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Abstract: Accurate traffic prediction is vital for traffic management, control, and urbanization con-
struction. Extensive research efforts have diligently focused on capturing the intricate spatio-temporal
relationships that are inherent in traffic data. However, a limited number of studies have fully ex-
ploited the potential of periodicity, a distinctive and valuable characteristic of transportation systems.
In this paper, we propose a novel GRU- and Transformer-Based Periodicity Fusion Network (GTPFN)
to distinguish the effects of different types of periodic data and integrate them seamlessly and effec-
tively. Initially, the proposed model captures dynamic spatio-temporal correlations and obtains the
candidate prediction result by employing a GRU encoder–decoder with spatial attention, focusing on
the hourly data. Subsequently, we design the Pattern Induction Block based on GRU layers to extract
regular traffic patterns from daily and weekly data. Finally, the Pattern Fusion Transformer integrates
these patterns, followed by a Feedforward layer, to yield the final prediction output. Experiments on
the Caltrans Performance Measurement System (PEMS) datasets illustrate that the proposed model
outperforms state-of-art baseline models on most predicted horizons.

Keywords: deep learning; traffic forecasting; periodicity; GRU; transformer

1. Introduction

In recent years, the field of intelligent transportation systems (ITS) has gained increas-
ing attention and experienced rapid development. Traffic forecasting is a crucial component
of ITS, which enhances urban road utilization, allowing traffic department personnel to
optimize the traffic flow and allocate resources more efficiently. Accurate traffic forecasting
is essential for predicting and preventing road accidents, thus improving the overall traffic
control capabilities. Moreover, it empowers citizens to plan their travel routes effectively,
leading to time savings, reduced emissions, and an improved quality of life. Furthermore,
it impacts industries like navigation, autonomous driving [1], and traffic monitoring [2],
where precise traffic prediction is essential for operational optimization and efficiency
improvements. Therefore, the development and advancement of accurate traffic forecasting
have significant implications for both the public welfare and economic sectors.

Capturing intricate and dynamically evolving spatio-temporal relationships is a distin-
guishing characteristic and challenge encountered in traffic forecasting. In recent decades,
researchers have achieved notable advancements that allow them to tackle this issue
comprehensively. Initially, classical statistical methodologies, such as the autoregressive
integrated moving average (ARIMA) [3] and History Average (HA), were extensively
explored and implemented within this field. However, their focus primarily rests on
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temporal relations while disregarding the equally significant nonlinear factors and spa-
tial relationships. This leads to insufficient performances in traffic prediction endeavors,
mainly when dealing with long-term scenarios. Subsequently, to achieve a better predictive
accuracy, traditional machine learning techniques like the k nearest neighbors (KNN) [4]
and support vector regression (SVR) [5] are adopted to process voluminous traffic data,
enabling more effective capture of the dynamic spatio-temporal associations. Nonethe-
less, owing to the stringent feature engineering prerequisites and limited generalizability,
the practical applicability of these traditional machine learning models in traffic prediction
remains constrained. With the progression of computing power and the abundance of traffic
data, many deep learning approaches have emerged as potential remedies for addressing the
above-mentioned challenges.

In the domain of deep learning models for traffic prediction, the initial approaches
revolve around utilizing Convolutional Neural Networks (CNNs). These networks are
designed to extract spatial dependencies. In parallel, Recurrent Neural Networks (RNNs)
and their variants are employed to capture temporal dependencies [6–9]. The inherent
limitation of CNNs it that they are solely suitable for grid-based maps, while traffic road
maps adhere to a graph-based structure. Consequently, CNNs do not align with road maps’
essential characteristics, adversely impacting their ability to capture the spatial relationships
among nodes. Subsequently, the introduction of Graph Neural Networks (GNNs) has
effectively addressed this challenge by leveraging the structural attributes of road maps
to facilitate spatial feature fusion, consequently yielding substantial advancements within
this field [10–12]. Nevertheless, the prevailing deep learning models still contend with two
unresolved issues that detrimentally influence the prediction accuracy.

In GNNs, the node relationship matrix used in most studies is fixed (based on con-
nection, distance, and similarity), and can only be utilized to extract neighbor information
or similar functional area information [13–15]. However, in reality, the dependencies be-
tween nodes in each time step constantly change and cannot be captured by a fixed matrix,
affecting the model’s ability to capture spatial connections. Therefore, determining how
to construct a node relationship matrix to discover the node relationships at each time
point entirely is a critical issue. Another challenge is that, in existing models, most models
overlook the utilization of periodic traffic characteristics. Periodicity is one of the most
apparent traffic characteristics, and historical data from the same period often exhibit
a high level of similarity. Therefore, periodic data can more accurately predict future
traffic trends. Some studies have utilized periodic data and obtained relatively excellent
experimental results [16–18]. However, a significant deficiency observed across numerous
studies lies in their inadequate utilization of periodicity. Essentially, these studies incor-
porate periodic data into the same model architecture to derive corresponding outputs,
followed by adopting simplistic information aggregation methods such as linear layer
fusion or concatenation to generate the final prediction results. This approach exhibits the
absence of a more profound exploration of periodic data. The utilization of hourly data
primarily aims at prediction, whereas daily and weekly data serve analogical purposes.
Hence, a solitary model architecture fails to address these two functions simultaneously.
Furthermore, implementing such periodic fusion methods hinders the comprehensive
exploration of interconnections within periodic data. Thus, effectively harnessing peri-
odic features and optimizing the information fusion process across different periods pose
formidable challenges.

