
Citation: Liu, Y.; Zhang, R.; Zhou, S.

Vehicle Simulation Algorithm for

Observations with Variable

Dimensions Based on Deep

Reinforcement Learning. Electronics

2023, 12, 5029. https://doi.org/

10.3390/electronics12245029

Academic Editor: Heung-Il Suk

Received: 29 November 2023

Revised: 13 December 2023

Accepted: 14 December 2023

Published: 16 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Vehicle Simulation Algorithm for Observations with Variable
Dimensions Based on Deep Reinforcement Learning
Yunzhuo Liu 1,* , Ruoning Zhang 2 and Shijie Zhou 1

1 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: liuyunzhuo@uestc.edu.cn

Abstract: Vehicle simulation algorithms play a crucial role in enhancing traffic efficiency and safety by
predicting and evaluating vehicle behavior in various traffic scenarios. Recently, vehicle simulation
algorithms based on reinforcement learning have demonstrated excellent performance in practical
tasks due to their ability to exhibit superior performance with zero-shot learning. However, these
algorithms face challenges in field adaptation problems when deployed in task sets with variable-
dimensional observations, primarily due to the inherent limitations of neural network models. In this
paper, we propose a neural network structure accommodating variations in specific dimensions to
enhance existing reinforcement learning methods. Building upon this, a scene-compatible vehicle
simulation algorithm is designed. We conducted experiments on multiple tasks and scenarios using
the Highway-Env traffic environment simulator. The results of our experiments demonstrate that
the algorithm can successfully operate on all tasks using a neural network model with fixed shape,
even with variable-dimensional observations. Our model exhibits no degradation in simulation
performance when compared to the baseline algorithm.

Keywords: vehicle simulation; deep neural network; reinforcement learning; field adaptation;
variable-dimensional observations

1. Introduction

The primary objective of vehicle simulation is to emulate potential vehicle trajecto-
ries within the traffic system, enabling prediction of vehicle behavior in various traffic
scenarios. Vehicle simulation provides substantial simulated data support for various
downstream tasks across diverse scenarios. Consequently, it plays a crucial role in prac-
tical applications. Dawood et al. [1] utilized a knowledge-driven simulation system to
seek reliable road construction strategies, thereby preventing wasted resources. Gam-
bardella et al. [2] incorporated the simulation system into the combined rail/road transport
system, which improved the operational efficiency of the system. Wang et al. [3] deployed
vehicle simulation methods in the context of path planning and devised individualized
driving trajectories for vehicles by setting constraint factors. Aycin et al. [4] investigated
car-following models using simulation algorithms, with Li et al. [5] providing a thorough
analysis and proposing vehicular congestion control strategies based on these models.
Building upon this, Wang et al. [6] used vehicle simulation techniques to investigate inter-
section traffic scenarios and formulated car-following and lane-changing rules applicable
to varied traffic conditions. Krajzewicz et al. [7] followed similar methods and proposed
an efficient traffic signal light control method. Considering that these tasks are oriented
towards real-world scenarios, the design of a simulation algorithm capable of adequately
representing real-world characteristics has long been a focal point in academic research.

Traditional vehicle simulation algorithms typically employ mathematical models to
describe the driving of vehicles within traffic systems [8,9]. These mathematical models

Electronics 2023, 12, 5029. https://doi.org/10.3390/electronics12245029 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12245029
https://doi.org/10.3390/electronics12245029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-0451-2309
https://doi.org/10.3390/electronics12245029
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12245029?type=check_update&version=1

Electronics 2023, 12, 5029 2 of 17

often focus on the primary factors influencing vehicles, such as lead vehicle speed and inter-
vehicle gaps [10], and possess strong interpretability [11]. However, due to the constraints
of model complexity, these mathematical models are often only applicable to relatively
simple traffic systems, such as the single-lane car-following model and simple intersections
with few vehicles and influencing factors [12]. Describing complex traffic systems using
mathematical models is exceedingly challenging due to the multitude of factors involved
and the potential interactions among them, resulting in model distortion or rendering the
construction of such mathematical models infeasible.

In recent years, with the rapid advancement of machine learning theories, an increas-
ing number of researchers have begun to explore the use of deep neural networks to address
complex scenarios that are difficult to simulate using traditional mathematical models [13],
achieving remarkable results. Machine learning leverages neural networks with a large
number of parameters to learn and analyze real-world data. For instance, machine learning
has been utilized for the analysis of sandstorm conditions [14]. In the field of transportation,
neural networks have been extensively deployed for the analysis of driver behavior [15]
and for prediction of road traffic conditions [16], capturing intricate relationships among
various influential factors. Consequently, it enables more accurate modeling of vehicle
behavior and traffic conditions [17], thereby making vehicle simulations in complex en-
vironments possible. Regrettably, machine learning is a data-driven modeling approach,
necessitating a large amount of data for model-learning to effectively extract implicit data
features and patterns [18,19]. The demand for training data restricts the efficacy of such
simulation methods in real-world scenarios that lack adequate data due to limited vehicular
traffic or other related factors.

To solve the aforementioned shortcomings, some researchers have begun exploring
self-supervised machine learning methods to alleviate the reliance on data [20]. Out
of all the self-supervised learning algorithms, reinforcement learning methods are the
most widespread and have been used to analyze car-following models [21], traffic signal
control [22], and traffic scheduling problems [23]. In contrast to supervised learning, which
relies on labeled data as input, reinforcement learning is a goal-driven method [24,25].
Researchers predefine the objectives they wish to achieve in specific environments and
assign rewards based on the significance of attaining these objectives. The entity interacting
with the environment, often referred to as the agent, learns through trial and error within the
environment, reinforcing the strategy that led to a satisfactory reward. Vehicle simulation
algorithms based on reinforcement learning have shown unexpected success, particularly
in micro-level scenarios [26].

Considered from the perspective of current technological developments, the popu-
larity of electric vehicles, represented by Tesla, has been booming in automotive markets
worldwide [27], including Europe, the United States, and China. Consequently, the vehicle-
control problem associated with autonomous vehicles is garnering increased attention
from researchers [28]. Reinforcement learning methods, with their robust capability of
interactions with the real-world, support making decisions in complex and uncertain en-
vironments, demonstrating adaptiveness and predictiveness. This has led to a majority
of vehicle control techniques being grounded in reinforcement learning methods [29,30].
However, constrained by the mathematical nature of neural networks, reinforcement learn-
ing models require the observation dimensions provided by the environment to be fixed,
otherwise rendering them inoperable within matrices of neural networks. In the real world,
observation dimensions may fluctuate for various reasons. For instance, rainy or foggy
conditions narrow visibility, while congested traffic increases the number of vehicles within
the field of view. These variations pose challenges for reinforcement learning models.
This challenge permeates not only vehicle-control problems but also the field of vehicle
simulation, which suffers from the relationships between vehicles, thereby exacerbating
the complexity of the issue [31].

