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Abstract: This paper presents a system applied to unmanned aerial vehicles based on Robot Operating
Systems (ROSs). The study addresses the challenges of efficient object detection and real-time target
tracking for unmanned aerial vehicles. The system utilizes a pruned YOLOv4 architecture for fast
object detection and the SiamMask model for continuous target tracking. A Proportional Integral
Derivative (PID) module adjusts the flight attitude, enabling stable target tracking automatically in
indoor and outdoor environments. The contributions of this work include exploring the feasibility of
pruning existing models systematically to construct a real-time detection and tracking system for
drone control with very limited computational resources. Experiments validate the system’s feasibility,
demonstrating efficient object detection, accurate target tracking, and effective attitude control. This
ROS-based system contributes to advancing UAV technology in real-world environments.

Keywords: UAV; deep learning; ROS; convolutional neural network; pruned network; target tracking
network; PID control

1. Introduction

In recent years, the robotics industry has experienced significant growth. Among
different applications, unmanned aerial vehicles (UAVs), also known as drones, have
emerged as a popular application area. A UAV is an autonomous or remotely controlled
flying vehicle that does not require a human pilot onboard and has the capability to
carry payloads. At first, UAVs found their primary use within the military, where they
were employed for high-risk tasks like reconnaissance, attack operations, and supply
missions, with the goal of minimizing the risk to human personnel. Nevertheless, progress
in aerospace materials, inertial sensors, navigation technology, image processing, and
data transmission has broadened the range of UAV applications, now extending into
civilian fields.

UAVs find wide-ranging applications in civilian life. For example, remote-controlled
aircraft are widely used for entertainment and recreational activities, and the emergence of
first-person view (FPV) racing drones [1] has created a popular sport. Furthermore, drones
are utilized for aerial photography and videography, offering unique perspectives and
camera angles from the sky. Additionally, some companies have begun utilizing drones
for delivery services [2], enabling faster and more efficient logistics. However, with the
widespread adoption of drones, regulatory and safety concerns have arisen. To ensure
safe operations, the Federal Aviation Administration (FAA) in the United States has estab-
lished the “Operation and Certification of Small Unmanned Aircraft Systems” [3], which
categorizes quadcopter drones and sets standards and requirements for their operation
and certification. During the development of UAVs, compatibility issues between different
systems often arise. To address these challenges, the Robot Operating System (ROS), an
open-source tool for robot operations, has emerged. The ROS provides a framework and
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tools for handling inter-system connections, enabling developers to establish, control, and
monitor UAV systems more easily. It also offers numerous software modules and libraries
for various functionalities, such as sensor data processing, motion control, and mission
planning. The goal of this paper is to apply ROS technology to UAVs, allowing for a
modular system design and simplifying the overall development process, making UAV
development more accessible and efficient.

Many newly introduced drones on the market are equipped with tracking and fol-
lowing capabilities. Typically, this functionality is achieved through electronic devices
worn by the target, utilizing GPS coordinates to track and follow the target. However,
in environments where GPS signals are unavailable, such as tunnels or basements, GPS
positioning becomes ineffective or even impossible. Therefore, image tracking serves as
an auxiliary method to realize target tracking. One significant aspect of this research is to
explore the feasibility of controlling UAV systems via detection and tracking techniques
based on images. By utilizing detection and tracking techniques, drones can capture target
images through cameras and perform real-time analysis to achieve precise detection and
tracking of the position and orientation of the target. With the rapid development of deep
learning, many deep learning-based models have been proposed to address the problem of
object detection based on images. R-CNN [4] applies high-capacity convolutional neural
networks to bottom-up region proposals in order to localize and segment objects. SPP-
Net [5] utilizes spatial pyramid pooling to eliminate the requirement of fixed size input
images. Faster R-CNN [6] improves R-CNN and SPP-Net to reduce the training and testing
speed while also increasing the detection accuracy. The Single Shot MultiBox Detector
(SSD) [7] utilizes multi-scale convolutional bounding box outputs attached to multiple
feature maps at the top of the network to detect objects in images using a single deep
neural network. Unlike prior works that treat detection as a classification problem, the
work named You Only Look Once (YOLO) [8] considers object detection as a regression
problem to spatially separated bounding boxes and the associated class probabilities. A
single neural network that can be optimized end-to-end is used to predict bounding boxes
and class probabilities directly from full images in one evaluation. Therefore, YOLO has
achieved great success. YOLO9000 and YOLOv2 [9] improve the original YOLO by in-
troducing the concepts of batch normalization [10], high resolution classifier, convolution
with anchor boxes [6], dimension clusters, direct location prediction, fine-grained features,
and multi-scale training. YOLOv3 [11] made some little changes to update YOLO and to
make it better. YOLOv4 [12] performs extensive experiments on the techniques of weighted
residual connections, cross-stage partial connections, cross mini-batch normalization, self-
adversarial training, mish-activation, mosaic data augmentation, drop-block regularization,
and CIoU loss, and it combines a subset of these techniques to achieve state-of-the-art
results. Person detection is a specialized form of object detection designed to identify the
specific class “person” within images or video frames. Therefore, we utilize YOLOv4 to
perform the detection task for the drone. To further reduce the computation complexity
of YOLOv4 so that it can be applied in the environment with very limited computational
resources, we perform pruning on the original YOLOv4 model.