In response to the above-mentioned challenges, we propose a novel deep learning
framework named the GRU- and Transformer-Based Periodicity Fusion Network (GTPFN)
as a potential solution. This model leverages hourly data to forecast forthcoming traffic
patterns utilizing a GRU encoder–decoder with spatial attention. Additionally, the regular
traffic patterns of future periods are induced from daily and weekly data employing the
Pattern Induction Block. The Pattern Fusion Transformer integrates these distinct outputs
subsequently. Finally, a Feedforward layer is employed to derive the ultimate output. The
main contributions of this paper can be summarized as follows:
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1. We present a novel and interpretable perspective for handling periodicity traffic
prediction data, aiming to use the different features of various types of periodicity
data fully. Specifically, we utilize hourly data to forecast the basic future traffic pattern
and introduce the Pattern Induction Block, which enables the induction of regular
future traffic patterns from daily and weekly data. Furthermore, we propose the
Pattern Fusion Transformer to consolidate these disparate outputs effectively.

2. We propose the Spatial Attention GRU encoder–decoder to simultaneously consider
spatial and temporal relationships. This spatial attention mechanism facilitates the
dynamic computation of inter-node relationships at each time step. Consequently, it
enhances the representation of the current traffic status while effectively capturing
the evolving spatial correlations.

3. We conduct extensive experimental evaluations to assess the model’s performance on
four PEMS datasets. The resulting experimental findings reveal that GTPFN performs
better than state-of-the-art baselines on most horizons.

The rest of this paper is organized as follows: An overview of the relevant work
is provided in Section 2, the definition of the problem is provided in Section 3, the var-
ious parts of the model are discussed in detail in Section 4, and Section 5 provides our
comparison with other baselines on PEMS datasets as well as sufficient ablation experi-
ments, hyperparameter experiments, and their comparison results. Finally, we conclude in
Section 6.

2. Related Work
2.1. Periodicity

In traffic prediction, recognizing and accommodating recurring traffic patterns, in-
cluding daily rush hours, weekly fluctuations between weekdays and weekends, and
seasonal variations, is paramount. These periodic features are instrumental for enhancing
the performance of traffic prediction models. Consequently, researchers are dedicated to
exploring methods for effectively capturing and utilizing this periodic information for
traffic forecasting.

The Attention-Based Spatio-Temporal Graph Convolutional Network (ASTGCN) [16]
puts periodic information into corresponding stacked spatio-temporal blocks composed of
convolution and attention. It combines their outputs with a linear layer to obtain the final
result. The Transformer-Graph Convolutional Attention Network (TRGCAT) [17] encodes
periodic features based on temporal transformer layers in parallel and then concatenates
and decodes them with the spatial feature through the Graph Convolutional Attention
Network to obtain the final output. The Multi-View Dynamic Graph Convolution Network
(MVDGCN) [18] puts periodic information into the GRU encoder–decoder with coupled
graph convolution and fuses these results with linear layers. Multiple Information Spa-
tio–Temporal Attention-Based Graph Convolution Networks (MISTAGCNs) [15] put the
periodic information into the corresponding spatio-temporal blocks and then stack these
results and put them into multiple spatio-temporal blocks to obtain the final result.

Nonetheless, many contemporary models incorporating periodicity, including the
aforementioned ones, commonly integrate hourly, daily, and weekly data within a singular
module to encompass spatio-temporal relationships, fusing them through straightforward
mechanisms. These approaches neglect the characteristics inherent in distinct periodic
information, thereby limiting the potential enhancement of the model’s performance.
Specifically, the daily and weekly data that have the same prediction period are more
conducive to induction. Daily data that are collected before the prediction period, on
the other hand, are better suited for capturing the spatio-temporal relationships that are
essential for predictive analytics. Furthermore, prevalent periodic data fusion techniques
such as concatenation and linear layers, as employed in the aforementioned models, exhibit
a degree of oversimplification in their capacity to comprehensively integrate and leverage
periodic information.
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2.2. Transformer

Transformer is a sequence-to-sequence model based on the self-attention mecha-
nism [19], which is widely used in natural language processing methods, such as machine
translation, text summarization, language generation, and other tasks [20,21]. It achieves
significant results in a short period of time. Transformer adopts a new architecture com-
pared to that used by the traditional Recurrent Neural Network (RNN) model. It does
not need to process the elements in the sequence one-by-one, which makes the training
process highly parallel and accelerates the training speed of the model. The self-attention
mechanism is the core idea of Transformer. It can model the relationship between any two
positions in a sequence, thereby capturing global contextual information. It also interacts
with all other positions by computing an attention weight matrix. It subsequently com-
bines and aggregates the representations of various positions, factoring in their respective
attention weights. This method enables the model better to understand the dependency
relationships between different sentence positions. In addition to the self-attention mecha-
nism, Transformer introduces residual connections and layer normalization techniques to
address gradient vanishing and stability issues during the training process.

