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Abstract: In this study, a frequency doubler that consists of a tunnel field-effect transistor (TFET)
with dual pocket doping is proposed, and its operation is verified using technology computer-aided
design (TCAD) simulations. The frequency-doubling operation is important to having symmetrical
current characteristics, which eliminate odd harmonics and the need for extra filter circuitry. The
proposed TFET has intrinsically bidirectional and controllable currents that can be implemented by
pocket doping, which is located at the junction between the source/drain (S/D) and the channel
region, to modify tunneling probabilities. The source-to-channel (ISC) and channel-to-drain currents
(ICD) can be independently changed by managing each pocket doping concentration on the source
and drain sides (NS,POC and ND,POC). After that, the current matching process was investigated
through NS,POC and ND,POC splits, respectively. However, it was found that the optimized doping
condition achieved at the device level (namely, a transistor evaluation) is not suitable for a frequency
doubler operation because the voltage drop generated by a load resistor in the frequency doubler
circuit configuration causes the currents to be unbalanced between ISC and ICD. Therefore, after
symmetrical current matching was performed by optimizing NS,POC and ND,POC at the circuit level,
it was clearly seen that the output frequency was doubled in comparison to the input sinusoidal
signal. In addition, the effects of the S/D and pocket doping variations that can occur during process
integration were investigated to determine how much frequency multiplications are affected, and
these variations have the immunity of S/D doping and pocket doping length changes. Furthermore,
the impact of device scaling with gate length (LG) variations was evaluated. Based on these findings,
the proposed frequency doubler is anticipated to offer benefits for circuit design and low-power
applications compared to the conventional one.

Keywords: tunnel field-effect transistor; frequency doubler; ambipolar current; band-to-band tunneling;
pocket doping technique

1. Introduction

In wireless communication systems, a frequency doubler, which is composed of non-
linear devices such as a Schottky device and transistors, is essential to make a stable radio
frequency (RF) source with a reliable low-frequency crystal oscillator [1–4]. However, these
nonlinear elements generate unwanted odd harmonics beyond the intended frequency,
requiring the use of additional filtering to prevent signal distortion [5–7]. As a result, circuit
configurations can become complex. Therefore, a single transistor-based frequency doubler,
which utilizes bidirectional current characteristics, has been extensively researched with
two-dimensional transition metal dichalcogenides (TDMC), graphene, carbon nanotube
(CNT) devices, and tunneling field-effect transistors (TFETs). Due to their ambipolar device
characteristics, which can fundamentally eliminate the odd harmonic components in the
output signal, there is no requirement for additional filter circuitry [8–12]. For TDMC
materials, MoS2 and WSe2 are representative n-type and ambipolar semiconductors, which
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indicate higher mobility values of 200–500 cm2 V−1 s−1 with good switching characteris-
tics (on- and off-current ratio of 108). However, to make the circuit with those devices, a
higher operating voltage is required compared to the conventional complementary MOS
(CMOS) device. In addition, graphene- and CNT-based frequency doublers have high
power dissipations by poor leakage current control due to their small energy bandgap.

Recently, a new concept for a frequency doubler has been proposed using a single
ferroelectric FET (FeFET) with a doped hafnium oxide layer (HfO2) [13]. The operation
principle of this device is that the current can be modulated by biasing to the gate due to the
polarization effect caused by dipole changes in the ferroelectric layer like the conventional
FeFET. Then, to realize the ambipolar characteristics, this proposed device used a gate-
induced drain leakage (GIDL) current with a drain voltage (VD) control. Hence, to make
the symmetrical current characteristics, the change in threshold voltage and currents,
depending on the polarization up and down, is firstly required, and then the GIDL current
generated between the gate and drain overlap region has to be optimized by controlling
the VD. For these methodologies, it is inevitable to increase the leakage power because a
high VD should be applied to make a higher GIDL current during the frequency-doubling
operation, meaning that this scheme is not effective for circuit designs in terms of low-
power applications.

Therefore, we proposed a new frequency doubler based on a single TFET transistor.
Inherently, it is well known that TFETs have low leakage currents and steep subthreshold
slopes (SSs), making them a good candidate for low-power applications [14–22]. This
TFET differs from the metal-oxide-semiconductor field-effect transistor (MOSFET) in that it
uses band-to-band tunneling (BTBT) as the carrier injection mechanism, eliminating the
SS limitation (>60 mV/dec) associated with thermionic emission in MOSFETs at room
temperature. In the case of an n-type TFET, its structure includes a p-type source, intrinsic
channel, and n-type drain region, making it compatible with a conventional MOSFET
process integration where the modification is limited to the source dopant type. Although
TFETs have lower leakage current and lower temperature sensitivity compared to MOSFETs,
they face a trade-off that manifests itself in a lower on-current due to increased tunneling
resistance, resulting from a smaller tunneling region.