Pruning methods have been proposed to reduce the complexity of CNN models [13–17].
Channel pruning intends to exploit the redundancy of feature maps between channels and
remove channels with the minimal performance loss [13]. Li et al. [14] proposed pruning
deep learning models using both channel-level and layer-level compression techniques. Liu
et al. [16] designed a pruning method that can be directly applied to existing modern CNN
architectures by enforcing channel-level sparsity in the network to reduce the model size,
decrease the run-time memory footprint and lower the number of computing operations
while maintaining the accuracy of the model. In [17], the authors demonstrate how to prune
YOLOv3 and YOLOv4 models and then deployed them on OpenVINO with an increased
frame rate and little accuracy loss. Since we utilize YOLOv4 for detection in the framework,
we refer to the pruning methods described in [16,17].
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Tracking algorithms based on Siamese Networks have become mainstream for visual
tracking recently [18]. Bertinetto et al. [19] utilized a fully convolutional Siamese network
that can be trained end-to-end for tracking applications. Zhu et al. [20] designed a distractor-
aware module to perform incremental learning, which is able to transfer the general
embedding to the current video domain effectively. Li et al. [21] proposed a tracker based
on a Siamese region proposal network that is trained offline with large-scale image pairs.
A ResNet-driven Siamese tracker is trained in [22]. SiamMask [23] improves the offline
training procedure of popular fully convolutional Siamese methods for visual tracking by
augmenting their loss with a binary segmentation task.

In this work, we utilize the ROS [24] (Robot Operating System) to implement image
detection and tracking for controlling UAVs. Due to hardware constraints on the laptop,
lightweight models are required. Therefore, for the object detector, we train a convolutional
neural network based on the YOLOv4 architecture and prune it accordingly. In this work,
the target object for detection is a person. We employ the pruned version of the YOLOv4
object detector and the SiamMask [23] monocular object tracker to detect and track the
target person captured by the camera of the drone. Our system consists of four main
components: (1) object detection, (2) target tracking, (3) Proportional Integral Derivative
(PID) control, and (4) the UAV driver package. We utilize the Tello drone for implementing
the object detection and tracking system. During the tracking process, the UAV control
parameters include the roll, pitch, yaw, and altitude, all of which are controlled using PID
controllers. These PID controllers take the position and distance of the target object as
inputs. The position and distance are calculated using the monocular front-facing camera
of the UAV.

2. Approach

The details of the methods used in the proposed framework, including object detection,
model pruning, and visual tracking, are elaborated in this section. Figure 1 illustrates the
system framework. A laptop computer (PC) is connected to the Tello drone via Wi-Fi for
communication. The drone transmits images at a constant frequency of 30 Hz, which is
preconfigured in the drone’s driver software. These images are processed on the PC using
a pruned version of the YOLOv4 algorithm for object detection. Users have the ability
to select bounding boxes based on their requirements. The system utilizes the Siamese
network, called SiamMask, for object tracking. Based on the tracked object’s position and
distance, a tracking algorithm based on a PID controller is employed to calculate estimates
of the roll, pitch, yaw, and altitude. These estimated values for the roll, pitch, yaw, and
altitude are then sent back to the drone to initiate the tracking process and to utilize the
texture information of the background to enhance the final results.

The overall flowchart of the system architecture is shown in Figure 1. The drone sends
the image feed to the PC, where the received images are processed using Pruned-YOLOv4
for person detection. If a person is detected in the image, their bounding box is displayed
on the screen. The green boxes in Figure 1 represent the human detection results. If the user
selects a specific object of interest by clicking on its bounding box, the system extracts the
person within that bounding box as a template frame for the SiamMask network, enabling
subsequent tracking. The tracking algorithm calculates the error between the target and the
center of the frame. This error serves as the input for the PID controller, which generates
flight commands for the yaw, roll, and altitude. As for the fourth flight command, pitch, it
is calculated based on the relative distance of the tracked object using its position data. If
no target is detected in the image, the drone maintains its position until a target appears.
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2.1. Hardware Specifications