Transformer has made significant achievements in traffic prediction due to its excel-
lent ability to capture complex spatio-temporal relationships in historical data. Spatio-
Temporal Transformer Networks (STTNs) [22] utilize the stacking of spatial transformers
and temporal transformers to fuse spatio-temporal information. Autoformer [23] designs a
decomposition architecture to deal with long-term temporal dependencies. It also creates
an autocorrelation mechanism to improve the computation efficiency and data utilization.
Non-Stationary Transformers [24] address the over-stationarization problem which deterio-
rates Transformer’s performance in non-stationary time series forecasting. It introduces
two key modules,“Series Stationarization” to enhance the predictability by standardizing
input statistics and “De-Stationary Attention” to restore non-stationary information into
temporal dependencies. Propagation Delay-Aware Dynamic Long-Range Transformer
(PDFormer) [25] introduces a spatial self-attention module incorporating distinct graph-
masking techniques to capture local geographic and global semantic neighborhoods. More-
over, a traffic delay perception feature conversion module was devised to model temporal
delays in the propagation of spatial information explicitly.

However, although various studies have demonstrated Transformer’s strong ability to
capture spatio-temporal relationships, the vast memory consumption caused by excessive
parameters must be addressed, especially when using the multi-head attention mechanism,
which exacerbates this situation. Some models only stack Transformer blocks to achieve
better prediction results while ignoring the vast memory consumption. Determining how to
more efficiently utilize transformers to reduce memory usage while improving the model’s
accuracy remains a challenging issue. Determining how to solve the problem mentioned
above is also a key point that we are concerned about, so we use transformer blocks for
pattern fusion instead of capturing spatio-temporal dependencies, which can significantly
reduce the usage of transformers without harming the model’s performance.

3. Preliminaries

In this section, we provide the basic definitions and statements related to this work.

3.1. Road Network

The road map G = (V, E, A) is used to display the connection relationship of road
segments. V = {vi}i=1,2,··· ,N is a set of nodes on the road, and N represents the number
of nodes. E =

{
eij
}

is a set of edges indicating connectivity between node i and node j.
A ∈ RN×N describes the connectivity between nodes. The specific definition is as follows:

Aij =

{
1, if vi and vj are connected,
0, otherwise.

(1)
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While there is a definition of A in the standard traffic network diagram, this model uses
dynamic matrices to capture changing spatial relationships, not fixed ones like A.

3.2. Traffic Feature Matrix

Assuming that a sequence of time T records the traffic features of each node in the
road network G during this time period, we use xc,i

t ∈ R to indicate the value of the c-th
feature of node i at time t. Xi

t ∈ RF denotes the values of all features of node i at time t,
and F is the number of traffic features. X = (X1

t , X2
t , ..., XN

t ) ∈ RN×F shows the values of
all nodes at time t. X = (X1, X2, ..., XT) ∈ RN×T×F denotes the value of all features of all
nodes over the period T. In the experiment, we use the traffic flow for predictions for the
PEMS03, 04, and 08 datasets, while for the PEMS-Bay dataset, we choose speed.

3.3. Problem Definition

To predict traffic information Y = (y1, y2, · · · , yN) ∈ RN×Tp for a while in the future,
we utilize the X of specific periods in the past. Y represents the characteristics of all nodes
in the next Tp time steps. yi = (yi

1, yi
2, ..., yi

Tp
) ∈ RTp represents one traffic feature of a

particular node i during the predicted period.

4. Methodology
4.1. Data Preparation and Processing

Before formally introducing the modules in our model, we need to introduce the data
required for each module. As shown in Figure 1, Xh ∈ RN×Th×Fi denotes hourly data,
and Th is the length of its time steps. Ud = (X 1

d , · · · ,X Pd
d ) ∈ RPd×N×Tp×Fi denotes daily

data, namely those with the same time period as the predicted time in the previous Pd
days. Similarly, Uw = (X 1

w, · · · ,X Pw
w ) ∈ RPw×N×Tp×Fi denotes weekly data, namely those

with the same time period as the predicted time in the previous Pw weeks. For instance,
as Figure 2 shows, if we want to predict the traffic feature from 8:00 to 8:55 on Friday,
24 March, we need data from 7:00 to 7:55 on 24 March (Xh), data from 8:00 to 9:00 on
23 March and 22 March (Ud), and data from 8:00 to 9:00 on 17 March and 10 March (Uw).
The exact number of Pd and Pw to choose depends on the specific situation. It is important
to emphasize that Fi represents the input feature dimension, which has been modified
from the original matrix containing only one traffic feature through a linear layer. This
modification allows us to capture more complex relationships from the input features.

