
Citation: Zhu, M.; Li, Z. NGDCNet:

Noise Gating Dynamic Convolutional

Network for Image Denoising.

Electronics 2023, 12, 5019. https://

doi.org/10.3390/electronics12245019

Academic Editor: Jose Santamaria

Received: 3 November 2023

Revised: 28 November 2023

Accepted: 10 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

NGDCNet: Noise Gating Dynamic Convolutional Network for
Image Denoising
Minling Zhu * and Zhihai Li

Computer School, Beijing Information Science and Technology University, Beijing 100101, China;
2022020632@bistu.edu.cn
* Correspondence: zhuminling@bistu.edu.cn

Abstract: Deep convolution neural networks (CNNs) have become popular for image denoising due
to their robust learning capabilities. However, many methods tend to increase the receptive field
to improve performance, which leads to over-smoothed results and loss of critical high-frequency
information such as edges and texture. In this research, we introduce an innovative end-to-end de-
noising network named the noise gating dynamic convolutional network (NGDCNet). By integrating
dynamic convolution and noise gating mechanisms, our approach effectively reduces noise while re-
taining finer image details. Through a series of experiments, we conduct a comprehensive evaluation
of NGDCNet by comparing it quantitatively and visually against state-of-the-art denoising methods.
Additionally, we provide an ablation study to analyze the contributions of dynamic convolutional
blocks and noise gating blocks. Our experimental findings demonstrate that NGDCNet excels in
noise reduction while preserving essential texture information.

Keywords: convolutional neural network; image denoising; dynamic convolution; noise gating
mechanism

1. Introduction

Due to the intricate acquisition processes involving capturing, transmitting, and com-
pressing images through digital devices, the acquired images are susceptible to variations
in lighting conditions and sensor noise [1]. Image noise, which manifests as random
fluctuations in brightness or color, poses a challenge to image observation and accurate
information extraction in image processing. The detrimental effects of noise can impact a
range of image processing tasks, such as video processing, image analysis, and segmenta-
tion, potentially leading to erroneous judgments [2]. In response to this challenge, image
denoising techniques have been devised.

Image denoising techniques are specifically designed to mitigate the impact of noise.
They aim to remove unwanted noise, allowing for the accurate representation and storage
of a clean image based on a degenerate model y = c + n, where c represents a potentially
clean image, n is the noise, and y corresponds to the noisy image [3]. Building on this
understanding, filter methods have gained significant traction for effectively suppressing
noise in noisy images [4]. Spatial domain filters, for example, employ pixel averaging
within specific regions to enhance the quality of predicted images [5]. Furthermore, com-
bining compensation functions and bilateral filtering can augment edges to extract more
detailed information, thus bolstering denoising efficiency [6]. Additionally, based on image
characteristics, transforming the image to the transform domain has proven effective in
noise removal [7]. Block Matching 3D (BM3D) leverages block comparability assessments
to perform transform domain filtering in image denoising [8]. This process involves group-
ing similar patches, condensing the 3D transform domain for collaborative filtering, and
then reconstructing the original position by aggregating these acquired patches. Given
BM3D’s outstanding performance, various variants have been developed for denoising
tasks [9]. Moreover, perceptual concepts have been employed to extract noisy information
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from a given noisy image, contributing to denoising techniques [10]. Total variation, an
approach involving minimizing the total variation of an image, was introduced in image
denoising and has demonstrated effectiveness [11]. Additionally, the partial differential
equation (PDE) algorithm treats the denoising process as solving an equation through
multiple iterations, approaching a solution close to a potentially clean image [12]. Due to
PDE’s properties, its variants are advantageous in preserving edge and texture information
during image denoising [13]. Another approach, weighted kernel paradigm minimiza-
tion (WNNM), utilizes low-rank clustering correlation concepts to filter noise and recover
high-quality images [14]. Other popular denoising methods encompass Markov random
fields [15] and gradient methods [16].

With the rapid advancement of deep learning, particularly the widespread adoption
of convolutional neural networks (CNNs) known for their high speed of execution and
strong learning capabilities, the domain of image denoising has witnessed a significant
transformation [17]. Over the past decade, numerous CNN-based denoising methods have
surfaced, including IRCNN [18], DnCNN [19], and complex-valued deep CNN [20]. How-
ever, a common challenge faced by these methods is the depth of the network which makes
training arduous. To address the training issue, Tian et al. [21] introduced an enhanced
convolutional neural denoising network (ECNDNet), incorporating residual learning [22],
dilation convolution, and batch normalization [23] to expedite network convergence. Ad-
ditionally, combining CNNs with other deep learning techniques has shown promise in
achieving improved denoising results. For instance, Zhao et al. [24] proposed a hybrid
denoising model that integrates a transformer encoder and a convolutional decoder net-
work, effectively leveraging the strengths of both networks for the successful denoising
of real images. Kumwilaisak et al. [25] devised a novel approach based on deep CNNs
and multidirectional long short-term memory networks to eliminate pine tree noise from
images. Moreover, the fusion of unsupervised learning with CNNs has paved the way for
even more versatile applications. Pang et al. [26] introduced an unsupervised deep noise
reducer to tackle the issue of overfitting due to the lack of real images.