The DJI Tello [25] drone is a small and easy-to-control consumer-grade drone. It has
dimensions of approximately 98 × 92 cm and weighs around 80 g. The design of this drone
allows for its usage in both indoor and outdoor environments. In terms of its features, it is
equipped with a front-facing camera, a 3-axis gyroscope, a 3-axis accelerometer, a 3-axis
magnetometer, a pressure sensor, and an ultrasonic altitude sensor. The resolution of the
front-facing camera is 1280 × 720, capturing video at 30 frames per second. The Tello drone
can communicate with other devices, such as smartphones or laptops, through a Wi-Fi
network. In this particular study, a PC was used for communication with the drone.

2.2. Detection Model Pruning and Object Detection

During the object detection process, we first need to train the model. Our training
process is illustrated in Figure 2. The yellow part in Figure 2 represents the modules for the
Darknet framework. The light blue part in Figure 2 represents the modules for the pruning
stage. Firstly, we employ the Darknet framework to train the YOLOv4 base model. Then,
during the pruning stage, we perform sparse training, channel pruning, layer pruning, and
fine-tuning on the base model using the Darknet framework. Once the pruning stage is
complete, the model undergoes fine-tuning training on the Darknet framework. Finally, we
deploy the model on a laptop for detection.

A. Darknet Training

We use the Darknet framework to train the YOLOv4 model [26] and adjust several
hyperparameters during the initial training phase to improve the accuracy and performance
of the model. One of the first hyperparameters to adjust is the input size of the network.
Increasing the input size helps in detecting small objects, although it may also slow down
the model’s inference speed and consume more GPU memory. It is important to note that
the YOLOv4 network downsamples the input size by a factor of 32 in both the vertical and
horizontal directions, so the input width and height must be multiples of 32. To achieve
this, we decided to use 416 × 416 as the input size.
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The second and third hyperparameters to adjust are the batch size and subdivisions.
These settings are adjusted based on the GPU’s performance. The batch size hyperparam-
eter represents the number of images to load during training, with a default value of 64.
However, if the GPU’s memory size is insufficient, it will not be able to load 64 images
at once. To address this issue, each batch is further subdivided into multiple sub-batches.
Each sub-batch is fed into the GPU one by one until the batch is completed. In this study,
we set the batch size and subdivisions to 64 and 8, respectively. The fourth hyperparame-
ter to adjust is the number of iterations (note that in the Darknet framework, training is
measured in iterations, not epochs). According to the Darknet framework’s guidelines,
each object class should have at least 2000 iterations. Since we have only one class, the
number of iterations should exceed 2000. We set the number of iterations to 2200 to achieve
higher accuracy.

B. Pruning Stage

Due to the hardware limitations of the laptop, a lightweight model needs to be used.
Therefore, after training the model using the Darknet framework, it needs to be pruned to
achieve the goal of lightweighting. We use the metrics of accuracy (mAP@0.5) and inference
speed (BFLOPs) to evaluate the pruned model. However, it is important to note that there
is a trade-off between accuracy and inference speed. Assuming the hardware configuration
is fixed, when the model is pruned to a very small size, its inference speed may increase
but its accuracy is typically reduced.

Before pruning, the weights from the Darknet framework undergo a basic training
process. Once the basic training is completed, the obtained model is pruned using the
pruning strategy from [27]. This strategy involves first conducting sparse training on the
model, where the channel sparsity in deep models helps with channel pruning. To facilitate
channel pruning, each channel in the convolutional layers is associated with a scaling
factor. During training, L1 regularization is applied to these scaling factors to automatically
identify unimportant channels. Channels with smaller scaling factor values (orange color)
are pruned (left side). After pruning, we obtain a compact model (right side), which is then
fine-tuned to achieve comparable (or even higher) accuracy with the fully trained network.
The pruning process is illustrated in Figure 3.
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C. Sparsity Training

We add a Batch Normalization (BN) layer after each convolutional layer in YOLOv4
to accelerate convergence and improve generalization. The BN layer utilizes batch statistics
to normalize the convolutional features as:

y = γ× x− x√
σ2 + ε

+ β (1)

Here, x and σ2 represent the mean and variance of the input features in the mini-batch,
respectively. γ and β represent the trainable scale factor and bias in the BN layer. In this
study, we directly use the scale factor in the BN layer as an indicator of channel importance.
To effectively distinguish between important and unimportant channels, we apply L1
regularization to γ, enabling channel-level sparse training. The loss function for sparse
training is shown as:

L = lossyolo + α∑
γεΓ

f (γ) (2)
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The function f (γ) represents the L1 norm applied to γ, which is widely used in the
sparsification step. α represents the penalty factor that balances the two loss terms.