Figure 1. Framework of GTPFN.
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Figure 2. An example of constructing the input of the time series segments (suppose the size of the
predicting window is 1 h, and Th = Tp, Pd and Pw both have values of 2).

4.2. Overview

As shown in Figure 1, the GTPFN mainly consists of three modules. The first module
is a Spatial Attention GRU encoder–decoder for hourly data. We integrate the GRU and
spatial mechanism to capture the spatio-temporal relationship at each time step. The
second module is the Pattern Induction Block for daily and weekly data. We utilize the
GRU gate mechanism to induce the regular traffic pattern for the predicted period. The
third module is the Pattern Fusion Transformer for periodic result fusion, We use the multi-
head self-attention mechanism of Transformer to deeply fuse the periodic information
results generated by the above two modules.

4.3. Spatial Attention GRU Encoder–Decoder

Firstly, we feed Xh ∈ RN×Th×Fi into a Spatial Attention GRU encoder–decoder to
generate the candidate prediction outcome Ỹ0. Compared with the Long Short-Term
Memory (LSTM) [26], the Gated Recurrent Unit (GRU) network has gained widespread
adoption for its parameter efficiency and competitive ability to capture long-term temporal
relationships [27], thereby serving as a preferred alternative to the LSTM. The basic formulas
are as follows:

Rt = σ(ItWxr + Ht−1Whr + br) (2)

Zt = σ(ItWxz + Ht−1Whz + bz) (3)

H̃ = tanh(ItWxh + (Rt � Ht−1)Whh + bh) (4)

Ht = Zt � Ht−1 + (1− Zt)� H̃t (5)

where Rt and Zt represent the reset gate and the update gate, respectively, which are the
core of the GRU. It is the input at the current time t. Ht−1 shows the hidden state of the
previous time step. H̃ indicates the candidate hidden state. Ht is the final hidden state
of time step t. � represents the Hadamard product. Rt is used to control the impact of
historical information on the current hidden state at a time point. When it is 0, it means
completely ignoring historical information; when it is 1, it means retaining more historical
information. The update gate Zt is used to determine the weights of the hidden state of
the previous time step and the candidate hidden state of the current time step. When it
approaches 1, it means that the hidden state of the previous time step has a greater impact
on the current time than the current input data.

In order to effectively model the dynamic spatial dependencies over time while
considering the temporal dependencies, we replace the above formulas with the following:

S = Leaky_ReLU
(

Xh
t Wxa(Ht−1Wha)

T
)

(6)

S′i,j =
exp(Si,j)

∑N
j=1 exp(Si,j)

(7)
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Xh
t
′
= S′Xh

t Rt = σ
(

Xh
t
′
Wxr + br

)
(8)

Zt = σ
(

Xh
t
′
Wxz + bz

)
(9)

H̃ = tanh
(

Xh
t Wxh + (Rt � Ht−1)Whh + bh

)
(10)

Ht = Zt � Ht−1 + (1− Zt)� H̃t (11)

where Xh
t ∈ RN×Fi is the hourly input of the current step. S ∈ RN×N is the attention

score between nodes at time t, and S′ ∈ RN×N is the result of normalization through the
Softmax function. Xh

t
′

is the result after spatial attention. H̃, Ht−1, Ht ∈ RN×Fh denote the
candidate hidden state, the hidden state of the previous time step, and the hidden state
of the current time step, respectively. Wxa, Wxr, Wxz, Wxh ∈ RFi×Fh ,Whr, Whz, Whh ∈ RFh×Fh

and b ∈ RN×Fh are learnable parameters. Fh is the feature dimension of the hidden state.
As shown in Equations (6)–(11), we first calculate the attention score according to Xh

t
and Ht−1 and then capture spatial relationships to obtain Xh

t
′
through spatial attention. This

departure enables the independent utilization of spatial information obtained from each
time step. As a result, our model is able to incorporate spatial attention into the GRU com-
putations, thus enhancing its capacity to capture dynamic spatial correlations effectively.

We use this Spatial Attention GRU encoder to obtain the hidden state of the historical
time series, which contains essential historical contextual information. Then, we use the
Spatial Attention GRU decoder to generate candidate prediction autoregressive results
Ỹ0 ∈ RTp×N×Fh based on this hidden state.

4.4. Pattern Induction Block

The Spatial Attention GRU encoder–decoder model employs hourly data as the founda-
tion for prediction, while the Pattern Induction Block harnesses daily and weekly historical
information to abstract the conventional traffic pattern during the predicted timeframe.
The Pattern Induction Block is composed of GRU layers. The number of layers is Pd
for daily data and Pw for weekly data. The formulas of GRU layers are very similar to
Equations (2)–(5). We only replace It with Xt ∈ RN×Tp×Fi . The utilization of the GRU
layer serves the purpose of leveraging its gate mechanism to eliminate outliers within the
periodic information effectively. This transformative approach aims to attain the regular
traffic pattern during the predicted period rather than exploiting the GRU layer to address
spatio-temporal relationships as usual. Taking the daily part as an example, we introduce
the specific working method of the Pattern Induction Block in detail below.