Furthermore, without any process changes, they have ambipolar current characteristics
because of two types of tunneling components: a source-to-channel tunneling current (ISC)
at VG > 0 and a channel-to-drain tunneling current (ICD) at VG < 0, for n-type device
operations. In the conventional TFETs, it has been reported that only the source-to-channel
tunneling contributes to the on-current related to the switching characteristics, while the
channel-to-drain tunneling is considered to be suppressed as a leakage current. In contrast,
the proposed frequency doubler utilizes both source-to-channel and channel-to-drain
tunneling components to generate an output signal with doubled frequency. However, ISC
and ICD are not exactly the same because of the gap in the tunneling resistance. Therefore,
dual pocket doping technologies, which are applied at the interfaces between the channel
and source/drain regions, are adapted to control ISC and ICD, independently, leading to
symmetric current matching. Those electrical characteristics are verified with a technology
computer-aided design (TCAD) device and circuit simulations with well-calibrated model
parameters.

2. Device Parameters and Models

Figure 1 shows the proposed TFET structure with the dual pocket doping technologies
(n-type operation). These pocket doping regions are to introduce additional dopants, either
n-type (energy band down) or p-type (energy band up), into a specific region of the device,
changing tunneling probabilities. In order to investigate the electrical characteristics, a gate
length (LG) of 50 nm, interfacial layer thickness (Tox) of 0.7 nm, high-κ thickness (THK) of
1.5 nm, and body thickness (TB) of 10 nm were chosen. Additionally, the doping concen-
trations of the source (1 × 1020 cm−3), channel (5 × 1017 cm−3), and drain (1 × 1020 cm−3)
were employed, respectively. To implement symmetrical current characteristics, the n−
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pocket doping is added between the p+ source and channel regions to control ISC while the
p− pocket doping is applied between the channel and n+ drain region for changing ICD.
Each pocket doping length is defined as 9 nm and the concentration is varied to perform
current matching for frequency doubling. All device simulations were carried out using
commercial TCAD tools of Synopsys SentaurusTM [23].
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Figure 1. Schematic of an n-type operation tunneling field-effect transistor (TFET) with dual pocket
doping regions to independently control tunneling currents, source-to-channel tunneling (ISC), and
channel-to-drain tunneling current (ICD). The black dotted line indicates the process condition
without pocket doping and the red solid line shows the process condition with docket doping.

In order to accurately calculate tunneling currents, a planar TFET was fabricated
on a (100) p-type silicon-on-insulator (SOI) wafer. The gate stack underwent a precise
dry oxidation process at 800 ◦C for 30 s, resulting in the formation of a 3 nm SiO2 gate
dielectric. The subsequent step involved depositing n+-doped polycrystalline silicon as
a gate electrode through a Low-Pressure Chemical Vapor Deposition (LPCVD) process.
Following gate patterning, the source and drain regions were achieved through a careful ion-
implantation process. Notably, source and drain implantations were executed separately,
employing BF2 with a dose of 8 × 1014 cm−2, a 7◦ tilt, and an energy of 10 keV for both the
source and drain. The subsequent activation of dopants was achieved through a Rapid
Thermal Process (RTP) conducted at 900 ◦C for 5 s. To predict the band-to-band tunneling
(BTBT) generation rate (G) per unit volume in the uniform electric field, Kane’s model is
used, and the fitted parameters are as follows [19]:

G = A(
F
F0
)Pexp(−B

F
)

where F0 = 1 V/m, P = 2.5, Aind = 4.0 × 1014 cm−3·s−1, and Bind = 9.9 × 106 V·cm−1 were
used to reflect the indirect tunneling components. Figure 2 shows that the simulated transfer
curves (linear and log scale) are well-matched to the measured data of the fabricated TFET
after the calibration process. Additionally, the OldSlotboom model was used to consider
the effects of heavy doping on bandgap narrowing in the source/drain (S/D) regions.
Also, Fermi statistics and the Shockley–Read–Hall recombination model were applied. The
performance evaluations were conducted at a VD of 1.0 V.
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3. Result and Discussions
3.1. Dual Pocket Doping Effects