The effectiveness of pruning depends on the sparsity of the model. Prior to sparse
training, the distribution of γ in the BN layer of YOLOv4 is expected to be uniform. After
sparse training, most of the γ values in the BN layer are compressed toward zero. This
brings two benefits:

(1) Achieving network pruning and compression to improve model efficiency: The
weights in the BN layer are typically used for standardizing and scaling each input
sample in the network. When the weights are close to zero, the corresponding stan-
dardization and scaling operations are reduced, thereby reducing the computational
complexity.

(2) By sparsifying the weights of the BN layer close to zero, it becomes possible to identify
parameters that have minimal impact on network performance and prune them.

D. Channel cutting

Once sparse training is completed, channel cutting can be performed. Here is an
explanation of how to proceed with channel cutting. First, the total number of channels in
the backbone is computed. Once the number of channels is determined, the corresponding
γ values are stored in a variable and sorted in ascending order. The next step is to decide
which channels to keep and which ones to prune. This can be achieved by setting a pruning
rate, which represents the proportion of channels to be pruned. The pruning rate is typically
a value between 0 and 1, where a higher value indicates a greater degree of pruning. By
following these steps, the channel-cutting process can be carried out to selectively retain or
remove channels based on the specified pruning rate.

E. Layer cutting

Within the YOLOv4 backbone, there are multiple CSPX modules, where each CSPX
module consists of three CBL layers and X ResUnit modules. The resulting features of
these modules are concatenated together, as depicted in Figure 4a. For layer cutting, we
mainly prune the ResUnit within YOLOv4. The architecture of the ResUnit is illustrated
in Figure 4b, which consists of two CBL layers and a shortcut connection. The CBL layer
comprises a Conv layer, a BN layer, and a Leaky ReLU activation function, as shown in
Figure 4c. In layer cutting, the mean values of γ for each layer are first sorted, and by
evaluating the previous CBL layer of each shortcut, the minimum value can be selected for
layer pruning. To ensure the structural integrity of YOLOv4, when pruning one ResUnit,
both the shortcut layer and the preceding CBL layer are simultaneously pruned, resulting
in the pruning of three layers in total.

F. Fine-tuning

Different pruning strategies and threshold settings yield different effects on the pruned
model. Sometimes, the accuracy of the pruned model may even increase, although in
most cases, pruning can have a negative impact on model accuracy. In such cases, it is
necessary to perform fine-tuning on the pruned model to compensate for the accuracy loss
caused by pruning. Fine-tuning is crucial for restoring the accuracy of the pruned model.
In our experiments, we directly retrained the Pruned-YOLOv4 using the same training
hyperparameters as the normal training process for YOLOv4.
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2.3. Object Tracking and Drone Control

The laptop performs the real-time detection of drones, allowing users to track the
detected targets until the tracking is completed. The objects detected using Pruned-YOLOv4
are represented by bounding boxes, each containing four coordinates (x, y, w, h). Here,
x and y represent the coordinates of the top left corner of the bounding box, while w and h
represent the width and height of the bounding box, respectively. Once the coordinates
are obtained, we continuously detect the user’s mouse position. If the mouse click falls
within a bounding box, the four coordinates of the bounding box are passed to the object
tracking module, which utilizes SiamMask [23]. SiamMask is a target-tracking algorithm
based on Siamese Neural Networks [28]. Siamese Neural Networks were initially proposed
by Bromley and LeCun to address signature verification problems [29] and have since been
widely applied in various fields, such as image matching and target tracking.

In the task of target tracking, Siamese Neural Networks employ two identical subnet-
works with shared parameters and weights. The tracking template is fed into the network,
and the output weights are obtained. These weights are then matched with the output
weights of the search region to calculate the similarity score. The target’s location to be
tracked is determined by computing the response score map. Building upon the traditional
Siamese network, SiamMask incorporates target segmentation computation, which allows
for the extraction of the target’s contour. This helps mitigate the effects of target feature
variations caused by rotation and deformation.

While performing tracking, SiamMask simultaneously returns an image with the
bounding box of the tracked object. This bounding box contains information about the
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object’s position in the image. The bounding box of the tracked object consists of four points:
(xmin, ymin), (xmax, ymin), (xmin, ymax), and (xmax, ymax).