Despite the success of various deep CNN-based methods in image denoising, many
recent approaches [27] aim to achieve enhanced performance by increasing the receptive
field. However, this potentially leads to over-smoothed results and loss of critical high-
frequency information such as edges and textures [28,29]. Therefore, this paper introduces
a novel denoising method called NGDCNet to achieve effective image denoising while
being able to better preserve the texture information of the image. The method is based on
deep CNN and replaces the traditional static convolution with dynamic convolution [30].
This transformation can aggregate dynamic kernels during the convolution operation to
fully utilize the correlation within the deep features [30], giving the network the ability to
recover complex high-frequency information. However, dynamic convolution is sensitive
to noise [31]. Therefore, this paper proposes a residue-like structure that combines a noise
gating mechanism with skip connections. This residual-like structure can effectively control
the propagation of low-level features to higher levels through the learning process, thus
reducing the interference of low-level redundant features on dynamic convolution.

The main contributions of this study can be summarized as follows:

1. We propose a residual-like structure that combines the noise gating mechanism
with skip connections. The residual-like structure effectively refines the ordinary
skip connection.

2. We combine dynamic convolution and noise gating mechanisms to propose a simple
and effective network architecture that can achieve excellent denoising performance.

This paper follows a structured organization. Section 2 provides a comprehensive
review of the related work. Section 3 presents our denoising framework in detail. In
Section 4, we conduct a series of comparative experiments to showcase the effectiveness of
the proposed denoising methods. Section 5 concludes the work presented in this paper.
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2. Related Work

Recently, denoising models founded on CNNs have garnered significant attention,
largely owing to their outstanding performance [32,33]. CNN-based denoising models
typically involve a manageable number of hyperparameters, reducing the need for exten-
sive manual intervention and often ensuring relatively fast operation speeds [34–36]. One
notable denoising model is the denoising CNN proposed by Zhang et al. [19] (DnCNN).
By integrating residual learning [22] and batch normalization [23], the training process of
DnCNN is accelerated, significantly improving denoising performance. Building upon
DnCNN, Helou et al. [37] introduced a blind universal image fusion denoiser (BUIFD) that
incorporates a noise level estimation network into the model. This addition allows BUIFD
to process images with a broad range of noise levels effectively. Zhang et al. [18] designed
the image recovery CNN (IRCNN) for blind image denoising, utilizing dilated convolu-
tion [38] to expand the receptive field. A fast and flexible denoising network (FFDNet) was
proposed in [39] for generalized image denoising to address inflexible denoising models.
FFDNet utilizes an adjustable noise level map as a network input, enabling it to handle
various noise levels and effectively remove spatially varying noise.

Furthermore, Ref. [40] introduced a deep residual CNN (DRCNN) for image denoising,
leveraging residual learning to enhance denoising performance. Xu et al. [41] developed
a noise fusion CNN (NFCNN) with a multi-level architecture for image denoising, incor-
porating two branches to predict potentially clean and residual images, which are then
fused to generate results for the subsequent stage. DeamNet [42] introduced adaptive
consistency prior (ACP) to augment traditional consistency priors. Li et al. [43] proposed
an all-in-one image recovery network (AirNet) capable of recovering various degraded
images using a single network for unknown corruptions, rendering it flexible and effec-
tive for image recovery. DRUNet [44], a combination of U-Net and ResNet [22], offers
pre-trained denoisers that are both flexible and highly effective, showcasing state-of-the-art
denoising performance. Despite their impressive performance, these models tend to be
overly complex for practical denoising scenarios. A robust deformable denoising CNN
(RDDCNN) was proposed by Tian et al. [45]. The RDDCNN comprises three blocks: the
deformable block (DB), the enhanced block (EB), and the residual block (RB). The DB
extracts more representative noise features by utilizing a deformable learnable kernel and a
stacked convolutional architecture based on the relationship of surrounding pixels. The
EB promotes contextual interactions through a novel combination of dilated convolution,
convolutional layers, batch normalization, and ReLU, enhancing the learning capacity of
the RDDCNN. To address the challenge of long-term dependencies, the RB is employed
to augment the ability of shallow layers to remember deep-layer information, facilitating
the construction of clean images. Shen et al. [31] introduced an efficient denoising network
named ADFNet, leveraging improved dynamic convolution. In particular, Ref. [31] devised
a spatially enhanced kernel generation (SEKG) module to enhance dynamic convolution.
This enhancement facilitates the learning of spatial context information while maintaining
minimal computational complexity. Tian et al. [46] introduced a multistage image denoising
CNN called MWDCNN which operates through three stages: dynamic convolution block
(DCB), two cascaded wavelet transforms with enhancement blocks (WEBs), and a residual
block (RB). The DCB utilizes dynamic convolution to adaptively adjust the parameters of
multiple convolutions, achieving a balance between denoising performance and computa-
tional cost. WEB leverages a combination of signal processing techniques such as wavelet
transforms and discriminative learning to suppress noise, consequently recovering more
intricate information during image denoising. To further eliminate redundant features,
RB is employed to refine the obtained features, enhancing denoising and enabling the
reconstruction of clean images through an improved residual dense architecture.
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3. Proposed Method

In this subsection, we present our proposed denoising network model, comprising
noise gating dynamic convolutional block (NGDCB) and residual block (RB). NGDCB is
composed of two crucial components: dynamic convolution block (DCB) [30] and noise
gating block (NGB). Our main focus for improving the image denoising effect revolves
around these two blocks: DCB and NGB.