The effects of the dual pocket doping on the source and drain sides were investigated
to achieve symmetrical current matching. First, Figure 3a shows the drain current (ID)-
gate voltage (VG) characteristics of the proposed TFET with varying n− pocket doping
concentrations on the source side (NS,POC), while the pocket doping was not applied on
the drain side. As NS,POC was varied from 5.0 × 1017 cm−3 to 1.5 × 1019 cm−3, it was
clearly observed that the threshold voltage for ISC (VTH,SC) becomes shifted by modulating
tunneling resistances, resulting in gradual ISC changes. However, ICD hardly changed
regardless of NS,POC. To understand this phenomenon induced by NS,POC, the energy band
diagrams were illustrated in the channel direction at VD = 1.0 V and VG = 0.5 V with
NS,POC = 5.0 × 1017 cm−3 and 1.5 × 1019 cm−3 as shown in Figure 3c. Then, it was under-
stood that the tunneling width becomes thinner on the source side by increasing NS,POC,
and there is no electrical effect on the drain side, which means that ICD is little changed.
Next, the p− pocket doping concentration on the drain side (ND,POC) was examined for
ICD modulation, excluding the pocket doping on the source side. Figure 3b indicates
the ID-VG characteristics with VD = 1.0 V and changing ND,POC from 5.0 × 1017 cm−3 to
1.5 × 1019 cm−3. As ND,POC went up, the threshold voltage for ICD (VTH,CD) decreased
and ICD increased. Compared to the NS,POC variation, it showed completely opposite
characteristics. Then, the energy band diagrams were also checked with respect to different
ND,POC values (Figure 3d). It was confirmed that only the drain side was locally changed
with higher ND,POC, whereas little change on the source side was observed. As a result,
this pocket doping technique can achieve the required ISC and ICD values independently,
making it suitable for implementing current matching for frequency doublers.
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Figure 3. ID-VG characteristics with various pocket doping concentrations (a) on the source side and
(b) on the drain side. Energy band diagrams at 5 nm underneath the interfacial oxide (c) for n− pocket
doping concentrations on the source side were (NS,POC) = 5.0 × 1017 cm−3 and 1.5 × 1019 cm−3 at
drain voltage (VD) = 1.0 V and VG = 0.5 V, and (d) for p−, the pocket doping concentrations on the
drain side were (ND,POC) = 5.0 × 1017 cm−3 and 1.5 × 1019 cm−3 at VD = 1.0 V and VG = −0.5 V.

3.2. Current Matching at the Device Level

Based on dual pocket doping technology, the ISC and ICD values in the TFET device
were separately optimized under the NS,POC and ND,POC conditions. Figure 4a denoted
the VTH,SC and VTH,CD extracted at ID = 1.0 nA/µm, and Figure 4b showed the ISC and
ICD values at VG = 1.0 V and −1.0 V with VD = 1.0 V, depending on NS,POC and ND,POC.
It was obvious that both VTH and ID can be independently controlled. To conduct device
level-based current matching optimization, we set the ID of 1.0 µA/µm and then selected
NS,POC and ND,POC values of 5.0 × 1018 cm−3 and 1.4 × 1019 cm−3, respectively. Then, to
rigorously understand the feasibility of a single TFET for performing frequency doubling,
the comprehensive mixed-mode circuit level simulations with physical models were con-
ducted with RL = 300 kΩ and C = 5 × 10−14 F as a load resistor and DC block capacitor
as shown in Figure 5. The operation principle of frequency doubling is as follows. Once
the sinusoidal input signal (VIN) was applied for a half cycle (0 V → VDD → 0 V), ISC
flowed through the TFET and then VN was changed from VDD to VDD − ISCRL and to VDD,
leading to one cycle. Subsequently, for a half-cycle VIN (0 V→−VDD → 0 V), the current
flow transitioned from ISC to ICD upon reaching the minimum conduction point. Thus,
ICD flowed through the TFET and VN changed from VDD to VDD − ICDRL and to VDD,
resulting in one cycle. Finally, the output signal (VOUT) was obtained from VN through a
DC block capacitor, and its frequency was doubled compared to VIN.
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Figure 4. (a) The threshold voltage values for ISC (VTH,SC) and ICD (VTH,CD) were extracted at
ID = 1 × 10−9 A/µm using a constant current method, depending on NS,POC and ND,POC. (b) The
summarized ISC (blue) and ICD (red) values were extracted at VG = 1.0 V and −1.0 V, depending on
NS,POC and ND,POC.
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Figure 5. Mixed-mode circuit simulation configuration for the frequency doubler operation with a
single proposed device (VDD = 1.0 V, RL = 300 kΩ, C = 5 × 10−14 F).

