\ g @ &

R (&\0‘0‘365&{@\ cat
s o

a
Figure 7. Quantity statistics of each category in the dataset. The objects labeled in the VisDrone2019
training dataset are divided into 10 types of objects. The blue column in the figure represents the total
number of times the object corresponding to the label below appears in the VisDrone2019 training
dataset. The specific values are labeled above the blue column.

Figure 8. Cont.
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Predict
bounding box

Figure 8. Partial image display of the VisDrone2019 dataset (see Supplementary Materials). Among
them, subimages (a,d) show scenes captured using drones under strong lighting conditions, subim-
ages (b,e) show scenes captured using drones under normal lighting intensity, and subimages
(c,f) show scenes captured using drones under nighttime lighting conditions.

4.2. Related Metrics for Model Training
4.2.1. Intersection over Union

Intersection over Union (IoU) [43] is a standard for measuring the accuracy of corre-
sponding object detection in a specific dataset. IoU is a simple measurement standard that
can be used for tasks that derive a bounding box from the output.

In order to enable the use of IoU when detecting objects of any size or shape, as shown
in Figure 9a, two conditions must first be met. Firstly, we require the artificially marked
range of objects to be detected in images of the training set, known as “ground truth
bounding boxes”. Secondly, the range of results obtained using our algorithm is called
the “predicted bounding boxes”. The calculation method of IoU is shown in Figure 9b.
In summary, this standard is used to measure the correlation between reality and the
prediction. The higher the correlation is, the higher the value will be.

r——
i
1
1
1
]
a

Area of Overlap ]
= IoU=s—M————
b Area of Union
s l/
4 ground-truth
2]~ | bounding boxes
e,

(a) (b)

Figure 9. Schematic diagram of Intersection over Union. (a) The green markings are the correct
ground-truth results artificially marked, while the red markings are the predicted results of the
algorithm. (b) Graphical representation of IoU calculations.

4.2.2. Average Precision and Mean Average Precision

In Equation (4), P represents the precision, as shown in Figure 10, which refers to the
proportion of positive predicted values to the ground truth. The larger the value is, the
better the result will be. When the P value is equal to 1, an ideal state has been reached.
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P=7p +FP @)
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R=—
TP + FN ©®)
True False
Positive P FP
Negative FN TN

Figure 10. Graphical representation of the relevant metrics. True positives (TPs) represent the number
of instances that have been correctly divided into positive cases; that is, the number of instances
(samples) that are actually positive cases and are classified as positive cases by the classifier. False
positives (FPs) represent the number of instances that were mistakenly classified as positive; that is,
the number of instances that were actually negative but were classified as positive by the classifier.
False negatives (FNs) represent the number of instances that were mistakenly classified as negative;
that is, the number of instances that were actually positive but were classified as negative by the
classifier. True negatives (TNs) represent the number of instances that were correctly divided into
negative cases; that is, the number of instances that are actually negative cases and have been
classified as negative cases by the classifier.

In Equation (5), R represents the recall, as shown in Figure 10, which refers to the
proportion of all true samples that are predicted to be positive. The larger the value is, the
better the result will be. When the R value is equal to 1 there is an ideal state.

Average precision (AP) [45], which represents the area under the P-R curve, is mathe-
matically expressed as Equation (6):

1
AP = /0 P(R)d(R) (©)

Mean average precision (mAP) [45], which represents the average value of multiple
categories of AP, is mathematically expressed as Equation (7):

MAP = — /OlP(R)d(R) @)

classes

4.2.3. Calculation of Loss Function

In Figure 11, the upper part describes the image input model, which generates an
output of 10 x 10 x 48, with 10 x 10 representing the division of the input graph using a
grid of 10 rows and 10 columns. The number 4”8 in the figure is equal to 3 x (4 + 1 + 11),
where 3 represents the generation of 3 different borders for each grid; 4 represents the x, y,
h, and c of the border, and their specific meanings are explained in the lower right corner of
the image. Due to the 11 categories of the dataset used, 11 represents the probability value
of the grid, where the center point of the border is predicted to belong to each category.
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Figure 11. Schematic diagram of the network output.