To elaborate, DCB plays a pivotal role in enabling the network to recover intricate high-
frequency information effectively. It achieves this by incorporating five stacked dynamic
convolutions. On the other hand, NGB effectively controls the flow of lower features
to higher levels, optimizing skip connections. In the subsequent sections, we provide
a detailed description of the network model, its constituent blocks, and the pertinent
functions involved.

3.1. Network Model

This paper introduces a network model named NGDCNet, which is composed of
NGDCB and RB as depicted in Figure 1. To provide a clearer representation of the opera-
tional process, we present it in the following equation:

Ic = NGDCNet(In) = RB(NGDCB(NGDCB(NGDCB(In)))) (1)

where Ic denotes the predicted clean image, NGDCNet denotes the function of NGDCNet,
and In denotes the given noisy image. Also, RB and NGDCB are functions of RB and
NGDCB, respectively.

Figure 1. Network model of the proposed NGDCNet.

3.2. Loss Function

To enhance the credibility of our denoising network, we chose the L1 as the loss
function for training the model parameters. This process can be expressed using the
following formula:

L1(θ) =
1
N

N

∑
i=1

|yi − NGDCNet(xi)| (2)

where xi and yi denote the i-th noisy images and given clean images, respectively, and θ
denotes the parameters in training the denoising model. In addition, N stands for the total
of noisy images.
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3.3. Noise Gating Dynamic Convolutional Block
3.3.1. Noise Gating Block

In general, residual learning is usually implemented using simple skip connections.
This can be used in many tasks [22]. However, during the denoising process, skip con-
nections may be counterproductive by passing lower redundant features to higher levels.
Therefore, this study utilizes a noise gating mechanism [47,48], which controls the transmis-
sion of trivial features by learning spatial feature correlations. The noise gating mechanism
is obtained as follows:

Gatei,j =
H

∑
i=1

W

∑
j=1

Wg · I (3)

Featuresi,j =
H

∑
i=1

W

∑
j=1

W f · I (4)

Outputi,j = δ(Gatei,j ⊙ θ(Featuresi,j)) (5)

where δ is the LeakyReLU activation function, and θ is the sigmoid function.
In this paper, we combine the noise gating mechanism with a skip connection to

form a residual-like structure named NGB. The NGB comprises two branches: one with a
standard convolutional layer denoted as Conv and the other with Conv + Sigmoid. These
branches individually process the input features, and their results are combined through
element-wise multiplication (represented as ⊗ in Figure 1. Subsequently, the combined
features undergo processing by LeakyReLU and are then summed with the output from
DCB. To provide a clearer representation of this process, we use the following equation to
describe it:

ONGB = NGB(I) = LR(C(I) ∗ CS(I)) (6)

where LR denotes LeakyReLU, CS denotes 3 × 3 kernel size of Conv + Sigmoid, and
NGB denotes noise gating convolutional block. For the first NGB, I denotes the image
disturbed by noise. For the middle stacked NGB, I is the result of summing the outputs of
the previous NGB and the DCB. ONGB is the output of NGB.

3.3.2. Dynamic Convolutional Block

The main component consists of three stacked DCBs, with each DCB comprising five
dynamic convolutional layers [30]. These are primarily aimed at extracting finer high-
frequency information. Specifically, the first layer consists of a standard convolutional
layer and ReLU to extract lower-level features. It has a kernel size of 3 × 3, with input
and output channels of 1 and 64, respectively (or 3 for color image denoising). ReLU is
responsible for transforming linear features into nonlinear features. Each DCB consists of
five DynamicConv + BN + ReLU layers. Each DCB has both input and output channels set
at 64 where the end of each DCB is connected to a skip connection improved by NGB. To
provide a clearer representation of this process, we use the following equation to describe it:

ODCB = DCB(I)

= DCBR(DCBR(DCBR(DCBR(DCBR(CR(I)))))) (7)

where CR denotes the 3× 3 kernel size of Conv + ReLU and DCBR denotes the 3× 3 kernel
size of DynamicConv + BN + ReLU. For the first DCB, I denotes the image disturbed by
noise. For the middle stacked DCB, I is the result of summing the outputs of the previous
NGB and the DCB. ODCB is the output of DCB.
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3.4. Residual Block

The residual block is employed to construct a latent clean image. It encompasses a sin-
gle convolutional layer, denoted as Conv in Figure 1. The residual block employs a residual
learning operation to eliminate noise from the provided image in the following manner:

Ic = RB(C(ONGDCB)) = In − (C(ODCB + ONGB)) (8)

where − is the ⊖ in Figure 1. C means that the kernel size of the convolution is 3 × 3.
ONGDCB is the output of the last NGDCB.