To evaluate the frequency doubler operation, the symmetrical ID-VG characteristics
of the proposed device with the optimized condition were checked as shown in Figure 6a.
Based on the mixed-mode circuit simulation, Figure 6b plotted the transient characteristics
of ID according to VIN. However, it was confirmed that the ISC and ICD were unexpectedly
different, even though the current matching process was performed in terms of the device
level. Particularly, ICD is smaller than ISC. It was found that this phenomenon is caused
by the frequency doubler circuit configuration because the VD of the proposed device was
changed by VDD − IDRL, and it directly affected source-to-channel and channel-to-drain
tunneling probabilities.
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Figure 6. (a) Symmetrical ID-VG characteristics with NS,POC = 5.0 × 1018 cm−3 and
ND,POC = 1.4 × 1019 cm−3 at the device level. (b) Transient characteristics of VIN and ID with opti-
mized pocket doping concentrations.

To better understand this current mismatching based on the optimized NS,POC and
ND,POC conditions, the ID-VG characteristics were investigated with different RL values
at the circuit configuration as shown in Figure 7a. As a reference, the optimized ID-VG
characteristics at the device level, perfectly matched the ISC and ICD values, were used.
Then, when RL was increased from 50 kΩ to 500 kΩ at the circuit level, it was found that the
ICD was continuously reduced for a VG value higher than −0.5 V, while ISC was changed
relatively less. The details of the extracted ISC and ICD are indicated in Figure 7b. It can
be clearly seen that ICD variations are much greater than ISC with increasing RL. To find
out the origin of this difference in variation, the energy band diagrams were examined in
the channel direction with RL = 50 kΩ and 500 kΩ. To check ISC variation, once VD = 1.0 V
and VG = 1.0 V were applied, the electrons in the valence band of the source started to
pass through a thinned tunneling barrier between the source and channel regions as shown
in Figure 7c. Since the source was directly connected to the ground, the potential energy
was fixed irrespective of RL. Whereas the potential energy of the drain was affected by the
voltage drop (ISCRL). Thus, as RL was increased from 50 kΩ to 500 kΩ, VD was decreased,
reducing the potential difference between the source and drain. Nevertheless, the tunneling
barrier near the valence band edge of the source region was changed little, allowing ISC
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to be slightly reduced. In the case of the ICD variation, VD = 1.0 V and VG = −1.0 V
were biased to cause the holes to flow by tunneling from the drain to channel regions as
shown in Figure 7d. When RL was changed from 50 kΩ to 500 kΩ, it was clearly seen
that the potential energy of the drain was decreased by a higher voltage drop (ICDRL). In
contrast to ISC, the tunneling barrier near the conduction band edge of the drain region
was significantly modulated, allowing ICD to be remarkably reduced. Hence, the current
matching, not the device-based optimization, should be required in the frequency doubler
circuit configuration.
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Figure 7. For optimized pocket doping condition (NS,POC = 5.0 × 1018 cm−3 and
ND,POC = 1.4 × 1019 cm−3), (a) ID-VG characteristics, and (b) summarized ISC and ICD values with
various RL values at the circuit level compared to the device level. Energy band diagrams with
RL = 50 kΩ and 500 kΩ (c) at VD = 1.0 V and VG = 1.0 V for ISC (d) at VD = 1.0 V and VG = −1.0 V
for ICD.