In this paper, we construct a deep reinforcement learning neural network model
capable of handling observations with variable dimensions. Building upon this, we propose

Electronics 2023, 12, 5029 3 of 17

a vehicle simulation algorithm that can be utilized across a set of traffic systems or scenarios
where dimensions of observations may vary. The main contribution of this method lies in
the design of processing networks that map variable-dimensional observations into fixed-
dimensional feature matrices, integrating them into a deep neural network framework for
reinforcement learning. This approach inherits advantages from both machine learning
theory and reinforcement learning methods, enabling the algorithm to handle complex
traffic systems, extract their inherent features, and, even in cases of limited or absent data,
seek vehicle operational patterns and conduct vehicle simulations through goal-driven and
trial-and-error approaches. These advantages can be extended within our framework to
a broader range of traffic systems, particularly those involving tasks and scenarios with
non-fixed observation dimensions. We illustrate the scalability of this structure, indicating
that more advanced feature extraction and decision-making methods can be integrated into
the neural network model.

To provide a more practical demonstration of the model’s applicability, we imple-
mented our algorithm in the Highway-Env traffic environment simulator and conducted
experiments on a diverse set of tasks with variable-dimensional observations. The results
indicate that a neural network model with fixed shape can operate effectively across vari-
ous scenarios, aligning the vehicle’s behavior with predetermined objectives, even when
observation dimensions across tasks are dissimilar. A reasonable concern regarding this
model pertains to the potential training difficulties posed by additional neural networks,
thereby impacting the effectiveness of simulation results. We compared the results of
our model with those of a baseline model, demonstrating that this structure does not
compromise performance.

2. Related Work
2.1. Vehicle Simulation

The methods of vehicle simulation vary based on the granularity of the model tailored
to practical demands. Generally, micro-level models focus on detailed representation of
individual vehicles, considering interactions among vehicles and their interaction with the
road network [32]. Conversely, macro-level traffic models employ aggregated variables and
mathematical equations to describe traffic, emphasizing the overall properties of the traffic
system, including macroscopic indicators such as speed, traffic flow, and traffic density.
These models utilize large-scale data and variables to describe and predict traffic without
involving the behavior of individual vehicles [33]. Given the focus of this paper on inter-
vehicle interactions and vehicle behavior prediction, micro-level models are more relevant.

In the micro-level model, the primary mathematical approach is based on vehicle-
following models. These models simulate highway traffic conditions through differential
equations.The mathematical expression based on density is as follows:

dρ

dt
+

d(Q(ρ))

dx
(1)

In the above equation, the symbol ρ represents traffic density (i.e., the number of
vehicles per unit length), t represents time, and x denotes spatial coordinates. Q(ρ) repre-
sents the flow-density relationship function, expressing the pattern of traffic flow variation
with density. The specific form of the function Q(ρ) depends on the traffic flow model
employed. Taking the LWR model (Lighthill–Whitham–Richards model) as an example, its
flow-density relationship typically manifests in the following form:

Q(ρ) = V(ρ)× ρ (2)

The model exhibits significant interpretability advantages and effectively describes
real-world scenarios; however, it also possesses certain limitations, such as inadequate
adaptation to characteristics of specific road segments or complex intersections.

Building upon this, some scholars have proposed behavior-based modeling approaches.
Such approaches emphasize simulating the behavior and interactions of traffic participants

Electronics 2023, 12, 5029 4 of 17

to more accurately analyze real traffic phenomena. Taking cellular automata as an example,
this approach discretizes intersections into a grid of cells to model vehicle movement.
While this approach offers greater flexibility, its discretization may limit the model’s com-
putational speed and accuracy [34]. Furthermore, heuristic-based driver task modeling
approaches attempt to create agents capable of driving on the road, but they may struggle
to fully simulate real driver behaviors [35].

2.2. Reinforcement Learning

Reinforcement learning is a subfield of machine learning and is typically characterized
by an agent–environment framework [36]. In this framework, the agent selects actions
to interact with the environment, altering the environmental state and obtaining pre-
defined rewards [37]. Such interactions will be repeated over a sequence of timesteps
until the environment emits the termination signal or the time limit is reached. Generally
speaking, the interaction between agents and environment is modeled as a Markov decision
process (MDP) [38], denoted as the tuple <S ,A,D, T ,R>. S denotes the state space of
the environment, while A represents the action space that the agent can choose from.
D ∈ P(S) signifies the probability distribution of the initial state within the state space, and
T : S ×A → P(S) stands for the state transition probability function. R ∈ S ×A×S → R
is the function that determines the rewards obtained by the agent. In the above definition,
P(S) refers to a probability distribution over the state space S .

The agent possesses a policy function π(s) : S → P(A) for the selection action
and interacts with the environment [39]. The policy function computes the probability
distribution of selecting action a from the action space S when the agent is in a given
state s ∈ S . The aim of the agent is to accumulate as much total reward Rtot = ∑∞

t=0 Rt
as possible through its interactions with the environment. Considering the temporal
effects, immediate rewards are preferred over delayed rewards of equal value. Therefore,
an additional discount factor γ ∈ [0, 1] is introduced to decrease the value of future rewards,
thus evaluating using the cumulative discounted reward Rtot = ∑∞

t=0 γtRt. In order to
optimize the policy of the agent, a series of tuples <st, at, rt, st+1> is used to record the
trajectory of the agent–environment interactions. st is the state of the environment at
time t. at is the action taken by agent at time t. rt is the reward obtained by the agent at
time t, and st+1 represents the state of the environment at time t + 1. The agent needs
to discern patterns of environmental changes and learn a policy that can maximize the
rewards obtained.

The state value function Vπ(s) is defined as the expectation of a cumulative discounted
reward obtained by the agent from state s to the end following policy π, denoted as
Vπ(s):= E

[
∑∞

t=0 γtR(st, at, st+1)|s0 = s; at ∼ π(·|st)
]

[40]. Based on this, the state-action
value function Qπ(s, a):= E

[
∑∞

t=0 γtR(st, at, st+1)|s0 = s; a0 = a; at ∼ π(·|st)
]

is defined as
the expectation of a cumulative discounted reward when selecting action a in state s.
Considering its mathematical significance, a reasonable strategy is to greedily select the
action that maximizes the reward expectations at each timestep, i.e., π(s):= argmax

a∈A
Q(s, a).

This shifts the objective of reinforcement learning towards accurately estimating Vπ(s) and
Qπ(s, a) as much as possible.