4. Experiments
4.1. Datasets and Implementation Details

For grayscale Gaussian image denoising, the train set was established by converting
the 432 training images sourced from the BSD68 [49] dataset into grayscale images. For the
subsequent evaluation, we utilized two distinct test sets. The first test set comprised 68 test
images from BSD68, while the second test set was derived from the Set12 [50] dataset. We
compared the peak signal-to-noise ratio (PSNR) [51] and structural similarity (SSIM) [52]
under varying noise conditions, benchmarking these results against the outcomes obtained
from other denoising methods.

For color Gaussian image denoising, we utilized the same 432 training images from
the BSD68 dataset. We constructed two test sets: the first set consisted of 68 test images
from BSD68, and the second set was derived from the Set5 [53] dataset. Within this context,
we performed a comparative analysis by comparing the PSNR and SSIM under diverse
noise conditions, analyzing them in relation to various denoising methods.

The hardware platform for this experiment is a Tesla V100 with 16 GB of RAM;
the software is Ubuntu18.04.5, CUDA10.1, python3.7.0; the deep learning framework
is Pytorch1.5.0; the batch processing is 4; the Adam algorithm is used to update the
gradient; the initial learning rate is 0.001, and the learning rate decreases with the number
of training times.

4.2. Evaluation Metrics

After image denoising, image quality evaluation criteria are usually introduced to
evaluate the merits of denoising models. In this paper, PSNR and SSIM are used for
evaluation and analysis.

4.2.1. PSNR

PSNR is a metric that quantifies the ratio of the maximum possible power of a signal
to the power of the noise in an image. A higher PSNR value implies that the image has
a greater proportion of signal compared to noise, resulting in better image quality. It is
measured in decibels (dB), and in general, if the PSNR exceeds 40 dB, the image quality
is very good. If MAXi denotes the maximum gray value and MSE [54] denotes the mean
square error, the PSNR is expressed by the following formula:

PSNR = 10 log10 (
MAX2

i
MSE

) (9)

MSE =
1

M × N

M−1

∑
i=0

N−1

∑
j=0

[c(i, j)− n(i, j)]2 (10)

where M × N is the total number of pixel values of the two images, respectively, c(i, j) is
the real clean image, and n(i, j) is the denoised image. A smaller MSE value means that
the difference between the predicted value and the real value is smaller, which implies that
the denoising effect is better and the performance of the model is better.
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4.2.2. SSIM

SSIM measures the similarity of two images and is a common metric for image quality
assessment [55]. Assuming input images X and Y, the SSIM of images X and Y is computed
as follows:

SSIM(X, Y) =
(2µXµY + a1)(2σXY + a2)

(µ2
X + µ2

Y + a3)(σ
2
X + σ2

Y + a4)
(11)

where µX and µY are the standard deviation of X and Y, σ2
X and σ2

Y are the variance of X
and Y, σXY is the covariance of X and Y, and a1, a2, a3 and a4 are constants. Generally,
the SSIM value is in the range of [−1, 1], and the larger the SSIM value, the better the
image denoising.

4.3. Experimental Result and Analysis
4.3.1. Comparison with State-of-the-Art Denoising Methods

• Gray Gaussian Image Denoising

To evaluate the effectiveness of the proposed NGDCNet for denoising gray Gaussian
noisy images, we compared it with five existing methods: DnCNN [19], FFDNet [39],
IRCNN [18], DRUNet [56], and NIFBGDNet [57]. The image blind denoising experiments,
presented in Table 1, involved testing these methods across three noise levels (15, 25, and
50). The quantitative results demonstrate that NGDCNet achieved notably high PSNR and
SSIM values on both datasets, indicating its superior denoising performance.

Table 1. Average PSNR (dB) and SSIM of different methods on BSD68 with noise levels of 15, 25,
and 50.

Methods
15 25 50

PSNR SSIM PSNR SSIM PSNR SSIM

FFDNet 31.43 0.8862 29.04 0.8246 26.18 0.7205

DnCNN 31.61 0.8866 29.15 0.8242 26.22 0.7161

DRUNet 31.90 0.8951 29.47 0.8369 26.58 0.7376

IRCNN 31.63 0.8881 29.14 0.8246 26.18 0.7167

NIFBGDNet 31.19 0.8754 28.82 0.8101 25.98 0.7008

NGDCNet 32.60 0.9195 30.85 0.8869 28.28 0.8040

The results presented in Table 1 demonstrate the superior performance of NGDCNet
in terms of PSNR and SSIM values when compared to the five other methods across the
three distinct noise levels. Particularly at a noise level of σ = 15, our model exhibited
substantially higher PSNR and SSIM scores than the other methods. Impressively, even at a
higher noise level (σ = 50), our model consistently maintained outstanding performance.
It is worth noting that our model achieved these impressive results without needing an
additional training set. This robust performance across varying noise levels underscores
the NGDCNet’s formidable capability to recover corrupted images effectively.