Daily data are Ud ∈ RPd×N×Tp×Fi , and their GRU layers of the Pattern Induction
Block should be Pd, corresponding to the past Pd days. Each X i

d(i = 1, 2, · · · , Pd) in Ud is
put into the GRU layers from old to new, and finally, we obtain the daily traffic pattern
Hd ∈ RN×Tp×Fh . Similarly, the weekly regular pattern Hw ∈ RN×Tp×Fh is also obtained
using the same method.

4.5. Pattern Fusion Transformer

After obtaining the candidate prediction result Ỹ0, daily traffic pattern Hd, and weekly
traffic pattern Hw based on the periodic information, we fuse them sequentially in the
Pattern Fusion Transformer. The Transformer mainly consists of position encoding, a
multi-head self-attention mechanism, the Feedforward layer, and the residual connection &
normalization layer, as shown in Figure 3.
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Figure 3. Overall structure of the Pattern Fusion Transformer.

In contrast to Recurrent Neural Networks (RNNs), which inherently exhibit a nat-
ural temporal sequencing of data and iterate input following this temporal order, the
Transformer architecture’s self-attention mechanism lacks an intrinsic awareness of input
sequences’ temporal relationships. The time order is important for the fusion of regular
traffic patterns and candidate prediction results, because they should pay more attention to
the information of nearby time points rather than the information of distant time points.
Consequently, it becomes imperative to introduce position encoding as a remedy for this
limitation. Position encoding leverages sine (sin) and cosine (cos) functions to encode and
represent the temporal relationships among input samples. The computational procedure
for position encoding is elucidated by Formulas (12) and (13).

PE(pos,2i) = sin(
pos

10,0002i/dmodel
) (12)

PE(pos,2i+1) = cos(
pos

10,0002i/dmodel
) (13)

In this context, pos denotes the specific position of the current sample within the input
sequence, dmodel signifies the eigenvalue dimensions of each sample, and i denotes the
position of the current feature within the sample. The position encoding matrix, represented
as PE, is constructed by iteratively encoding information concerning the sample’s position
and feature positions. This encoding process uses the sine (sin) and cosine (cos) functions.
This matrix has a dimensionality of pos ∗ dmodel . The rationale behind employing sine
and cosine functions is their ability to capture relative position relationships effectively.
Specifically, any location PEpos+k within the encoding matrix can be expressed as a linear
function of PEpos, as shown in Equations (14) and (15). This property simplifies the
extraction of relative positional information between the two positions.

sin(pos + k) = sin(pos) cos k + cos(pos) sin k (14)

cos(pos + k) = cos(pos) cos k− sin(pos) sin k (15)

Finally, the outcome of the positional encoder is added to the input, so that the
temporal relationship is preserved for further calculation.

After applying positional encoding, we utilize the self-attention mechanism to un-
cover the deep-seated interconnections within periodic data. Our goal is to enable our
model to adeptly capture and encapsulate the inherent periodic correlations in time series
data, thereby enhancing the understanding of the relationships between the candidate
prediction outcome and regular traffic patterns. Applying this method, in turn, facilitates
the generation of more comprehensive representations and precise analytical insights for
traffic prediction. The formulas used for the self-attention of the block are as follows (here,
we collectively refer to Hd and Hw as O):

Q = Ỹi−1Wq (16)

K = HWk (17)
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V = HWv (18)

Sel f Attention(Q, K, V) = so f tmax(
Q(K)T
√

Fk
)V (19)

where Q, K, and V represent the query, key, and value, respectively. Wq ∈ RFh×Fk ,
Wk ∈ RFh×Fk , Wv ∈ RFh×Fk are learnable parameters. Fk is the dimension of the key that
is used to adjust the similarity calculation range between queries and keys. so f tmax is
employed to calculate its correlation coefficient, ensuring that its product values adhere
strictly to the positivity and collectively sum up to 1. Subsequently, the value matrix V
undergoes a weighted aggregation procedure using predetermined weight coefficients,
leading to the attainment of the self-attention output.

This module aims to integrate periodic traffic patterns into the candidate prediction
results. Therefore, for the calculation of Q and V, we choose to use the periodic traffic
pattern H, and for the calculation of K, we choose to use Ỹi−1. In order to capture the
correlation and dependency between patterns and the candidate prediction results at a
deeper level, we also use the multi-head attention mechanism for the calculation, and the
specific formula is as follows:

MultiHead(Q, K, V) = Concat(h1, · · · , hn) (20)

hj = Sel f Attention(HWQ
j , Ỹi−1WK

i , HWV
j ) (21)

The multi-head self-attention mechanism is an amalgamation of multiple self-attention
operations that employs several self-attention heads to capture distinct subspaces of infor-
mation. The resulting attention values from each head are then concatenated and subjected
to linear transformation, yielding the ultimate attention representation. Taking the n-head
self-attention mechanism as an example, the input feature vector X is partitioned into
X//n sub-feature sequences, where // means the division with only the retention of the
integer part. Each sub-sequence independently computes its attention and subsequently
merges them into an output sequence denoted as O through concatenation.