2.3. Deep Q-Learning

The Bellman equation [41] establishes the relationship between the current state-
action and the future state-action based on dynamic programming, i.e., Qπ(s, a):= E[rt +
γ maxQπ(st+1, at+1)|st = s; at = a]. Building upon this, traditional Q-learning methods
use a Q-table to estimate Vπ(s) and Qπ(s, a) [42,43]. However, such methods suffer from
the “curse of dimensionality” and cannot be applied to environments with a vast number
of states. On one hand, the immense number of states would elevate the dimensionality
of the table to unacceptable levels that cannot be recorded or calculated. On the other
hand, exploration would make it difficult to traverse all possible states in the environment,
with unexplored states posing a potentially destructive impact on the algorithm. Therefore,

Electronics 2023, 12, 5029 5 of 17

a computational model capable of handling a large number of states and robust to unvisited
states is imperative.

With the development of deep neural networks, researchers have begun to explore the
use of deep learning as a solution for reinforcement learning, known as deep Q-learning
(DQN) [44,45]. Neural networks take states as inputs and then output Qπ(s, a) for each
action. Unlike other deep learning tasks, the target of DQN is hard to obtain due to the
length and randomness of MDP. Therefore, such networks often update parameters by
comparing the difference in value estimation between two steps with the reward between
these two steps. Temporal difference loss function lossTD = {

[
Qπ

t (st, at)−Vπ
t+1(s)

]
− rt}2

is used in the training phase of DQN [46].

3. Methods
3.1. Variable-Dimensional Observation Processing Network

We propose a deep neural network structure capable of handling variable-dimensional
observations. This network can map input observations that undergo changes in specific
dimensions to a fixed-dimensional matrix. The network structure leverages the funda-
mental idea of matrix multiplication. Two matrices can be multiplied if the number of
columns in the first matrix is equal to the number of rows in the second matrix., and the
shape of multiplication result is independent of the specific dimension. Based on this, we
construct two encoders that map the input observations to a high-dimensional feature
space along the unchanging dimensions. These two feature matrices will be multiplied
across the changeable dimension after mapping. Since both feature matrices are derived
from the same observation, their corresponding dimensions are guaranteed to be the same.
After completing the matrix multiplication, dimensions of the feature matrices are deter-
mined only by the shape of the encoders. The data-flow diagram of the network is shown
in Figure 1.

Figure 1. Data flow diagram of the variable-dimensional observation processing network.

Using a specific situation as an example, consider an input observation obs ∈ Rn×dim f ixed ,
where n is variable and dim f ixed is fixed. Two encoders, f1 : Rdim f ixed → Rdim1 are f2 :
Rdim f ixed → Rdim2 , are employed in the neural network structure to process inputs. dim1
and dim2 are values set as hyper-parameters during the initialization of the neural network
and will not change while the network is running. After the input observation undergoes
processing by the encoders, the model will output two feature matrices: f1(obs) ∈ Rn×dim1

and f2(obs) ∈ Rn×dim2 . Transpose one of the feature matrices (taking f1(obs), for instance)
and multiply it with the other feature matrix to obtain the final result f f inal(obs) = f T

1 (obs)×
f2(obs) ∈ Rdim1×n × Rn×dim2 = Rdim1×dim2 . Since the values of dim1 and dim2 are hyper-
parameters, it is implied that the dimension of this result is always fixed, and the dimension of
the result can be determined based on the specific tasks.

Additionally, as shown in Figure 1, the input observation undergoes further processing
through pooling and normalization layers. The main purpose of the pooling layer is to
reduce the dimension of the output, since downstream networks, such as the feature
processing network and decision networks, often prefer low-dimensional inputs. The
pooling layer is helpful in scenarios where the dimension of the original input is high.
The normalization layer aims to standardize the vector after pooling. This operation
enhances generalizability of the neural network. Although the network can always process

Electronics 2023, 12, 5029 6 of 17

the input observation to a determinant dimension, the value of the output feature matrix
increases as the dimension of the input observation increases. Normalization can avoid
inconsistency in the output matrix caused by this.

3.2. Decision Networks and Vehicle Simulation Algorithm

The process of driving can be regarded as a Markov decision process (MDP) [47] where
the next state of a vehicle only depends on its current state and on the actions it takes in
this state. Simulating vehicle behavior essentially involves studying how vehicles choose
their actions in specific scenarios. In this paper, we model the decision-making problem
during the process of driving as a reinforcement learning problem. As the components of
reinforcement learning, the driving scenarios are regarded as the environment;

the behaviors that vehicles can take are considered the action; and the goals of the
vehicles are seen as the reward.

We generalize the goals of real-world vehicles into three aspects:

(1) Purpose: Vehicles typically aim to reach a predefined destination, such as a specific
exit at an intersection or a particular location on the road.

(2) Velocity: Vehicles want to arrive at their destination as quickly as possible by increas-
ing their driving speed.

(3) Safety: Vehicles always strive to avoid collisions with other vehicles.

These three goals guide the training of vehicle strategies in the simulation through
the reward function. Building upon this, the reward function typically consists of
three components:

(1) Purpose reward: If the target vehicle reaches its destination, it will receive the pur-
pose reward.

(2) Velocity reward: At each timestep, the target vehicle will receive a velocity reward
related to its driving speed.

(3) Collision reward (penalty): If the target vehicle collides with other vehicles, it will
incur a collision reward (penalty).

Generally speaking, the purpose reward is assigned a relatively large value, while the
velocity reward is relatively small. Since collisions are undesirable, the collision reward
is typically represented as a negative value. It should be noted that not every scenario
necessarily includes all three types of rewards. The composition of the reward function
depends on the specific scenario. For instance, a highway scenario often lacks a purpose
reward, while a parking scenario does not provide a velocity reward. Depending on specific
conditions, special rewards may also be provided by the environment.

The structure of the decision neural network is shown in Figure 2. As the most
value-based reinforcement learning algorithm, we construct a neural network model to
estimate the expected rewards for each action that the vehicle can take based on the current
observations of the environment. The neural network model consists of the three following
components, and the pseudocode for the neural network is presented as Algorithm 1.

(1) Observation Processing Layer: The purpose of this layer is to map the input observa-
tions, which may vary in specific dimensions, to fixed-dimensional feature matrices.
The fixed-dimensional matrices will be provided to downstream networks. In this
paper, we employ the variable-dimensional observation processing network proposed
in Section 3.1.

(2) Feature Extraction Layer: The aim of the feature extraction layer is to extract the
underlying information in the fixed-dimensional feature matrices to assist the down-
stream network in evaluating the expected rewards. A single-layer linear network is
used to achieve this goal.

(3) Evaluation & Decision Layer: The purpose of this layer is to estimate the reward the
vehicle can gain after choosing each action in the current environmental state based on
the input features. With the help of value estimation, the vehicle can always greedily
select the action with the highest expected reward, in line with the goals encouraged

Electronics 2023, 12, 5029 7 of 17

by the rewards. A multi-layer perceptron is employed in this model for evaluating
the actions.