Tables 2 and 3 display the test results of NGDCNet in comparison to the other five
methods on the Set12 dataset. The results in Table 2 show that NGDCNet consistently
achieves higher average PSNR at noise levels of 15, 25, and 50 compared to the other models.
Particularly noteworthy is the performance at a noise level of 50, where NGDCNet’s
PSNR value surpasses the second-ranked method by 1.04 dB. These results underscore the
exceptional denoising effect of NGDCNet at low and medium noise levels, demonstrating
its superior ability to maintain image quality in such scenarios. Even at higher noise levels,
NGDCNet maintains excellent performance, showcasing its effectiveness across various
noise conditions.

In Table 3, it is apparent that NGDCNet achieves higher SSIM values than the other
methods at noise levels of 15 and 25. While at a noise level of 50, the SSIM value of
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NGDCNet is slightly lower than that of DRUNet, indicating NGDCNet’s ability to maintain
image structure effectively in most situations.

Table 2. Average PSNR (dB) of different methods on Set12 with noise levels of 15, 25, and 50.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise Level 15

FFDNet 31.95 34.64 32.54 31.55 32.62 31.21 31.46 34.38 31.83 32.15 32.19 32.17 32.39

DnCNN 32.14 34.96 33.09 31.92 33.08 31.54 31.64 34.52 32.03 32.36 32.37 32.38 32.67

DRUNet 32.91 35.83 33.56 32.44 33.61 31.99 32.13 34.93 33.44 32.71 32.61 32.78 33.25

IRCNN 32.53 34.88 33.21 31.96 32.98 31.66 31.88 34.50 32.41 32.36 32.36 32.37 32.76

NIFBGDNet 31.44 34.52 32.66 31.56 32.63 31.08 31.21 34.27 31.42 32.10 32.14 31.99 32.25

NGDCNet 32.96 35.59 33.86 32.25 33.51 32.51 32.68 35.24 32.89 32.76 33.28 33.21 33.40

Noise Level 25

FFDNet 29.76 32.83 30.37 29.00 30.10 28.80 29.19 32.33 29.42 30.02 29.96 29.91 30.14

DnCNN 30.03 33.04 30.73 29.24 30.37 29.06 29.36 32.40 29.67 30.19 30.06 30.05 30.35

DRUNet 30.61 33.93 31.22 29.88 30.89 29.35 29.72 32.97 31.23 30.58 30.30 30.56 30.94

IRCNN 30.12 33.02 30.81 29.21 30.20 29.05 29.47 32.40 29.93 30.17 30.02 30.05 30.37

NIFBGDNet 29.45 32.60 30.26 28.97 30.04 28.67 29.02 32.13 28.97 29.91 29.87 29.65 29.96

NGDCNet 31.19 34.05 32.28 30.14 32.31 30.68 30.94 33.79 30.95 31.57 31.80 31.64 31.78

Noise Level 50

FFDNet 27.04 29.90 27.20 25.49 26.76 25.68 26.36 29.39 25.82 27.12 27.17 26.84 27.06

DnCNN 27.26 29.91 27.35 25.60 26.85 25.82 26.48 29.34 26.32 27.18 27.17 26.87 27.18

DRUNet 27.80 31.26 27.87 26.49 27.31 26.08 26.92 30.15 28.16 27.66 27.46 27.59 27.90

IRCNN 27.16 29.90 27.33 25.48 26.66 25.78 26.48 29.36 26.17 27.17 27.14 26.86 27.12

NIFBGDNet 26.75 29.40 26.82 25.45 26.59 25.48 26.19 29.07 25.43 26.92 27.00 26.45 26.80

NGDCNet 29.03 28.23 30.06 28.49 27.49 28.39 28.85 30.54 28.10 29.53 29.47 29.10 28.94

Table 3. Average SSIM of different methods on Set12 with noise levels of 15, 25, and 50.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise Level 15

FFDNet 0.9075 0.8830 0.9069 0.9085 0.9459 0.9034 0.8999 0.8975 0.9122 0.8552 0.8762 0.8777 0.8978

DnCNN 0.9025 0.8866 0.9103 0.9121 0.9480 0.9055 0.8995 0.8996 0.9162 0.8594 0.8795 0.8807 0.9000

DRUNet 0.9168 0.9080 0.9155 0.9184 0.9537 0.9116 0.9100 0.9077 0.9310 0.8690 0.8852 0.8908 0.9098

IRCNN 0.9113 0.8831 0.9107 0.9123 0.9477 0.9064 0.9039 0.8985 0.9175 0.8589 0.8782 0.8785 0.9006

NIFBGDNet 0.8895 0.8795 0.9060 0.9074 0.9427 0.8999 0.8938 0.8952 0.9049 0.8543 0.8739 0.8710 0.8932

NGDCNet 0.9217 0.9030 0.9305 0.9267 0.9526 0.9257 0.9290 0.9128 0.9277 0.8777 0.9065 0.9044 0.9182