We can use these four points to calculate the center of the object’s position, which is
computed as:

(xcenter, ycenter) =
xmin + xmax

2
,

ymin + ymax

2
(3)

In order to track an object accurately, it is necessary to know the exact center position
of the drone’s screen. This is because the detected object’s center should always align
with the center of the drone’s screen for proper tracking. The calculation of the disparity
between the center of the drone’s screen and the object’s center is performed as:

ex = imgxcenter − xcenter (4)

ey = imgycenter − ycenter (5)

ex and ey should always be equal to or close to zero to achieve effective tracking.
The drone has a total of four control parameters: roll, yaw, altitude, and pitch. Roll

controls the drone’s lateral movement, yaw controls the drone’s clockwise or counter-
clockwise rotation, altitude controls the drone’s vertical movement, and pitch controls the
drone’s forward or backward movement. Figure 5 illustrates the basic flight maneuvers of
the drone.
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Figure 5. Fundamental maneuvers of a drone.

Next, we will explain how PID controls drone flight. It is evident that by using the
center point of the tracked object and the center point of the screen, we can obtain the
error in the X-axis. This error is related to the drone’s roll for lateral movement and yaw
for clockwise or counterclockwise rotation. If the drone detects that the object is moving
left or right, we can choose to adjust the drone’s heading to face the object or perform
lateral movements to keep up with it. Additionally, there is the pitch axis, which involves
forward and backward movements. By subtracting the distance between the drone and the
real object from the desired ideal distance, we can calculate the distance error and control
the drone’s forward or backward movements accordingly. Finally, regarding altitude, by
subtracting the Y-coordinate of the tracked object from the Y-coordinate of the screen center,



Electronics 2023, 12, 4928 10 of 19

we can obtain the error in the Y-axis. This allows us to calculate the necessary altitude
for the drone’s vertical ascent or descent. The specific control methods are illustrated in
Figure 6.
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Figure 6. The control scheme for the drone.

When it comes to the error in the X-axis, the choice between roll and yaw is designed
to be dependent on the derivative term (D) of the PID controller. The D term represents
the rate of change of the error. If the error changes rapidly, the drone needs to increase its
power to keep up with the object’s movements. However, if the object continues to move
along the X-axis, as shown in Figure 7a, a stronger control is required to track the target
quickly. The red rectangle represents the bounding box of the subject. Therefore, we choose
the roll option, which means performing lateral movements to the right in order to follow
the object, represented by the green arrow illustrated in Figure 7a. On the other hand, if the
tracked object does not exhibit significant movement, the yaw option is selected, which
only requires adjusting the drone’s heading to follow the target, represented by the green
arrow illustrated in Figure 7b.
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3. Experimental Results

In this section, we demonstrate and analyze the performance of the detection model
pruning, object detection, tracking and drone control.

3.1. Detection Model Pruning and Object Detection

We trained the baseline YOLOv4 model using the coco2014 [30] dataset. By applying
pruning techniques to the baseline YOLOv4, we obtained a lightweight model known as
Pruned-YOLOv4. In our comparison, we considered not only the baseline YOLOv4 but
also Tiny-YOLOv4. The Tiny version of YOLOv4 is specifically designed as a lightweight
variant for devices with lower computational resources.

To evaluate the performance of the object detector, we applied the following four met-
rics:

(1) Precision: Precision is a widely used metric in the object detection community. It
measures the proportion of true positives among all the detections made by the system.
A higher precision indicates that the system can accurately identify target objects,
reducing the likelihood of false alarms.

(2) Recall: Recall is another commonly used metric in object detection. It measures
the proportion of true positives among all the actual target objects. A higher recall
indicates that the system can successfully detect a larger portion of the target objects,
reducing the risk of missed detections.

(3) BFLOPs: BFLOPs is a metric used to measure the computational efficiency of a
computer system or machine-learning model. BFLOPs represents the number of
billion floating-point operations required for a specific convolution operation. By
summing up the BFLOPs consumed by multiple convolution and other operations,
the complexity of an algorithmic model can be quantified. It is a commonly used
metric for evaluating the computational efficiency and speed of systems or models.

(4) mAP@0.5 (mean Average Precision at IoU 0.5): mAP@0.5 is a commonly used evalua-
tion metric in object detection. It measures the average precision at an Intersection
over Union (IoU) threshold of 0.5 across different classes.

A. Basic Training in Darknet

The performance results of YOLOv4 and Tiny-YOLOv4 after basic training using
Darknet are shown in Tables 1 and 2. From Table 1, it is evident that there is a significant
difference in the model accuracy between the two models. YOLOv4 achieves an mAP@0.5
of 0.749, while Tiny-YOLOv4 achieves 0.55. However, Table 2 reveals that while YOLOv4
achieves higher accuracy, it also requires a larger number of parameters for the model to
learn. The trained weight size of YOLOv4 is 10.6 times larger than that of YOLOv4-Tiny,
and the BFLOPs is 7.64 times larger. The large size of the model also results in a longer
inference time, highlighting the importance of pruning YOLOv4 in this study.