Algorithm 1: Deep Neural Network Model
Data: Current observation of vehicle obs
Result: Estimated value of each action Qπ(s, a)

1 Initialize the following network: f1(x), f2(x) : Rdim1 → Rdimin , f f eature(x) :
Rdimin → Rdimout , fQ(x) : Rdimout → Rdimaction ;

2 Map observations to the specified feature space:
y1, y2 = f1(obs), f2(obs) ∈ Rn×dimin ;

3 Multiply matrices: y f ix = yT
1 y2 ∈ Rdimin×dimin . Pool and normalize the

fixed-dimensional matrices into input feature vectors:
yin = Norm(POOLmean

(
y f ix

)
) ∈ Rdimin ;

4 Extract features of input vectors: yout = f1(yin) ∈ Rdimout ;
5 Calculate reward expectations for each action through evaluation layer:

Qπ(s, a) = fQ(yout) ∈ Rdimaction

Figure 2. The overall structure of the deep neural network model.

The objective of the whole neural network is to fit the expected reward for each
action. Considering that the exact value of cumulative rewards is difficult to obtain,
a temporal-difference loss function is used to optimize the neural network, as shown in
the Equation (3), where the target value ytarget

t = (rt + maxa∈AQt+1(st+1, a)) represents the
expected cumulative rewards starting from the next state based on the current policy:

lossTD =
n

∑
t=0

[Qt(st, at)− ytarget
t]2. (3)

To avoid the instability caused by the simultaneous updates of estimated value and
target value in the loss function, an independent network is used to compute the target
values during training. This independent network will not be updated with gradients but
rather synchronized with the original network periodically through deep copying.

During the training phase, the neural network receives state inputs from the environ-
ment and calculates the expected total rewards for executing each action under the given
situation. A separately established target network processes the state inputs of the next
timestep, predicting the expected total rewards for executing each action under the next
state. Considering that, at each timestep, the vehicle invariably performs an action and
receives a single-step reward from the environment as feedback, this reward should ap-
proach the difference between the expected total reward for the action taken in the current

Electronics 2023, 12, 5029 8 of 17

timestep and the estimated total reward under the best action in the next timestep. This is
referred to as the temporal-difference loss function, as shown in Equation (3). The neural
network employs the back- algorithm and stochastic gradient descent to update parameters
to minimize this difference. This training process is repeated for several rounds until the
limit is reached.

Considering the complexity of the traffic system, vehicles are encouraged to choose
the most favorable action at each step in trial-and-error learning if they intend to attain the
optimal trajectory. This suggests that, in the process of exploring the environment, vehicles
should select actions with higher expected rewards to probe for greater rewards.

Unfortunately, when the neural network has not been fully trained, the selection of
actions based solely on computed values can pose risks, as there might be a likelihood of
being stuck in a local optimal predicament. To address this trade-off, this paper employs
ε-exploration to enhance the performance of the model. The parameter ε is introduced in
the exploration phase. During the exploration phase in the training process, the vehicle
stochastically selects actions with a probability of ε, otherwise it selects the action with
the highest estimated reward. ε is a parameter that decreases over time, starting with a
relatively high value to encourage the vehicle to explore the environment at the beginning
of training, and decreasing to a lower value in the later stages of training to encourage the
vehicle to maximize its rewards.

Additionally, to provide an ample training dataset for the neural network, the ex-
perience replay technique is applied in the training process. Instead of being discarded
after a single update, each interaction trajectory is stored in an experience replay buffer
and repeatedly utilized until the buffer reaches capacity, at which point it is replaced by
recent trajectories [48]. The overall pseudo-code for the training of the neural network is
presented in Algorithm 2.

Algorithm 2: Training Algorithm for Deep Neural Network
Data: Simulation environment
Result: A deep neural network model based on environment

1 #training phase;
2 Initialize the experience replay buffer and parameter ϕ of model;
3 while training do
4 #explore the environment;
5 Calculate ε based on the number of current exploring rounds;
6 Select action randomly with probability ε, else select the action with the

highest reward expectations a = argmax
a∈A

fnetwork(obs; ϕ);

7 Record the data of exploration by using quadruples < obst, at, obst+1, rt > and
store into experience replay buffer;

8 if There is enough training data in the experience replay buffer then
9 #update parameters;

10 Select training data B from the experience replay buffer;
11 Calculate the reward expectations of each action based on the current and

next observations in each quadruple BQ = fnetwork(Bobst ; ϕ) and
BQ

′
= ftarget(Bobst+1 ; ϕtarget);

12 Calculate TD-loss lossTD = ∑B [BQ − (Br + γmaxQBQ
′
)]2;

13 Update parameter ϕ based on BP algorithm;
14 end
15 end

Electronics 2023, 12, 5029 9 of 17

During the simulation phase, we posit the following assumption: at each timestep,
the vehicle consistently endeavors to achieve the predefined objectives within the environ-
ment, as dictated by the real-world significance of these objectives. Therefore, we prompt
the vehicle to select actions greedily by always choosing the action with the highest reward
expectations based on the current observation and thereby generating the vehicle’s trajec-
tory within the environment. Considering that the rewards within the environment are
provided based on predefined objectives, the more rewards the vehicle obtains, the stronger
the consistency between the vehicle’s behavior and the objectives, thus rendering the
algorithm rational. The pseudo-code for the simulation algorithm is shown in Algorithm 3.

Algorithm 3: Simulation Algorithm
Data: Simulation environment
Result: Simulated trajectory of vehicle

1 Initialize the simulation environment;
2 while This round of simulation has not terminated do
3 Evaluate action value using neural networks based on observations

Q = fnetwork(obs; ϕ);
4 Take the action with the highest value a = argmax

a∈A
Qa

5 end

4. Experiments
4.1. Experimental Environment and Setting

We tested our neural network model and simulation algorithm in the Highway-
Env traffic environment simulator (ver1.8.2) [49]. The Highway-Env traffic environment
simulator is an open-source environment based on the GYM (ver0.29.1) reinforcement
learning environment framework developed by OpenAI [50]. It provides various task
scenarios that are reflective of real-world situations. In order to facilitate the smooth
operation of our model, the following hyper-parameters were set during the experiments:

(1) Learning rate: 5× 10−4. The learning rate determines the update extent to the pa-
rameters of the neural network at each step based on the loss function during the
training process. A higher learning rate leads to larger parameter updates per iter-
ation, making it less likely to get stuck in local optima; however, stability becomes
a challenge, and vice versa. To strike a balance, we opted for the value of 5× 10−4

which is commonly used in most reinforcement learning models.
(2) Replay buffer capacity: 15,000. The capacity of the replay buffer determines the num-

ber of tuples it can store. When the number of stored tuples reaches the limit, the earli-
est data in the buffer are replaced by the most recently obtained data. A larger capacity
means data can be stored in the buffer for a longer interval. This provides a greater
quantity of diverse data but also leads to lower policy consistency, and vice versa.
Since the value-based methods employed in this paper require a considerable amount
of data for training and necessitate diverse data for a comprehensive environmental
assessment, we chose a larger capacity for the replay buffer.