According to the output of the network as shown in Figure 11, we used the EloU [46]
loss to calculate the border loss, Lgj,;, during the training process. We also calculated the
label-smoothing loss, L(p;, p;), and the confidence loss. We summed them to obtain the
total loss function, Ly:. The mathematical expression for the EIoU loss is Equation (8):

t t t
P (bljlbg ) + Pz(wi']:/ w;g ) + o (hZ]/hg )
(ci) + (e (c)? ()2
In Formula (8), as shown in Figure 12, i represents the i-th grid on the graph, as shown

in the image with a grid drawn at the bottom left in Figure 11, and j represents the j-th
bounding box predicted for each grid. In this article, three bounding boxes are predicted

ij
Lejou=1- IOUZ']' +

®)

for each grid i. The parameters b;; and bft represent the center points of the predicted
and actual bounding boxes for each grid, respectively, w;; and wlg ' represent the width of
the predicted and actual bounding boxes for each grid, respectively, /;; and hlg ! represent
the height of the predicted and actual bounding boxes for each grid, respectively, and p?

represents the Euclidean distance between the two points. The parameter ¢ represents
the diagonal length of the minimum bounding rectangle that contains both the predicted

bounding box and the actual bounding box. Among them, ¢, and C;l] are the width and
height of the minimum bounding rectangle covering the two boxes. The advantage of EIoU
loss is that, in the model, the aspect-ratio loss term is split into the difference between the
width and height of the predicted bounding box and the width and height of the minimum
bounding rectangle. This accelerates the convergence and improves the regression accuracy
compared with ordinary bounding-box losses.
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Figure 12. Schematic representation of notations in the EIoU loss equation.

The specific mathematical expressions for the label-smoothing loss [47] are
Equations (9) and (10):
. 1—¢ ifk=i
= { / ©

¢/(K-1) otherwise.

K
L(pij, pi) = — ) Pilogpijk (10)
k=0

In Equation (9), as shown in Figure 13, p;; represents the label value of the k-th category
corresponding to the i-th grid, which is the probability value of the k-th category, and ¢ is a
small constant with a value range between 0 and 1. In this article, we take € as 0.2 and K
as the total number of categories. The K value is 11. In Equation (10), Pijk represents the
predicted value of the k-th category corresponding to the j-th predicted bounding box of
the i-th grid.

One-hot Label smoothing
Label 1 Label 2 Label 3 Label 1 Label 2 Label 3
Class 1 1 0 0 0.80 0.02 0.02
Class 2 0 1 0 0.02 0.80 0.02
Class 3 0 0 0 0.02 0.02 0.02
Class 4 0 0 0 0.02 0.02 0.02
Class 5 0 0 0 0.02 0.02 0.02
Class 6 0 0 0 0.02 0.02 0.02
Class 7 0 0 1 0.02 0.02 0.80
Class 8 0 0 0 0.02 0.02 0.02
Class 9 0 0 0 0.02 0.02 0.02
Class10 0 0 0 0.02 0.02 0.02
Class11 0 0 0 0.02 0.02 0.02

Figure 13. Schematic diagram of one-hot and label smoothing. The numerical value in the figure
represents the specific probability value of the label belonging to a certain category. The left side of
the figure shows the label format in one-hot encoding format, while the right side of the figure shows
the label format in label-smoothing encoding.
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Compared with using one-hot encoding for multi-classification tasks, label-smoothing
measures avoid the problem of manual labelling errors for specific objects, which can cause
significant harm to the model. This is because, during the training process, a non- class
sample is forcibly learned and its probability is very high, affecting the estimation of a
posterior probability. Additionally, there is sometimes an incomplete correlation between
classes. If the probability of an encouraging output varies too much, this can lead to a
certain degree of overfitting. This means that, to some extent, the loss of label smoothing
avoids overfitting and alleviates the impact of incorrect labels.