Table 1. Evaluation of Darknet basic training.

Model Precision Recall mAP@0.5

YOLOv4 0.818 0.605 0.749
Tiny-YOLOv4 0.65 0.41 0.55

Table 2. Parameter size of Darknet basic training.

Model Params Size of .Weights BFLOPs

YOLOv4 63.9 M 250.2 MB 59.563
Tiny-YOLOv4 5.87 M 23.6 MB 7.79
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B. Sparsity Training Results

During the sparse training, we adjusted the balance between the two losses, denoted
as α. As the training progressed, the number of smaller scaling factors increased, while the
number of larger scaling factors decreased. Sparse training effectively reduces the scaling
factors, leading to channel sparsity in the convolutional layers of YOLOv4. This enables
the identification and pruning of parameters with less impact on network performance.
However, when using a larger penalty factor (i.e., α = 0.01) for sparse training, the scaling
factors decay too aggressively, resulting in underfitting and failure of the model. This can
be observed from the significant drop in the Recall and mAP@0.5 in Table 3, indicating
that this model is not suitable for pruning. On the other hand, using a very small penalty
factor (i.e., α = 0.0001) leads to insufficient sparsity in the scaling factors, resulting in poor
pruning performance. Although this model demonstrates excellent performance in Table 3,
it becomes challenging to identify parameters with less impact on network performance
during subsequent pruning operations. In our experiments, we trained the YOLOv4 model
with a penalty factor α = 0.001 for channel pruning. The scaling factors were compressed
to near zero, and the performance remained relatively stable, as shown in Table 3.

Table 3. Evaluation of the penalty factor.

Model Precision Recall mAP@0.5

α = 0.0001 0.822 0.664 0.75
α = 0.001 0.851 0.626 0.741
α = 0.01 0.981 0.059 0.26

C. Channel Cutting Results

During the channel-pruning process, we can adjust the pruning rate to perform
pruning, which ranges between 0 and 1. A higher pruning rate indicates a greater level of
pruning. From Table 4, it can be observed that when the pruning rate is set to 0.74, there is a
significant drop in the model’s mAP@0.5 and Recall. However, when the pruning rate is set
to 0.73, the decrease in the mAP@0.5 and Recall is not as significant as with a pruning rate
of 0.74. Therefore, we should explore a finer range below the pruning rate of 0.73 to find
the optimal value. From Table 5, it can be inferred that a higher pruning rate theoretically
leads to a reduction in the model parameters and an increase in the inference speed. If the
mAP@0.5 values are similar for different pruning rates, it is preferable to select the pruning
model with a higher pruning rate to achieve faster speed. Hence, we ultimately chose a
pruning rate of 0.735.

Table 4. Precision, Recall, and mAP under different pruning rates.

Pruning Rate Precision Recall mAP@0.5

0.5 0.86 0.56 0.7423
0.6 0.865 0.559 0.741
0.7 0.865 0.559 0.741

0.71 0.87 0.55 0.742
0.72 0.883 0.515 0.728
0.73 0.935 0.266 0.649
0.735 0.94 0.21 0.51
0.74 0.92 0.00013 0.38
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Table 5. Parameter size and BFLOPs under different pruning rates.

Pruning Rate Params Size of .Weights BFLOPs

0.5 15.03 M 58.8 MB 28.564
0.6 9.134 M 35.7 MB 24.886
0.7 6.42 M 25.2 MB 21.922

0.71 6.25 M 24.5 MB 21.592
0.72 6.02 M 23.6 MB 21.270
0.73 5.7 M 22.4 MB 20.999
0.735 5.57 M 21.8 MB 20.858
0.74 5.4 M 21.2 MB 20.703

D. Layer Cutting Results

During the layer-cutting process, we can determine the number of ResUnits to be
pruned. From Table 6, it can be observed that when the number of ResUnits is set to 15,
there is a significant drop in the model’s mAP@0.5 and Recall. However, when the number
of ResUnits is set to 14, the model’s mAP@0.5 and Recall do not decrease as dramatically as
with 15 ResUnits. Additionally, from Table 7, we can infer that the more units pruned, the
fewer model parameters theoretically and the faster the inference speed. If the mAP@0.5
values are similar for different numbers of ResUnits, it is preferable to choose the pruning
model with a higher number of units to achieve a faster speed. Therefore, we ultimately
decided to prune 14 ResUnits.

Table 6. Evaluation of detection accuracy for pruning the number of ResUnits.