(3) Discount factor: 0.8. The discount factor determines the model’s emphasis on future
rewards. A higher discount factor means that future rewards have a larger value at
the current timestep, indicating a greater emphasis on future rewards, and vice versa.
The traffic simulation problem can be considered a Markov decision process with
evenly distributed rewards. Vehicles should focus more on the reward of the current
timestep. To achieve this goal, a relatively lower discount factor should be selected.

(4) Target network update interval: 50. The target network update interval determines
the frequency at which the target network synchronizes with the source network.
A larger interval leads to a lower synchronization frequency, resulting in more sta-
ble training but also in poorer consistency between the target and source networks,

Electronics 2023, 12, 5029 10 of 17

and vice versa. With the aim of balancing stability and consistency during the training
process, the update interval is set to a moderately averaged value.

We constructed our deep neural network model and simulation algorithm using
the open-source machine learning package PyTorch (ver11.8), which is based on python
(ver3.8). To ensure the fairness of our results, we employed Stable-Baselines3 (ver2.1) [51]
as the baseline for reinforcement learning. The code was deployed on a server equipped
with an Intel i9-13900KF processor made in Chinese Mainlandand NVIDIA GeForce RTX
4090 made in Chinese Mainland for computation.

4.2. Feasibility Verification

In this section, we select two highly representative real-world scenarios, highway
driving and roundabout navigation, to validate the feasibility of our model in practical situ-
ations. In both scenarios, the traffic environment simulator generates a vehicle controlled by
a reinforcement learning neural network and several vehicles controlled by predefined non-
heuristic algorithms within the simulator. At each timestep of the simulation, the neural
network is required to select one and only one action from the simulator’s predefined meta
actions— 1© accelerate, 2©maintain speed, 3© decelerate, 4© change lane left, and 5© change
lane right—and to interact with the environment. The details of each environment are as
follows. In the interest of fairness, the reward values were configured using the default
settings provided by the simulator.

Highway driving: The simulator provides a road system consisting of several straight
lanes. The vehicle controlled by the neural network starts from one side of the road and
travels toward the other side. The road is long enough that the simulation is focused on the
vehicle’s driving process without a destination. In this scenario, the vehicle is encouraged
to drive at a high speed as much as possible. The vehicle will receive a velocity reward
proportional to the driving speed, with the maximum velocity reward of 0.4 achieved at
the maximum allowable speed. In the real world, vehicles are encouraged to be in the
rightmost lane, i.e., the carriageway. Therefore, if the vehicle is in the rightmost lane, it will
receive a special reward of 0.1. Collisions with other vehicles are strictly to be avoided. If a
collision occurs during driving, the simulator will provide a negative reward of −1 and
forcibly shut down the current simulation. The total reward for the vehicle at each timestep
is the sum of the mentioned rewards.

Roundabout navigation: The simulator provides a roundabout system consisting of
two circular lanes and three exits. The vehicle controlled by the neural network enters
the roundabout from a specified entrance and exits from another specified exit. As the
target exit of the reinforcement learning vehicle may not always be the same as that of
other vehicles, the vehicle must learn to avoid collisions with exiting vehicles. In this
scenario, high-speed driving is mildly encouraged, and the vehicle will be rewarded
proportionally to its driving speed, with a maximum velocity reward of 0.2 at maximum
speed. A collision with another vehicle results in a negative reward of −1 and shuts down
the current simulation. Furthermore, from the perspective of traffic regulations, changing
lanes within the roundabout is considered to be an unsupervised behavior. It may cause
difficulties for other vehicles on the road. Therefore, whenever the vehicle selects the
“change lane” action, the simulator will provide a negative reward of −0.05. The total
reward for the vehicle at each timestep is the sum of the mentioned rewards.

As an essential basis for determining the selected actions of the vehicle and as the input
for the reinforcement learning neural network, the simulator provides observations at the
current time to the neural network at each timestep. In the aforementioned two scenarios,
the observations consist of the states of vehicles closest to the reinforcement learning
vehicle. The state of each vehicle comprises five elements: x, y, vx, vy, and presence. x and y
represent the lateral and longitudinal coordinates of the vehicle, while vx and vy represent
the vehicle’s lateral and longitudinal velocities. The presence element is a special mask,
and its value is usually 1. However, when the number of vehicles within the observation
range is less than the capacity of the observation, a state with coordinates and velocities

Electronics 2023, 12, 5029 11 of 17

both set to 0 will be used to fill the observation. In this situation, presence will be set to 0
to indicate that the corresponding observation is invalid. As a central aspect of this paper,
we seek to verify the ability of the designed neural network to handle observations with
variable dimensions. Therefore, the highway driving scenario is configured to observe the
closest four vehicles, while the roundabout navigation scenario is configured to observe
the closest five vehicles. This means the observation dimensions are 4 × 5 for the highway
scenario and 5 × 5 for the roundabout scenario. We deployed the neural network and
simulation algorithm in the simulator consistent with the pseudocode. Considering the
small data scale and medium complexity within the simulation environment, as well as the
limit of computational resources, we opted for a moderate hidden layer dimension of 256.
The parameter dimensions of each layer of the neural network are shown in Table 1. It
should be clarified that the Rectified Linear Unit (ReLU) activation function is employed to
further process the output values by the network. This is aimed at circumventing the issue
of gradient vanishing in multi-layer neural networks. Concurrently, the ReLU activation
function is linear only within the positive domain, while it remains constant at zero within
the negative domain, resulting in a sparse representation in the network, which aids in
better learning of the distinctive features. The efficacy of this activation function has been
validated in several successful research works [52,53].

Table 1. Parameter dimensions of each layer.

Layer Name Dimension Activation Function

Observation Processing Layer f1(x) 5× 256 ReLU
f2(x) 5× 256 ReLU

Feature Extraction Layer f f eature(x) 256× 256 ReLU

Evaluation & Decision Layer fQ(x) 256× 5 -

The neural network is trained for 10,000 timesteps in each scenario of the simulator,
and it generated replays using the trained neural network for simulation. Figure 3 presents
eight snapshots of the highway scenario simulation. In this simulation, the reinforcement
learning vehicle (indicated in green) is driving in the way. In order to maintain a relatively
high speed, when encountering slower vehicles (depicted in blue), the reinforcement
learning vehicle overtakes by changing lanes twice successively and then returns to the
original lane to continue its journey. Figure 4 displays eight snapshots of the roundabout
scenario simulation. In this simulation, the reinforcement learning vehicle (indicated in
green) adeptly controlled its speed to avoid collisions with other vehicles (indicated in
blue) upon entering the roundabout and passing the first exit (non-target exit), and then
exited correctly at the second exit (target exit). The simulation snapshots demonstrate that
the neural network designed in this paper is capable of handling observations of varying
dimensions using a fixed-size neural network and ultimately achieves consistent simulation
results with the scenario objectives, thereby proving its feasibility.

Figure 3. Eight snapshots of the highway scenario simulation.