It should be emphasized that, after obtaining the output sequence O ∈ RN×Tp×Fh , we
add the periodic fusion information Ỹi−1 from the previous step in the form of residuals
and then perform LayerNorm together to improve the stability of the gradient propagation
and enhance the feature representation ability. The final output result Ỹi of this Pattern
Fusion Transformer is obtained through LayerNorm and a Feedforward layer. The formula
can be expressed as follows:

Li = LayerNorm(O + Ỹi−1) (22)

Ỹi = ReLU(ReLU(LiWia + bia)Wib + bib) (23)

where Wia ∈ RFh×2Fh , Wib ∈ R2Fh×Fh are learnable parameters.
In this way, we only used two Transformer blocks to deeply capture the internal

connections between periodic information and combine them, reducing memory usage
while still giving the model excellent predictive power.

After passing through the Weekly Pattern Fusion Transformer, the output obtained
is Ỹ2. It passes through a Feedforward layer to adjust the feature dimension and perform
feature extraction, resulting in the final model output result Y. The specific formula for this
last Feedforward network is as follows:

Y = ReLU(Ỹ2Wya + bya)Wyb + byb (24)
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5. Experiment
5.1. Datasets

Our experiments use four Caltrans Performance Measurement System datasets to
evaluate our model: PEMS-Bay, PEMS04, PEMS07, and PEMS08 [28]. PEMS provides a
unified database of traffic data collected by Caltrans on California’s highways, along with
datasets from Caltrans and partner agencies. The PEMS04, 07, and 08 datasets contain three
traffic features, flow, speed, and occupation, while the PEMS-Bay dataset only contains the
speed feature. The relevant information from these datasets is shown in Table 1.

Table 1. Dataset description and statistics.

Dataset #Sensors Granularity #Time Step Time Range

PEMS-Bay 325 5 min 52,116 01/01/2017–06/31/2017
PEMS04 307 5 min 16,992 01/01/2018–02/28/2018
PEMS07 883 5 min 28,224 05/01/2017–08/31/2017
PEMS08 170 5 min 17,856 07/01/2016–08/31/2016

5.2. Baselines

In order to substantiate the efficacy of our proposed method, we compare our method
with the following baseline methods:

• HA: A statistical method that employs historical data averages to forecast forthcom-
ing values.

• ARIMA [29]: A methodology that integrates autoregressive and moving average
models to address time series forecasting challenges.

• VAR [30]: A statistical method used for modeling and analyzing the dynamic relation-
ships among multiple time series variables.

• FC-LSTM [31]: A neural network architecture that combines fully connected lay-
ers with Long Short-Term Memory (LSTM) layers to handle sequential and non-
sequential data.

• DCRNN [32]: A model that combines the bi-directional random walk on the distance-
based graph with GRU in an encoder–decoder manner.

• Graph WaveNet [33]: A framework that combines the adaptive adjacency matrix into
graph convolution with 1D dilated convolution.

• ASTGCN [16]: A model which utilizes attention and convolution to capture the
spatio-temporal relationship with periodicity fusion.

• STGCN [13]: A method that utilizes graph convolution and casual convolution to
learn the spatial and temporal dependencies.

• STSGCN [34]: A network that utilizes the localized spatio-temporal subgraph module
to model localized correlations independently.

• STID [35]: A framework that leverages Spatial and Temporal IDentity information
(STID) to address samples’ indistinguishability in the spatial and temporal dimensions
based on multi-layer perceptrons.

5.3. Evaluation Metrics

To facilitate a quantitative comparison of these methodologies, we employ three
distinct metrics to comprehensively evaluate the model’s performance in traffic forecasting.
Specifically, these metrics encompass the Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error (MAPE), each of which is elucidated
as follows:

MAE =
1

NT

N

∑
i=1

T

∑
t=1

∣∣∣ŷi
t − yi

t

∣∣∣ (25)
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MAPE =
100%
NT

N

∑
i=1

T

∑
t=1

∣∣∣∣∣ ŷi
t − yi

t
yi

t

∣∣∣∣∣ (26)

RMSE =

√√√√ 1
NT

N

∑
i=1

T

∑
t=1

(
ŷi

t − yi
t
)2 (27)

where ŷi
t is the element in the predicted result Ŷ , and yi

t is the element in the ground truth Y .