The mathematical expression for the total loss, Ly, of the model is Equation (11):

S® B pi i S i $? B .
Lot =M Y ¥ 15 LL A2 X 1 Lpij, i) + As( L X (e — &)
i=0j=0 i=0 i=0j=0
e (1)
HAg L L 1 (ei = &)%)
i=0;=0

In Equation (11), A1, Ay, and A3 are the proportional coefficients of the bounding-box

loss, confidence loss, and category loss, respectively. In this paper, their values are 0.2,

0.3, and 0.15 [23], respectively. The parameter A, represents the coefficient of the negative

sample confidence loss value, which is taken as 0.05 in this article; S? represents the total

number of grids; B represents the total number of predicted bounding boxes corresponding

to each grid (it has a value of 3 in this article); ¢; is the confidence value corresponding

to the i-th grid; and c; is the confidence value corresponding to the j-th prediction border
selected in the i-th grid.

5. Experimentation and Results

In this section, we introduce the experimental setup, data processing, and training
process of the improved model. We analyze the data during the training process, verify the
impact of each module on model improvement through ablation experiments, and then
compare and analyze the experiment in comparison with other models. Finally, we present
and analyze some of the detection results of the model.

5.1. Experimental Setup

We present the specific experimental settings for the model training in Tables 1 and 2.

In Table 1, the environmental configuration during the experimental process is de-
scribed. We experimentally trained the model on NVIDIA GeForce RTX 6000 Ada using
the GPU driver of Windows 10. We used an environment of Python 3.8.16 and a torch
1.13.1 + cull6. We used a CPU model of Intel (R) Xeon (R) w9-3495X with a RAM capacity
of 64 GB.

Table 1. Experimental environment.

Experimental Parameters Value
Operating system Windows 10
Deep-learning framework Pytorch (torch 1.13.1 + cul16)
Programming language Python 3.8.16
CPU Intel(R) Xeon(R) w9-3495X
GPU NVIDIA GeForce RTX 6000 Ada
RAM 64 G

In Table 2, the specific values of the hyperparameters during the training process
are shown. All the experiments described in this article were set to train for 230 periods,
with a batch size of 16. The image size of the input model during model training was
640 x 640, with a learning rate of 0.01, SGD momentum [48] of 0.937, and optimizer
weight decay of 0.0005. All other training parameters were set to the default values of the
YOLOV7 network.
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Table 2. Hyperparametric configuration.

Hyperparameters Value
Learning Rate 0.01
Image Size 640 x 640
Momentum 0.937
Optimizer SGD
Batch Size 16
Epoch 230
Weight Decay 0.0005

5.2. Image-Data Preprocessing

For the dataset, we used the Mosaic method [49] for image-data augmentation, as
shown in Figure 14. The principal concept behind Mosaic’s is to randomly crop four
images and then concatenate them onto one image as training data. There are four
benefits to doing this. Firstly, it is possible to increase data diversity by randomly se-
lecting four images for combination, resulting in a larger number of images than the
original image. Secondly, enhancing the robustness of the model by mixing four im-
ages with different semantic information can enable the model to detect targets beyond
the conventional context. Thirdly, strengthening the effect of the batch normalization
layer. When the batch normalization (BN) [50] operation is set in the model, the to-
tal number of batch samples increases as much as possible during training. This is
because the BN principle is to calculate the mean and variance of each feature layer.
If the total number of batch samples is larger, the mean and variance calculated by
BN will be closer to the mean and variance of the entire dataset, and the effect will
be better. Finally, the Mosaic data-augmentation algorithm is beneficial for improving
the performance of small-target detection. Mosaic processes image data by concate-
nating four original images, which increases the probability of each image containing
small objects.

5.3. Training Procedures

The overall process of model training is shown in Figure 15, whereby the pretraining
weights are loaded using transfer learning, which accelerates the convergence of the model
and shortens the training time. We adopted a fine-tuning strategy to train the model. This
involved freezing and activating the relevant layers of the network throughout the entire
training process to accelerate the convergence speed of training.