Electronics 2023, 12, 5029 12 of 17

Figure 4. Eight snapshots of the roundabout scenario simulation.

4.3. Comparative Analysis

The neural network designed in this paper is an advancement on the deep Q-Learning
network, achieved by devising a fixed-shape network that endows the model with the
ability to handle observations of variable dimensions. However, the process of observation
requires careful validation, as improper processes may result in information loss and lead to
a decline in model performance. This concern is also present in the network designed in this
paper. In order to verify that the process of transforming variable-dimensional observations
into fixed-dimensional features does not lead to the loss of information in observation, we
additionally deployed a baseline network using only the deep Q-Learning network in the
experimental environment. In the baseline network, the input observations are reshaped
into column vectors without any processing. The deep Q-Learning network is incapable of
handling inputs of various dimensions. Therefore, we separately configured and trained
feature extractors for each scenario to provide the deep Q-Learning network with fixed-
dimensional features. The parameter dimensions of the deep Q-Learning network used are
shown in Table 2, where dimobs represents the current observation dimension and varies
across scenarios.

Table 2. Parameter dimensions of each layer (deep Q-Learning network).

Layer Name Dimension Activation Function

Feature Extraction Layer f f eature(x) dimobs × 256 ReLU
f2(x) 256× 256 ReLU

Evaluation & Decision Layer fQ(x) 256× 5 -

To more comprehensively demonstrate the contrast in training phases between our
neural network and the deep Q-Learning network, we introduced two additional scenarios
in the simulator for testing purposes: merge junction and U-shaped lane. Both the merge
junction and U-shaped lane scenarios focus on the process of driving on roadways. The merge
junction scenario consists of two straight lanes and one merging lane, as shown in Figure 5a.
The reinforcement learning vehicle departs from one side of the straight lane and needs
to learn how to handle merging vehicles during its process of driving, enabling itself to
travel at higher speeds without colliding with other vehicles. In the merge junction scenario,
the total reward comprises a velocity reward proportional to the speed, with a maximum
value of 0.2; a 0.1 reward for traveling in the right lane; a −1 collision penalty; and a
−0.05 lane change penalty. The U-shaped lane consists of two lanes shaped similarly to the
letter “U”, as shown in Figure 5b. The reinforcement learning vehicle must learn to handle
overtaking and lane cruising, especially during turning. The total reward in the U-shaped

Electronics 2023, 12, 5029 13 of 17

lane scenario includes a velocity reward proportional to the speed, with a maximum value
of 0.4; a 0.1 reward for traveling in the inner lane; and a −1 collision penalty.

(a) Merge junction.

(b) U-shaped lane.

Figure 5. Snapshots of the merge junction and the U-shaped lane scenarios.

We conducted experiments on the neural network designed in this paper and the
deep Q-Learning network serving as the baseline for 10,000 timesteps each and collected
their rewards obtained during the training process, as shown in Figure 6. The reward
reflects the consistency between the action of the reinforcement learning vehicle and the
objectives, thus serving as an indicator of the model’s performance. The trend depicted in
the figure illustrates that training efficiency of our method is not inferior to that of the deep
Q-Learning network in those scenarios. This indicates that our observation processing
network does not compromise the quality of the resulting features and represents a method
that can be practically applied.

(a) Highway (b) Roundabout

(c) Merge (d) U-lane

Figure 6. Reward comparison between our model and the DQN baseline.

Electronics 2023, 12, 5029 14 of 17

5. Conclusions and Discussion

In this paper, we designed a neural network model based on reinforcement learning
that is capable of handling variable-dimensional observation with a fixed network shape
to accommodate the differences in observation dimensions offered by various real-world
traffic systems. Correspondingly, we propose a neural network training algorithm and
a vehicle simulation algorithm based on the neural network. Our method circumvents
the strict limitations on input dimensions inherent to the mathematical nature of neural
networks, thereby facilitating the application of reinforcement learning methods with
excellent data processing capabilities to a broader range of vehicle simulation tasks.

Our method exhibits strong scalability. Our primary contribution lies in the design
of the neural network that maps input observation with variable dimensions to fixed-
dimensional feature matrices. From the perspective of structure, the neural network repre-
sents a transformation of the feature, signifying compatibility with other feature processing
methods. Feature processing methods such as attention mechanisms and recurrent neural
networks can be employed to reinforce fixed-dimensional feature vectors. In particular,
dimension-independent feature processing methods like convolutional neural networks
can also be applied to handle variable-dimensional observations. This adaptability allows
our framework to accommodate prospective feature processing methods, thereby achieving
superior performance.

From an application standpoint, our method can likewise be implemented in the
vehicle-control problem. This is due to our method of mapping the present state into
actions, which is also the solution to the vehicle-control problem. In this situation, the input
for the network would be supplied by the real-world environment instead of a simulator.
Real-world information is primarily gathered via onboard devices such as cameras and
sensors. The data provided by these devices comprise environmental snapshots, which
are differ from the detailed environmental information offered by simulators. Therefore,
a pretrained feature extraction network is recommended to process the data before data is
fed into the Q-network. The Q-network can be designed as discussed in Section 3, and data
can be converted into value estimations. In practice, the Q-network employed could either
be a pretrained one with fixed parameters or a pretrained neural network that is fine-tuned
through imitation learning. Nevertheless, the use of untrained neural networks is strongly
discouraged due to the unacceptable cost of trial-and-error in the real-world. Once the
action is selected, given that the vehicle interacts with the real world via mechanical devices
such as wheels, the Q-network would need to be connected to an external controller to
enact the selected actions in the real world. Figure 7 illustrates a schematic representation
of how our method can be deployed in vehicular control problems. In fact, there have
already been some studies attempting to use reinforcement learning methods for vehicle
control [54,55], but their network structures differ from the method in this paper.

Figure 7. Application of our method in the field of vehicle control.

In future work, considering that this paper is based on observations that vary across
a specific dimension, an important question pertains to how to extend the network’s

Electronics 2023, 12, 5029 15 of 17

structure so that it can be applied to observations that may vary across other dimensions.
Furthermore, a potential method that needs further exploration lies in model transfer
and generalization [56]. Historically, the transfer of neural network models from one
environment to another without excessive loss of performance has been a focal point for
reinforcement learning researchers [57]. Excellent transfer algorithms enable models to
perform well across multiple scenarios while reducing training time and storage cost.
In real-world traffic scenarios, vehicles may encounter highly variable situations. Neural
network models that can adapt to diverse environments are of paramount importance in
vehicle simulation tasks. The present work enables models to perform adequately across
multiple scenarios, even when the offered dimensions of observation differ. Such models
provide a prerequisite for cross-scenario research, including investigations about parameter
sharing [58], knowledge representation [59], and related issues. Building upon this work,
methods such as environment modeling and representation learning can be integrated into
the model to assist in making targeted decisions across different environments. Moreover,
the ultimate strategy of reinforcement learning is highly correlated with the environment
used. Consequently, from the perspective of the real-world, constructing simulators for
reinforcement learning that closely align with real-world situations is a task deserving
attention in future research, aiming to aid models in learning decisions applicable to real-
world scenarios. For instance, even though scenarios with multiple round lines and exits
in a roundabout environment exhibit some homogeneity with those involving two round
lines and three exits, they still show differences in numerous subtle aspects. Implementing
simulations of such scenarios in the simulator and deploying simulation algorithms for this
set of conditions constitute a research endeavor worth pursuing.