5.4. Experiment Setting

All experimental assessments are conducted utilizing a single NVIDIA RTX 3090 GPU
with 24 GB of memory. The proposed neural network architecture is implemented by
utilizing PyTorch. The maximum training epoch is established at 300, including an early
stopping mechanism. The default batch size is 64. The key hyperparameters are configured
as follows: Th is 12, equivalent to the past 1 h; Pd and Pw are both 2, corresponding to the
past 2 days and 2 weeks, respectively. There are 32 hidden channels for the GRU layers,
and the number of heads of multi-head attention is eight. The initial learning rate for the
model is initialized at 0.01 and subsequently reduced to 0.001 after 150 training epochs.
The weight decay is 0.0001. Regarding dataset partitioning, the training, validation, and
test data are distributed in a ratio of 6:2:2. Model training is executed by employing the
Adam optimization algorithm, and the loss function is the SmoothL1 Loss. We utilize the
above-mentioned hourly, daily, and weekly data to forecast the subsequent 12 time steps
(i.e., one hour).

5.5. Main Results

Table 2 shows a comparison of the baselines for 15 min (horizon = 3), 30 min (horizon = 6),
and 60 min (horizon = 12) ahead of the prediction on the PEMS datasets. We observe that
(1) deep learning techniques, exemplified by STSGCN and DCRNN, consistently yield
superior outcomes when compared to conventional time series methodologies, such as the
ARIMA and VAR models. This result substantiates the efficacy of incorporating both spatial
and temporal correlations in traffic forecasting. (2) STID achieves promising results on all
four datasets, indicating the importance of considering spatio-temporal indistinguishability
in the sample. (3) The GTPFN model yields commendable outcomes compared to preceding
state-of-the-art models across four distinct datasets. This performance underscores the
methodology’s effectiveness, which incorporates periodic information for predictive and
inductive purposes alongside the seamless integration of Pattern Fusion Transformers. Such
an approach is demonstrably efficacious for bolstering the precision of both short-term and
long-term forecasting endeavors.

5.6. Ablation Study

We conducted ablation studies on the PEMS04 dataset to validate the effectiveness
of the key components of our proposed model GTPFN. We name the GTPFNs without
different components as follows:

• GTPFN w/o P: Removes the utilization of daily data and weekly data and only uses
hourly data for predictions.

• GTPFN w/o T: Removes the Pattern Fusion Transformer and fuses the periodical data
by linear layers instead.

• GTPFN w/o H: Removes the utilization of hourly data and only uses daily data and
weekly data to induce the pattern.

• GTPFN w/o A: Removes the attention mechanism from the SAGRU encoder–decoder.
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Table 2. Traffic Forecasting Result Comparison On Different Datasets.

Datasets Methods
Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS-Bay

HA 2.88 5.59 6.77% 2.88 5.59 6.77% 2.88 5.59 6.77%
ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%

VAR 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.39 2.80 2.73% 1.66 3.81 3.75% 1.98 4.64 4.75%

Graph WaveNet 1.39 2.80 2.69% 1.65 3.75 3.65% 1.97 4.58 4.63%
ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%
STGCN 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74%

STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
STID 1.30 2.81 2.73% 1.62 3.72 3.68% 1.89 4.40 4.47%

GTPFN 1.31 2.75 2.65% 1.62 3.65 3.52% 1.90 4.35 4.29%

PEMS04

HA 30.26 60.93 72.24% 30.26 60.93 72.24% 30.26 60.93 72.24%
ARIMA 21.98 35.21 16.52% 25.38 39.21 21.03% 26.67 40.74 22.43%

VAR 21.94 34.40 16.42% 23.72 36.58 18.02% 26.76 40.28 20.94%
FC-LSTM 21.37 33.31 15.21% 23.72 36.58 18.02% 26.76 40.28 20.94%
DCRNN 19.65 31.29 15.17% 21.80 34.11 16.83% 26.20 39.91 18.43%

Graph WaveNet 18.75 29.80 14.14% 20.40 31.91 15.85% 23.21 35.41 19.43%
STGCN 19.70 31.15 14.83% 20.70 32.86 15.28% 22.14 34.99 16.92%

ASTGCN 20.16 31.53 14.13% 22.29 34.27 15.65% 26.23 40.12 19.19%
STSGCN 19.80 31.58 13.41% 21.30 33.84 14.27% 24.47 38.84 16.27%

STID 17.52 28.48 12.00% 18.29 29.86 12.46% 19.58 31.79 13.38%
GTPFN 17.72 29.74 11.82% 18.51 31.24 12.18% 19.87 33.42 13.00%

PEMS07

HA 37.59 51.65 21.83% 37.59 51.65 21.83% 37.59 51.65 21.83%
ARIMA 32.02 48.83 18.30% 35.18 52.91 20.54% 38.12 55.64 20.77%

VAR 20.09 32.13 13.61% 25.58 40.41 17.44% 32.86 52.05 26.00%
FC-LSTM 20.42 33.21 8.79% 23.18 37.54 9.80% 28.73 45.63 12.23%
DCRNN 19.45 31.39 8.29% 21.18 34.42 9.01% 24.14 38.84 10.42%