3.3. Frequency Doubler Operation

Figure 8a shows the ISC and ICD values with respect to each pocket doping concen-
tration in terms of the device and circuit levels. The circuit level currents were extracted
from the frequency doubler circuits with RL = 300 kΩ and C = 5 × 10−14 F. Here, NS,POC
and ND,POC values of 1.0 × 1018 cm−3 and 1.6 × 1019 cm−3, respectively, were chosen to
achieve current matching at the circuit level, and then the symmetric ID-VG characteristics
were verified with the optimized doping condition as shown in Figure 8b. It was clearly
seen that the ICD values at the device level are larger than those at the circuit level under
the same process condition due to an ICDRL voltage drop. To check the frequency-doubling
operation, the transient characteristics of ID were investigated according to VIN with a
peak voltage of 1 V and a frequency of 1 MHz (Figure 8c). The changes in ISC and ICD are
almost identical, making similar voltage drops. Subsequently, the output signals through
a DC block capacitor were confirmed with doubled frequency compared with that of the
input signal while maintaining its amplitude as shown in Figure 8d. Then, the operating
frequency range of the proposed frequency doubler was evaluated. As the input frequency
increases from 10 kHz to 10 MHz, it was confirmed that the output signal has a doubled
frequency without signal distortions compared with the input frequency (Figure 8e,f).
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In terms of device scalability, the performance of the frequency doubler was estimated
with respect to LG based on the optimized process condition. Since each pocket doping
length was defined as 9 nm in the channel region, here, the minimum LG was limited to
20 nm. Therefore, as LG decreased from 50 nm to 20 nm, it was observed that both ISC and
ICD were little changed as shown in Figure 9a. After that, the transient characteristics of
VOUT were investigated depending on LG (Figure 9b). It was clearly seen that the frequency-
doubling operations are maintained without the amplitude reduction in the output signal
regardless of LG, implying that the proposed frequency doubler has the merit of exhibiting
little performance degradation for device scaling, which means it is strongly immune to
short channel effects (SCEs). Additionally, in order to evaluate the effects of tunneling
current degradation, which directly affects the output signal, the influences of S/D doping
concentration (NSD) variations, induced during process integrations, were investigated.
Figure 9c indicates the transfer characteristics with NSD variations from 5 × 1019 cm−3 to
5 × 1020 cm−3, which can be varied by ion implantation and an annealing process. As the
NSD became lower, the switching characteristics were degraded, leading to a reduction in ID
by increasing the tunneling resistances. On the other hand, it was clearly seen that as NSD
increases, ID increases due to the decreases in the tunneling barrier at the junction. Even
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though the magnitude of ID slightly fluctuated, it was found that the frequency doubling
was properly operated as shown in Figure 9d.
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Figure 9. (a) The summarized ISC and ICD values depend on LG values from 20 nm to 50 nm, with the
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In addition, although pocket doping technology is widely used as a method to control
the tunneling barrier for performance optimization, if a heavy doping concentration or
diffused doping region is applied to a specific region to modulate the on-current and
threshold voltage, tunneling components could occur regardless of the gate bias, resulting in
performance variations. Thus, the effects of pocket doping diffusion, which can be induced
during process integration, were investigated to verify the validity of the frequency doubler
performance. Then, each pocket doping length on the source and drain sides (LS,POC and
LD,POC) was split from 6 nm to 12 nm (Figure 10a). The ISC and ICD values, regarding LS,POC
and LD,POC, were summarized in Figure 10b. As the pocket doping length was increased,
both currents increased marginally. In particular, it was observed that the ICD variations
appear slightly higher than the ISC variations. It was due to the doping concentration
difference (ND,POC > NS,POC) determined by the current matching optimization. However,
these current variations were not as large as the changes caused by NS,POC and ND,POC,
which induced large VTH and ID shifts. To check how much LS,POC and LD,POC variations
can affect the frequency doubler operation, the transient characteristics were evaluated.
As can be seen in Figure 10c,d, it was found that LS,POC and LD,POC changes did not
have a major impact on the frequency-doubling operation due to small current variations,
implying that the proposed scheme has immunity against the pocket doping diffusion.
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4. Conclusions

In this work, a TFET with dual pocket doping was introduced to double an input
frequency, and its functionality and performances were verified using a commercial TCAD
device and circuit simulations with the calibrated BTBT physical models. Achieving
frequency doubling is essential to having symmetrical current characteristics because it
eliminates the odd harmonics and the need for additional filter circuitry. The proposed
device can have ambipolar current behavior as an intrinsic property of TFETs and can
independently control the ISC and ICD by NS,POC and ND,POC changes, which modulate
the tunneling barrier, respectively. The changes of the tunneling resistance on the source-
and drain side were confirmed by the analysis of the energy band diagrams as well as
transfer characteristics. However, although the optimized process condition, by controlling
various NS,POC and ND,POC for symmetrical current matching, was found at the device
level, it was unexpectedly confirmed that current mismatching occurred by VD reduction
(VD = VDD − IDRD) in the frequency doubler circuit. To find out the optimized NS,POC and
ND,POC values for symmetrical current matching, the circuit level should be considered.
After that, the input frequency can be doubled using mixed-mode circuit simulations. From
these results, it is a very meaningful result for not only the proposed one but also other
devices with different channel materials and structures using the same frequency doubler
circuit configuration. Moreover, it is expected that the proposed frequency doubler will
be utilized for low-power applications because it has the potential to be advantageous for
the circuit design due to its simple circuitry with a single tunneling device as compared to
conventional frequency doublers.
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