Author Contributions: Formal analysis, Y.L.; methodology, Y.L.; project administration, S.Z.; soft-
ware, R.Z.; writing—review & editing, Y.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62272089 and the General Program of Science and Technology Department of Sichuan
Province under Grant 2022YFG0207.

Data Availability Statement: The simulator used in this article is available at [https://github.com/
Farama-Foundation/HighwayEnv (accessed on 24 June 2023)]. In addition, the neural network toolkit
PyTorch is available at [https://pytorch.org/ (accessed on 24 June 2023)], while the Stable-Baselines3
is available at [https://github.com/DLR-RM/stable-baselines3 (accessed on 24 June 2023)].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dawood, N.N.; Castro, S.S. Automating road construction planning with a specific-domain simulation system. J. Inf. Technol.

Constr. 2009, 1, 556–573.
2. Gambardella, L.M.; Rizzoli, A.E.; Funk, P. Agent-based planning and simulation of combined rail/road transport. Simulation

2002, 78, 293–303. [CrossRef]
3. Wang, J.; Yan, Y.; Zhang, K.; Chen, Y.; Cao, M.; Yin, G. Path planning on large curvature roads using driver-vehicle-road system

based on the kinematic vehicle model. IEEE Trans. Veh. Technol. 2021, 71, 311–325. [CrossRef]
4. Aycin, M.; Benekohal, R. Comparison of car-following models for simulation. Transp. Res. Rec. 1999, 1678, 116–127. [CrossRef]
5. Li, Y.; Sun, D. Microscopic car-following model for the traffic flow: The state of the art. J. Control Theory Appl. 2012, 10, 133–143.

[CrossRef]
6. Wang, J.; Lv, W.; Jiang, Y.; Qin, S.; Li, J. A multi-agent based cellular automata model for intersection traffic control simulation.

Phys. A Stat. Mech. Its Appl. 2021, 584, 126356. [CrossRef]
7. Krajzewicz, D.; Brockfeld, E.; Mikat, J.; Ringel, J.; Rössel, C.; Tuchscheerer, W.; Wagner, P.; Wösler, R. Simulation of modern traffic

lights control systems using the open source traffic simulation SUMO. In Proceedings of the 3rd Industrial Simulation Conference
2005, EUROSIS-ETI, Berlin, Germany, 9–11 June 2005; pp. 299–302.

8. Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 1981, 15, 105–111.
[CrossRef]

9. Koukounaris, A.I.; Stephanedes, Y.J. Connected Intelligent Transportation System Model to Minimize Societal Cost of Travel in
Urban Networks. Sustainability 2023, 15, 15383. [CrossRef]

https://github.com/Farama-Foundation/HighwayEnv
https://github.com/Farama-Foundation/HighwayEnv
https://pytorch.org/
https://github.com/DLR-RM/stable-baselines3
http://doi.org/10.1177/0037549702078005551
http://dx.doi.org/10.1109/TVT.2021.3130932
http://dx.doi.org/10.3141/1678-15
http://dx.doi.org/10.1007/s11768-012-9221-z
http://dx.doi.org/10.1016/j.physa.2021.126356
http://dx.doi.org/10.1016/0191-2615(81)90037-0
http://dx.doi.org/10.3390/su152115383

Electronics 2023, 12, 5029 16 of 17

10. Zhao, X.M.; Gao, Z.Y. A new car-following model: Full velocity and acceleration difference model. Eur. Phys. J. B-Condens. Matter
Complex Syst. 2005, 47, 145–150. [CrossRef]

11. Saifuzzaman, M.; Zheng, Z. Incorporating human-factors in car-following models: A review of recent developments and research
needs. Transp. Res. Part C Emerg. Technol. 2014, 48, 379–403. [CrossRef]

12. Ranjitkar, P.; Nakatsuji, T.; Kawamua, A. Car-following models: An experiment based benchmarking. J. East. Asia Soc. Transp.
Stud. 2005, 6, 1582–1596.

13. Shokri, D.; Larouche, C.; Homayouni, S. A Comparative Analysis of Multi-Label Deep Learning Classifiers for Real-Time Vehicle
Detection to Support Intelligent Transportation Systems. Smart Cities 2023, 6, 2982–3004. [CrossRef]

14. Wang, X.; Yang, Z.; Feng, H.; Zhao, J.; Shi, S.; Cheng, L. A Multi-Stream Attention-Aware Convolutional Neural Network:
Monitoring of Sand and Dust Storms from Ordinary Urban Surveillance Cameras. Remote Sens. 2023, 15, 5227. [CrossRef]

15. Alsrehin, N.O.; Gupta, M.; Alsmadi, I.; Alrababah, S.A. U2-Net: A Very-Deep Convolutional Neural Network for Detecting
Distracted Drivers. Appl. Sci. 2023, 13, 11898. [CrossRef]

16. Wang, N.; Zhang, B.; Gu, J.; Kong, H.; Hu, S.; Lu, S. Urban Road Traffic Spatiotemporal State Estimation Based on Multivariate
Phase Space–LSTM Prediction. Appl. Sci. 2023, 13, 12079. [CrossRef]

17. Jin, Z.; Noh, B. From prediction to prevention: Leveraging deep learning in traffic accident prediction systems. Electronics 2023,
12, 4335. [CrossRef]

18. Bowman, L.A.; Narayanan, R.M.; Kane, T.J.; Bradley, E.S.; Baran, M.S. Vehicle Detection and Attribution from a Multi-Sensor
Dataset Using a Rule-Based Approach Combined with Data Fusion. Sensors 2023, 23, 8811. [CrossRef]

19. Manderna, A.; Kumar, S.; Dohare, U.; Aljaidi, M.; Kaiwartya, O.; Lloret, J. Vehicular Network Intrusion Detection Using a
Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors 2023, 23, 8772. [CrossRef]

20. Liu, G.; He, S.; Han, X.; Luo, Q.; Du, R.; Fu, X.; Zhao, L. Self-Supervised Spatiotemporal Masking Strategy-Based Models for
Traffic Flow Forecasting. Symmetry 2023, 15, 2002. [CrossRef]

21. Zhu, M.; Wang, X.; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning. Transp. Res. Part C
Emerg. Technol. 2018, 97, 348–368. [CrossRef]

22. Wei, H.; Zheng, G.; Yao, H.; Li, Z. Intellilight: A reinforcement learning approach for intelligent traffic light control. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 2496–2505.