Noise Level 25

FFDNet 0.8711 0.8585 0.8750 0.8618 0.9166 0.8669 0.8592 0.8683 0.8689 0.8059 0.8194 0.8247 0.8580

DnCNN 0.8659 0.8613 0.8766 0.8658 0.9177 0.8681 0.8584 0.8689 0.8757 0.8109 0.8215 0.8286 0.8599

DRUNet 0.8828 0.8718 0.8857 0.8764 0.9288 0.8759 0.8692 0.8833 0.9045 0.8240 0.8294 0.8472 0.8732

IRCNN 0.8715 0.8591 0.8775 0.8646 0.9171 0.8670 0.8608 0.8684 0.8763 0.8088 0.8194 0.8268 0.8598

NIFBGDNet 0.8522 0.8541 0.8700 0.8596 0.9097 0.8610 0.8520 0.8626 0.8555 0.8006 0.8134 0.8131 0.8503

NGDCNet 0.8978 0.8808 0.9121 0.8911 0.9440 0.9030 0.9023 0.8916 0.8988 0.8533 0.8785 0.8757 0.8941

Noise Level 50

FFDNet 0.8113 0.8215 0.8115 0.7715 0.8525 0.7982 0.7977 0.8148 0.7569 0.7176 0.7235 0.7244 0.7834

DnCNN 0.8044 0.8164 0.8065 0.7715 0.8484 0.7935 0.7934 0.8088 0.7744 0.7176 0.7204 0.7245 0.7816

DRUNet 0.8267 0.8412 0.8271 0.8013 0.8724 0.8093 0.8098 0.8392 0.8423 0.7440 0.7372 0.7651 0.8096

IRCNN 0.8028 0.8159 0.8044 0.7675 0.8454 0.7953 0.7953 0.8096 0.7704 0.7155 0.7193 0.7238 0.7804

NIFBGDNet 0.7901 0.8032 0.7979 0.7640 0.8388 0.7820 0.7842 0.8000 0.7309 0.7035 0.7111 0.6993 0.7671

NGDCNet 0.8161 0.6730 0.8538 0.8603 0.7955 0.8369 0.8379 0.7974 0.8225 0.7916 0.8039 0.8075 0.8083
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• Color Gaussian Image Denoising

Table 4 displays the test results of NGDCNet in comparison with other methods on
the CBSD68 [49] dataset. It is evident that NGDCNet exhibits remarkable performance
in color Gaussian image denoising. NGDCNet consistently outperforms other methods,
as indicated by its higher PSNR and SSIM values across various noise levels. Notably,
NGDCNet achieves an impressive SSIM of 0.8717 at a noise level of 50, showcasing its
ability to preserve image structure even under very high noise conditions.

Table 4. Average PSNR (dB) and SSIM of different methods on CBSD68 with noise levels of 15, 25,
and 50.

Methods
15 25 50

PSNR SSIM PSNR SSIM PSNR SSIM

FFDNet 33.88 0.9290 31.22 0.8821 27.97 0.7887

DnCNN 33.90 0.9290 31.24 0.8830 27.95 0.7896

DRUNet 34.30 0.9344 31.69 0.8926 28.51 0.8103

IRCNN 33.87 0.9285 31.18 0.8824 27.88 0.7898

NIFBGDNet 33.67 0.9260 31.00 0.8769 27.70 0.7767

NGDCNet 35.34 0.9562 33.34 0.9339 29.85 0.8717

Table 5 demonstrates the test results of NGDCNet compared to other methods on
the Set5 dataset. These results reveal that NGDCNet consistently achieves higher average
PSNR and SSIM values compared to other methods at noise levels of 15 and 25. This
underscores the exceptional performance of NGDCNet, particularly in situations involving
low to medium noise levels. Impressively, at the noise level of 50, NGDCNet achieves a
PSNR value of 30.52 dB, surpassing DRUNet by 0.65 dB.

Table 5. Average PSNR (dB) of different methods on Set5 with noise levels of 15, 25, and 50.

Images Baby Bird Butterfly Head Woman Average

Noise Level 15

FFDNet 35.48 35.45 33.65 31.67 35.31 34.31

DnCNN 35.39 34.62 33.61 31.35 35.25 34.05

DRUNet 35.79 35.93 34.85 32.13 35.81 34.90

IRCNN 35.47 35.28 33.64 31.63 35.27 34.26

NIFBGDNet 35.28 34.60 33.36 31.18 35.21 33.93

NGDCNet 36.88 35.91 34.84 31.24 36.86 35.15

Noise Level 25

FFDNet 33.31 33.00 31.04 30.30 32.91 32.11

DnCNN 33.21 32.33 31.08 30.16 32.79 31.91

DRUNet 33.67 33.57 32.31 30.65 33.44 32.73

IRCNN 33.22 32.69 30.95 30.28 32.77 31.98

NIFBGDNet 33.04 32.20 30.84 30.07 32.72 31.78

NGDCNet 35.24 34.13 32.87 30.95 34.74 33.59

Noise Level 50

FFDNet 30.52 29.41 27.77 28.70 29.80 29.24

DnCNN 30.28 28.83 27.69 28.51 29.48 28.96

DRUNet 31.01 30.17 28.79 29.06 30.34 29.87

IRCNN 30.34 29.03 27.54 28.54 29.55 29.00

NIFBGDNet 30.04 28.77 27.44 28.45 29.40 28.82

NGDCNet 31.68 30.75 29.67 29.54 30.98 30.52



Electronics 2023, 12, 5019 10 of 16

Table 6 further supports the superiority of NGDCNet, with its SSIM values outper-
forming other methods across all three noise levels. Even at the noise level of 50, the SSIM
value of NGDCNet exceeds the second-ranked method by 0.0336, indicating NGDCNet’s
ability to effectively preserve image structure under varying noise conditions.