During the training process, we made multiple attempts to set hyperparameters, and
the hyperparameters in Table 2 were the good results obtained in our experiment. We
have also attempted training from scratch and based on pretraining weights. The results of
multiple attempts have shown that the training effect is best in the pretraining mode. We
have used pretraining methods in all the experiments. At the same time, in response to
device limitations, we attempted different batch sizes, and the batch sizes in Table 2 were
also the best results from the experiment.
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T brightness, occlude . |
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Figure 14. Mosaic operation and result display. The subgraph (a) represents the process of Mosaic
image-data augmentation, while (b,c) represent four randomly selected images from VisDrone2019
that have been processed using Mosaic. The green rectangular boxes in the two images represent
the labels of bounding boxes in the original image, which are displayed in the synthesized image
through corresponding transformation processing.
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Figure 15. Training flowchart.

5.4. Result and Analysis

We trained the improved model, and Figures 16 and 17 show the relevant data statisti-
cal results.

In Figure 16, the three subgraphs—(a), (b), and (c)—represent the border loss, confi-
dence loss, and category loss, respectively, of the improved model on the training dataset
during the training process. It can be observed from the graph that, when the epoch value
is greater than 200, the size of the three types of loss values tends to be stable. The three sub-
graphs, (e), (f) and (d), represent, respectively, the bounding-box loss, confidence loss, and
category loss of the model on the validation dataset during the training process, which is
different from the validation set. When the epoch is greater than 100, the three types of loss
values start to stabilize. Our explanation for the difference in convergence speed between
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the training set and the validation set is that the validation set has a smaller amount of data
and covers fewer types of scenarios. In the less-trained epoch, the model already learns the
internal relationships of the data. For training datasets, due to the large amount of data
and more diverse and complex scenarios, learning internal data relationships takes longer,
requiring more epochs to stabilize various loss values. The precision curves and recall
curves of the models in the two subgraphs (g) and (h) of the training dataset are shown
in the figure. Both curves generally increase with the increase in the training epoch, but
there are also certain fluctuations during the increasing process. Analyzing the reasons, the
model approximates the physical model through backpropagation and gradient updates,
and each update calculation utilizes small batches of data instead of the entire large dataset.
Therefore, the precision and recall of the model may fluctuate at each epoch. However, the
model as a whole is constantly converging. Indeed, when an epoch is greater than 150,
both curves tend to stabilize. The two curves also reflect the efficiency and effectiveness of
using small-batch strategies to train the model.
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Figure 16. Model training results. The horizontal axis in the figure represents the value of the epoch,
which ranges from 0 to 230. The vertical coordinates in the figure represent the specific values of the
corresponding types of data. (a) The bounding box loss curve of the training set; (b) The confidence
loss curve of the training set.; (c) The classification loss curve of the training set; (d) The bounding
box loss curve of the validation set; (e) The confidence loss curve of the validation set.; (f) The
classification loss curve of the validation set; (g) The precision curve; (h) The recall curve.
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Figure 17. Precision-recall curves of various types of objects in the modified model. (a) The precision—
recall curve of each type of object being detected when the IoU threshold is 0.5. (b) When the mAP
threshold is between 0.5 to 0.95, with an interval of 0.05, the precision-recall curve of each type of
object being detected yields 10 mAP values, as determined by taking the average of 10 values.

Figure 17 shows the precision-recall curves for each category, with curves of different
colors representing different categories. The bold red curve represents the average value of
AP for all the categories. In the legend on the right side of each subgraph, the number after
the corresponding category label represents the AP value for each category. From Figure 17,
it can be seen that the precision-recall curves vary for different types of objects, with cars
having the highest AP and awning-tricycles having the lowest. Based on the characteristics
of the dataset, it can be seen that the total number of cars is the highest, while the total
number of awning-tricycles is the lowest. From Figure 17, we can conclude that the total
quantity of training data to some extent determines the quality of the network training.
The recognition effect of the network on various objects can be improved by increasing the
accuracy of the network model.

5.5. Ablation Experiment

In response to the modules proposed by our model framework, we utilized ablation
experiments to explore the impact of deformable attention (DA), deformable convolution
(DC), and depthwise separable convolution (DSC) modules on the accuracy of the model
and the size