Cut ResUnit
Numbers Precision Recall mAP@0.5

11 0.914 0.175 0.5336
12 0.91 0.132 0.494
13 0.91 0.131 0.483
14 0.912 0.116 0.463
15 0.929 0.0188 0.335

Table 7. Parameter Sizes of pruning the number of ResUnits.

Cut ResUnit
Numbers Params Size of .Weights BFLOPs

11 4.6 M 18 M 19.490
12 4.4 M 17.2 M 19.220
13 4.3 M 17.1 M 18.991
14 4.2 M 16.8 M 18.610
15 4.15 M 16.2 M 17.869

E. Final Model Tuning

After pruning the model, it is common for pruning to have a negative impact on model
accuracy. In such cases, fine-tuning the pruned model becomes crucial to recover the lost
accuracy. In our experiment, we directly used the same training hyperparameters and
dataset as in the normal training of YOLOv4 to retrain the Pruned-YOLOv4 model. The
performance after fine-tuning is shown in Table 8. Compared to the baseline YOLOv4, there
is a slight sacrifice of 0.013 in the mAP@0.5. However, from Table 9, we can observe that
Pruned-YOLOv4 achieves a faster inference speed and significantly reduces the model’s
parameter count and the size of the .weights file. This allows the model to be deployed
on embedded devices with limited memory space. Compared to Tiny-YOLOv4, there is a
significant improvement in the mAP@0.5, as shown in Table 8. Although there is a slight
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sacrifice in the BFLOPs, as seen in Table 9, this trade-off is worthwhile as it results in a more
accurate model.

Table 8. Evaluation of various detection models.

Model Precision Recall mAP@0.5

SSD 0.607 0.398 0.504
YOLOv3 0.661 0.436 0.579
YOLOv4 0.818 0.605 0.749

Tiny-YOLOv4 0.652 0.411 0.551
Pruned-YOLOv4 0.784 0.619 0.736

Table 9. Parameter size of various detection models.

Model Params Size of .Weights BFLOPs

SSD 34.3 M 135.3 MB 70.40
YOLOv3 61.6 M 242.9 MB 65.86
YOLOv4 63.9 M 250.2 MB 59.563

Tiny-YOLOv4 5.87 M 23.6 MB 7.79
Pruned-YOLOv4 4.28 M 16.8 MB 18.61

3.2. Subject Tracking and Drone Control

The aim of this study is to explore the feasibility and effectiveness of automated
control in real-world applications. To achieve this goal, we design a series of experiments
to simulate the exploration needs of drones in real environments and require the drones to
successfully track target objects automatically. To ensure the reliability of the experimental
results, we perform experiments in both indoor and outdoor environments. By conducting
experiments in these locations, we are able to better assess the adaptability and performance
of the automated control in various real-world scenarios. Figures 8 and 9 list the selected
outdoor scenes and indoor scenes in the experimental videos, respectively. The subjects
being tracked include ten different people. Each person is tracked for 50 to 90 s in outdoor
and indoor environments five times. During the tracking process, a random number of 0 to
7 other people would appear as passersby in the scene.
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Figure 9. Selected scenes in indoor environments.

A. Parameters for PID

After obtaining the error values of the actual drone state, the flight maneuvers of the
drone can be determined to enable it to track the target. To address this issue, we employ a
PID control system. It is important to note that the PID system generates outputs for all
three axes, the x, y, and z axes, represented by the green, red, and blue arrows illustrated in
Figure 10. Therefore, there are nine parameters in total. Setting higher Kp values allows the
controller to respond faster to control errors. Consequently, the Kp parameters for all three
axes are set to the highest value. Conversely, the Ki parameters are set to the minimum
value to reduce the impact of the accumulated errors, thereby avoiding excessive system
tuning or instability. As for the configuration of the Kd parameters, an appropriate setup
provides a response to the rate of error variation, thereby enhancing the system’s response
speed and stability. The initial values for parameter settings are selected according to [31],
followed by a grid search to determine the optimal values.
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B. Analysis of PID control for drones