Table 6. Average SSIM of different methods on Set5 with noise levels of 15, 25, and 50.

Images Baby Bird Butterfly Head Woman Average

Noise Level 15

FFDNet 0.9259 0.9384 0.9573 0.8116 0.9531 0.9173

DnCNN 0.9235 0.9312 0.9560 0.7938 0.9521 0.9113

DRUNet 0.9309 0.9466 0.9641 0.8320 0.9580 0.9263

IRCNN 0.9261 0.9377 0.9558 0.8069 0.9521 0.9157

NIFBGDNet 0.9226 0.9264 0.9540 0.7808 0.9521 0.9072

NGDCNet 0.9583 0.9726 0.9730 0.8761 0.9723 0.9505

Noise Level 25

FFDNet 0.8936 0.9080 0.9379 0.7427 0.9314 0.8827

DnCNN 0.8898 0.8994 0.9360 0.7372 0.9281 0.8781

DRUNet 0.9008 0.9229 0.9501 0.7663 0.9394 0.8959

IRCNN 0.8918 0.9037 0.9342 0.7455 0.9276 0.8806

NIFBGDNet 0.8872 0.8910 0.9348 0.7269 0.9274 0.8735

NGDCNet 0.9402 0.9567 0.9614 0.8632 0.9593 0.9362

Noise Level 50

FFDNet 0.8346 0.8406 0.8963 0.6676 0.8871 0.8252

DnCNN 0.8227 0.8226 0.8902 0.6618 0.8758 0.8146

DRUNet 0.8481 0.8705 0.9172 0.6892 0.8997 0.8449

IRCNN 0.8284 0.8268 0.8859 0.6668 0.8783 0.8172

NIFBGDNet 0.8165 0.8126 0.8869 0.6539 0.8725 0.8085

NGDCNet 0.8766 0.8925 0.9176 0.8064 0.8992 0.8785

Table 7 compares the parameter-based denoising methods. It is worth noting that
DRUNet has the largest number of parameters and IRCNN has the smallest number of
parameters. The number of parameters of FFDNet, DnCNN, NIFBGDNet, and NGDCNet
are in the middle of the range. From the experimental results, DRUNet has the best
denoising performance compared to FFDNet, DnCNN, NIFBGDNet, and IRCNN, while
DRUNet also has the highest model complexity. NGDCNet surpasses these methods in
denoising performance and achieves a desirable balance between model complexity and
denoising effect.

Table 7. The number of parameters of different denoising methods.

Methods
Model Parameters

Gray Color

FFDNet [39] 485 k 852 k

DnCNN [19] 666 k 668 k

DRUNet [56] 32,639 k 33,641 k

IRCNN [18] 186 k 188 k

NIFBGDNet [57] 327 k -

NGDCNet 245 k 246 k

4.3.2. Comparison of Visual Effects

To assess the denoising performance of NGDCNet, we conducted a visual comparison
with several competing methods, including FFDNet [39], DnCNN [19], DRUNet [56],
IRCNN [18], and NIFBGDNet [57]. Our method was evaluated by selecting specific
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images from the test set and zooming into a region of the predicted image for visual
observation. A clearer observation region indicated superior denoising performance for
the corresponding method.

For grayscale Gaussian image denoising, a visual comparison was conducted using
selected images from the BSD68 [49] and Set12 [50] datasets. As shown in the results
presented in Figure 2, at a noise level of 25, most of the other denoising methods were
effective in reducing noise. However, these methods tended to overly smooth textured
areas, compromising the texture details. When the noise level was increased to 50, as
depicted in Figure 3, the limitations of other methods became more apparent. The enlarged
portion of the images revealed that the results from these methods were unsatisfactory,
with significant corruption of texture information. While DRUNet achieved clarity in the
overall view, a closer examination revealed distortion in some of the smaller textures. In
contrast, NGDCNet, while appearing slightly blurred overall, effectively preserved the
original texture information in the image, as evident from the enlarged portion.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Denoising results of a gray noisy image from BSD68 [49] with σ = 25. (a) Clean image,
(b) Noisy image (20.43 dB/0.3973), (c) FFDNet (29.24 dB/0.8028), (d) DnCNN (29.38 dB/0.8040),
(e) IRCNN (29.32 dB/0.8015), (f) NIFBGDNet (29.09 dB/0.7930), (g) DRUNet (29.66 dB/0.8150),
(h) Ours (31.24 dB/0.8674).