Graph WaveNet 18.69 30.69 8.02% 20.26 33.37 8.56% 22.79 37.11 9.73%
STGCN 20.33 32.73 8.68% 21.66 35.35 9.16% 22.74 37.94 9.71%

ASTGCN 21.36 32.91 8.87% 22.63 36.45 9.86% 24.51 37.97 11.03%
STSGCN 20.21 31.65 8.46% 21.45 33.95 8.96% 23.99 39.36 10.13%

STID 18.31 30.39 7.72% 19.59 32.90 8.30% 21.52 36.29 9.15%
GTPFN 17.32 29.88 7.16% 18.38 31.96 7.56% 20.00 34.74 8.32%

PEMS08

HA 29.52 44.03 16.59% 29.52 44.03 16.59% 29.52 44.03 16.59%
ARIMA 19.56 29.78 12.45% 22.35 33.43 14.43% 26.27 38.86 17.38%

VAR 19.52 29.73 12.54% 22.25 33.30 14.23% 26.17 38.97 17.32%
FC-LSTM 17.38 26.27 12.63% 21.22 31.97 17.32% 30.96 43.96 25.72%
DCRNN 16.62 25.48 10.04% 17.88 17.63 11.38% 22.51 34.21 14.17%

Graph WaveNet 14.22 22.96 9.45% 15.94 24.72 9.77% 17.27 26.77 11.26%
STGCN 15.45 25.13 9.98% 17.79 27.38 11.03% 21.46 33.71 13.34%

ASTGCN 16.45 25.18 11.13% 18.76 28.57 12.33% 22.53 33.69 15.34%
STSGCN 16.65 25.40 10.90% 17.82 27.31 11.60% 19.77 31.43 13.12%

STID 13.28 21.66 8.62% 14.21 23.57 9.24% 15.58 25.89 10.33%
GTPFN 12.95 21.93 8.94% 13.57 23.28 9.41% 14.47 25.40 10.34%

Figure 4 shows the results of the ablation experiment. Evidently, the Pattern Induction
Block exerts the most substantial influence on the entire model, particularly in the context of
long-term predictions. This observation underscores the pivotal role that Pattern Induction
Blocks play in mitigating the cumulative error impact of the GRU encoder–decoder. The
second-most influential factor affecting the model’s performance is the Pattern Fusion
Transformer, underscoring the imperative of delving into deeper levels to consider the
interplay of periodic information. Importantly, it is noteworthy that when employing only
the Pattern Induction Block for prediction, the loss values exhibit remarkable uniformity
across various time points. This outcome aligns coherently with our expectations, as
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utilizing the induced regular traffic patterns as predictive outcomes does not entail the
stepwise accumulation of losses that is characteristic of conventional prediction models.

(a) (b) (c)

Figure 4. Results of ablation experiment. (a) MAE Loss. (b) RMSE Loss. (c) MAPE Loss.

5.7. Hyperparameter Experiments

In this subsection, we conduct hyperparameter experiments using the PEMS04 dataset
to determine the optimal values for Pd and Pw. The outcomes are visually represented in
Figure 5. The most favorable prediction results are obtained when the values of Pd and
Pw are both 2. This observation underscores the significance of amalgamating weekly and
daily information to enhance the prediction accuracy. Notably, the model’s performance
is the least favorable when Pd is 2 and Pw is 0, while it is significantly improved when Pd
is 0 and Pw is 2. This discrepancy implies that the weekly periodicity within the PEMS04
dataset holds greater prominence compared to the daily periodicity.

(a) (b) (c)

Figure 5. Results of the hyperparameter experiment. (a) MAE Loss. (b) RMSE Loss. (c) MAPE Loss.

6. Conclusions

This paper proposes a novel GRU- and Transformer-Based Periodicity Fusion Network
(GTPFN). The proposed model includes the Spatial Attention GRU encoder–decoder. It
captures dynamic spatio-temporal relationships at each time step and makes basic predic-
tions based on hourly data. Additionally, the model incorporates Pattern Induction Blocks
based on GRU layers. This block induces regular traffic patterns using daily and weekly
data. Furthermore, the model utilizes Pattern Fusion Transformers to integrate the output
from the above-mentioned modules, followed by a Feedforward layer to generate the final
output. The extensive experiments on PEMS datasets demonstrate the superiority of the
proposed method.

Nevertheless, this model exhibits a limited responsiveness towards the outlier. In
future investigations, we intend to explore methodologies to integrate external influences
from weather conditions, events, and accidents into the model, thereby fostering enhanced
sensitivity towards the outlier. However, integrating these external influences poses po-
tential challenges that warrant careful consideration. Challenges may include data quality
issues, the dynamic nature of external factors, and the need for real-time updates. Address-
ing these challenges is crucial for ensuring the robustness of our predictive model. If the
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model can successfully address these challenges, it will be more sensitive to traffic flow
prediction in emergencies, thereby achieving a better performance.
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