23. Chinchali, S.; Hu, P.; Chu, T.; Sharma, M.; Bansal, M.; Misra, R.; Pavone, M.; Katti, S. Cellular network traffic scheduling with
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7
February 2018; Volume 32.

24. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J.; An introduction to deep reinforcement learning. Found.
Trends® Mach. Learn. 2018, 11, 219–354. [CrossRef]

25. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that matters. In Proceedings
of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

26. Dai, X.; Li, C.K.; Rad, A.B. An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control.
IEEE Trans. Intell. Transp. Syst. 2005, 6, 285–293. [CrossRef]

27. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies.
IEEE Access 2020, 8, 58443–58469. [CrossRef]

28. Liu, L.; Lu, S.; Zhong, R.; Wu, B.; Yao, Y.; Zhang, Q.; Shi, W. Computing systems for autonomous driving: State of the art and
challenges. IEEE Internet Things J. 2020, 8, 6469–6486. [CrossRef]

29. Liu, H.; Kiumarsi, B.; Kartal, Y.; Taha Koru, A.; Modares, H.; Lewis, F.L. Reinforcement learning applications in unmanned
vehicle control: A comprehensive overview. Unmanned Syst. 2023, 11, 17–26. [CrossRef]

30. Ma, X.; Driggs-Campbell, K.; Kochenderfer, M.J. Improved robustness and safety for autonomous vehicle control with adversarial
reinforcement learning. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 1665–1671.

31. Alghodhaifi, H.; Lakshmanan, S. Autonomous vehicle evaluation: A comprehensive survey on modeling and simulation
approaches. IEEE Access 2021, 9, 151531–151566. [CrossRef]

32. Yang, Q.I.; Koutsopoulos, H.N. A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transp.
Res. Part C Emerg. Technol. 1996, 4, 113–129. [CrossRef]

33. Adams, S.; Yu, L. An Evaluation of Traffic Simulation Models for Supporting Its Development; Technical Report; Center for
Transportation Training and Research, Texas Southern University: Houston, TX, USA, 2000.

34. Ruskin, H.J.; Wang, R. Modeling traffic flow at an urban unsignalized intersection. In Proceedings of the Computational
Science—ICCS 2002: International Conference, Amsterdam, The Netherlands, 21–24 April 2002; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 381–390.

35. Reece, D.A.; Shafer, S.A. A computational model of driving for autonomous vehicles. Transp. Res. Part A Policy Pract. 1993,
27, 23–50. [CrossRef]

36. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998; Volume 22447.
37. Russell, S.J.; Norvig, P. Artificial Intelligence a Modern Approach; Prentice Hall: London, UK, 2010.
38. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.

http://dx.doi.org/10.1140/epjb/e2005-00304-3
http://dx.doi.org/10.1016/j.trc.2014.09.008
http://dx.doi.org/10.3390/smartcities6050134
http://dx.doi.org/10.3390/rs15215227
http://dx.doi.org/10.3390/app132111898
http://dx.doi.org/10.3390/app132112079
http://dx.doi.org/10.3390/electronics12204335
http://dx.doi.org/10.3390/s23218811
http://dx.doi.org/10.3390/s23218772
http://dx.doi.org/10.3390/sym15112002
http://dx.doi.org/10.1016/j.trc.2018.10.024
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.1109/TITS.2005.853698
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1109/JIOT.2020.3043716
http://dx.doi.org/10.1142/S2301385023310027
http://dx.doi.org/10.1109/ACCESS.2021.3125620
http://dx.doi.org/10.1016/S0968-090X(96)00006-X
http://dx.doi.org/10.1016/0965-8564(93)90014-C

Electronics 2023, 12, 5029 17 of 17

39. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

40. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep
reinforcement learning. arXiv 2013, arXiv:1312.5602.

41. Bellman, R. On the theory of dynamic programming. Proc. Natl. Acad. Sci. USA 1952, 38, 716–719. [CrossRef] [PubMed]
42. Whiteson, S. A Theoretical and Empirical Analysis of Expected Sarsa. In Proceedings of the 2009 IEEE Symposium on Adaptive

Dynamic Programming and Reinforcement Learning, Nashville, TN, USA, 30 March–2 April 2009.
43. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University, Cambridge, UK, 1989.
44. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
45. Hausknecht, M.; Stone, P. Deep recurrent q-learning for partially observable mdps. In Proceedings of the 2015 AAAI Fall

Symposium Series, Arlington, VA, USA, 12–14 November 2015.
46. Tesauro, G. Temporal difference learning and TD-Gammon. Commun. ACM 1995, 38, 58–68. [CrossRef]
47. Hu, Q.; Yue, W. Markov Decision Processes with Their Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2007; Volume 14.
48. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
49. Leurent, E. An Environment for Autonomous Driving Decision-Making. 2018. Available online: https://github.com/eleurent/

highway-env (accessed on 28 April 2018).
50. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.
51. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning

Implementations. J. Mach. Learn. Res. 2021, 22, 12348–12355.
52. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.;

Tuyls, K.; et al. Value-decomposition networks for cooperative multi-agent learning. arXiv 2017, arXiv:1706.05296.
53. Rashid, T.; Samvelyan, M.; De Witt, C.S.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep

multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 7234–7284.
54. Pan, X.; You, Y.; Wang, Z.; Lu, C. Virtual to real reinforcement learning for autonomous driving. arXiv 2017, arXiv:1704.03952.
55. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4909–4926. [CrossRef]
56. Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 2009, 10, 1633–1685.
57. Da Silva, F.L.; Costa, A.H.R. A survey on transfer learning for multiagent reinforcement learning systems. J. Artif. Intell. Res.

2019, 64, 645–703. [CrossRef]
58. Kaushik, M.; Singhania, N.; Krishna, K.M. Parameter sharing reinforcement learning architecture for multi agent driving. In

Proceedings of the Advances in Robotics, Chennai, India, 2–6 July 2019; pp. 1–7.
59. Comanici, G.; Precup, D.; Barreto, A.; Toyama, D.K.; Aygün, E.; Hamel, P.; Vezhnevets, S.; Hou, S.; Mourad, S. Knowledge

Representation for Reinforcement Learning Using General Value Functions. 2018, openreview.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1073/pnas.38.8.716
http://www.ncbi.nlm.nih.gov/pubmed/16589166
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1145/203330.203343
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
http://dx.doi.org/10.1109/TITS.2021.3054625
http://dx.doi.org/10.1613/jair.1.11396

	Introduction
	Related Work
	Vehicle Simulation
	Reinforcement Learning
	Deep Q-Learning

	Methods
	Variable-Dimensional Observation Processing Network
	Decision Networks and Vehicle Simulation Algorithm

	Experiments
	Experimental Environment and Setting
	Feasibility Verification
	Comparative Analysis

	Conclusions and Discussion
	References