In this sub-setcion, we demonstrate how the drone continuously tracks the target
object in flight and adjusts its flight actions as the target object moves. Two experimental
videos are selected to demonstrate the tracking and control processes. In video 1, the
tracked subject walks on a flat surface, as shown in Figure 11a. The four directions that the
subject moves are represented as the red, blue, yellow, and purple arrows in Figure 11a.
The response of the PID control to the error in the x-axis position of the tracked object in
video 1 is plotted in Figure 11b. Figure 11b shows that as the target object moves, the error
increases, and the PID control quickly corrects the error to minimize it toward zero. The
drone continuously tracks the target object, while the PID control attempts to reduce the
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x-axis error of the target object. For the error in y-axis, since the subject in video 1 does not
undergo significant changes in height, we can observe from Figure 11c that there is not
a significant variation in the y-axis error. As for the distance in the z-axis position of the
tracked object, the distance between the drone and the target object is fixed at a reference
value of 150, which corresponds to a distance of 1.5 m on the ground between the target
object and the drone. When the target object moves forward and backward, the drone has
to continuously track the target object. Figure 11d plots the response of the PID control to
the error in the z-axis position of the tracked object in the selected video. It demonstrates
that the error varies with the distance between the target object and the drone, and the PID
control attempts to reduce the z-axis error of the target object.
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In video 2, the tracked subject moves upstairs and downstairs, as shown in Figure 12a.
The red arrow and blue arrow represent the directions moving up and down the stairs,
respectively. In video 2, the drone needs to follow the subject and fly straight up or down
along the stairs. The main focus is to test whether the drone can adjust the y-axis error
in real time. Figure 12a–c show the response of the PID control to the error in the x-axis
and y-axis positions and the distance in the z-axis position of the tracked object in video 2,
respectively. Figure 12 demonstrates that the PID control continuously adjusts the x-axis
and y-axis errors to approach zero as the subject moves forward and backward while
ascending or descending the stairs.

C. Tracking Accuracy Evaluation

The mean absolute errors between the target and the center of the frame for tracking
are listed in Table 10. The errors in the x-axis are slightly higher than the errors in the
y-axis because the subjects change their moving directions in most experimental videos.
When the targets being tracked are moving on the ground plane without ascending stairs
or descending stairs, the errors in the y-axis are close to zero. The tracking errors in
the outdoor environments are higher than the errors in indoor environments due to the
influence of wind.
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Table 10. Mean absolute error of tracking.

Indoor Outdoor

x-axis 128.95 137.62
y-axis 98.73 116.98

3.3. Discussion

It is a challenging issue to balance the size of the model parameters and the accuracy of
the model in the process of pruning. Through analyzing the Precision, Recall, and mAP as
well as the parameter sizes under various pruning rates, we are able to determine a suitable
pruning rate to balance the trade-offs. Also, fine-tuning the pruned model is helpful to
recover and increase the model accuracy. The PID control process, which continuously
minimizes the error between the subject being tracked and the center of the frame, can
complete the task of automatic drone control and maintain a stable flight path in real time.
This is attributed to the ability of the automatic control system to promptly adjust to the
position and movement of the target object to minimize the error between the reference
position and the actual position. This allows the drone to track target objects accurately and
respond quickly to changes. Automated control is of great significance to human–machine
collaboration. It extends the high cognitive capabilities of human operators. At the same
time, automated control ensures good execution efficiency and stability. Based on the
above observations and analysis, automatic drone control has obvious advantages. It can
provide accurate and stable tracking capabilities while taking into account the execution
efficiency of automated control. This collaborative model allows researchers and operators
to participate in drone missions and leverage their respective expertise while achieving
higher efficiency with the help of automatic control systems.

4. Conclusions

In this paper, we propose an implementation method for an object detection and target
tracking system based on the Robot Operating System (ROS) and apply it to the Tello
drone. The system achieves efficient object detection and target-tracking capabilities in
real-time environments. We utilize the pruned YOLOv4 architecture as the detection model
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and select SiamMask as the tracking model. Additionally, we introduce a PID module
to calculate the errors and determine the flight attitude and action. For the detection
module, we choose the pruned YOLOv4 architecture, which provides a faster execution
speed while maintaining the detection accuracy. By reducing the redundant parameters
and computations in the model, we achieve lightweight and accelerated performance. This
allows our system to efficiently perform object detection tasks in real-time environments.
For the tracking module, we adopt the SiamMask model. SiamMask is a single-object
tracking method capable of real-time target tracking. In our system, SiamMask is used to
track the objects detected by YOLOv4, enabling continuous object tracking and positioning.
Furthermore, we introduce the PID module to calculate the errors and adjust the flight
attitudes. PID is a classical control algorithm that computes control signals based on the
current error, accumulated error, and rate of error change, aiming to bring the system
output closer to the desired value. In our system, the PID module calculates errors based
on the target object’s position and the drone’s current state, and adjusts the drone’s attitude
control signals to stably track the target object. Through flight experiments, we validate
the feasibility of applying this system in everyday environments. The pruned YOLOv4
model provides efficient object detection capabilities, enabling fast target detection in real-
time environments. SiamMask is used for tracking the target object, and the PID module
accurately calculates the errors and adapts to different flight situations, allowing the drone
to stably track the target object.
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