(a) (b) (c) (d)

Figure 3. Cont.
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(e) (f) (g) (h)

Figure 3. Denoising results of a gray noisy image from Set12 with σ = 50. (a) Clean image, (b) Noisy
image (14.90 dB/0.2869), (c) FFDNet (25.49 dB/0.7715), (d) DnCNN (25.60 dB/0.7715), (e) IRCNN
(25.48 dB/0.7675), (f) NIFBGDNet (25.45 dB/0.7640), (g) DRUNet (26.49 dB/0.8013), (h) Ours
(28.49 dB/0.8603).

For color Gaussian image denoising, the comparative denoising results are presented
in Figures 4 and 5. Upon closer examination, it was evident that our model effectively
removed the majority of noise while preserving more detailed texture information, a feat
not achieved by other methods. These visual comparisons further underscore the superior
denoising performance of NGDCNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Denoising results of a color noisy image from Set5 with σ = 25. (a) Clean image, (b) Noisy
image (20.47 dB/0.6689), (c) FFDNet (31.04 dB/0.9379), (d) DnCNN (31.08 dB/0.9360), (e) IRCNN
(30.95 dB/0.9342), (f) NIFBGDNet (30.84 dB/0.9348), (g) DRUNet (32.31 dB/0.9501), (h) Ours
(32.87 dB/0.9614).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Denoising results of a color noisy image from CBSD68 with σ = 50. (a) Clean image,
(b) Noisy image (14.68 dB/0.3197), (c) FFDNet (28.29 dB/0.7577), (d) DnCNN (28.24 dB/0.7603),
(e) IRCNN (28.19 dB/0.7614), (f) NIFBGDNet (27.96 dB/0.7507), (g) DRUNet (28.81 dB/0.7814),
(h) Ours (30.27 dB/0.8541).

4.3.3. Ablation Experiments

In this section, the effects of DCB and NGB on NGDCNet’s performance were studied.
Experiments were conducted on grayscale and color Gaussian images with noise levels of 15,
25, and 50. In order to evaluate the contributions of DCB and NGB, these components were
individually removed from NGDCNet’s architecture for comparison. Specifically, for DCB,
× means replacing the dynamic convolution in DCB with the standard convolution using
the 3 × 3 kernel. For NGB, × means to remove NGB and just do a normal skip connection.

Tables 8 and 9 present the results of these ablation experiments for grayscale and
color Gaussian images, respectively. The tables demonstrate that using either DCB or NGB
alone results in improved performance for NGDCNet in both tasks. This suggests that
DCB’s capacity to efficiently extract high-frequency information from features enhances the
model’s performance in image denoising. NGB is effective in controlling the propagation of
low-level feature information to higher levels, contributing to performance improvements
in the denoising task.

From the results in these tables, it can be observed that NGDCNet using DCB alone
provides limited improvements in denoising performance because dynamic convolution
is sensitive to noise [31]. In contrast, NGB can effectively filter information in the lower
layers. When both DCB and NGB are combined, NGDCNet’s denoising performance is
significantly enhanced. The last row in these tables shows the results of NGDCNet with
combined DCB and NGB, demonstrating the effectiveness of this combined approach.

Table 8. Study of ablation experiments of different components in gray scale image denoising on
BSD68 [49] test set.

DCB GB
15 25 50

PSNR SSIM PSNR SSIM PSNR SSIM

× × 32.25 0.9138 30.23 0.8787 26.06 0.7507

� × 32.38 0.9154 30.49 0.8803 26.13 0.7772

× � 32.46 0.9163 30.78 0.8837 26.25 0.7827

� � 32.60 0.9195 30.85 0.8869 28.28 0.8040
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Table 9. Study of ablation experiments of different components in color scale image denoising on
CBSD68 test set.

DCB GB
15 25 50

PSNR SSIM PSNR SSIM PSNR SSIM

× × 34.63 0.9520 32.84 0.9281 28.64 0.8337

� × 34.82 0.9522 32.85 0.9290 29.13 0.8392

× � 35.12 0.9539 33.20 0.9312 29.26 0.8654

� � 35.34 0.9562 33.34 0.9339 29.85 0.8717

5. Conclusions

In this paper, we introduced a novel image denoising method, NGDCNet, which
leverages a noise gating mechanism and dynamic convolution. NGDCNet is constructed
through a collaboration of dynamic convolution blocks, noise gating blocks, and residual
blocks. The dynamic convolution blocks employ stacked dynamic convolutions to capture
high-frequency information within the features. The noise gating blocks effectively manage
the flow of low-level feature information to higher layers, enhancing the model’s ability to
process noise. Additionally, the residual blocks leverage residual operations to generate a
denoised image.

Our proposed NGDCNet demonstrates impressive denoising performance, particu-
larly in preserving image structure and fine details, even in high noise conditions. In future
work, we aim to further evaluate NGDCNet in real image denoising tasks, extending its
application to various practical scenarios. We believe that NGDCNet holds great promise
for enhancing image quality and addressing real-world denoising challenges.
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