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Abstract: This paper introduces a computationally inexpensive technique for moving target detec-
tion in challenging outdoor environments using millimeter-wave (mmWave) frequency-modulated
continuous-wave (FMCW) radars leveraging traditional signal processing methodologies. Conven-
tional learning-based techniques for moving target detection suffer when there are variations in
environmental conditions. Hence, the work described here leverages robust digital signal processing
(DSP) methods, including wavelet transform, FIR filtering, and peak detection, to efficiently address
variations in reflective data. The evaluation of this method is conducted in an outdoor environment,
which includes obstructions like woods and trees, producing an accuracy score of 92.0% and precision
of 91.5%. Notably, this approach outperforms deep learning methods when it comes to operating in
changing environments that project extreme data variations.

Keywords: mmWave FMCW radar; moving target detection; classical DSP techniques; wavelet
transform; FIR filter; peak detector; deep learning; data variation

1. Introduction

Radar technology plays a critical role in both civilian and military applications, em-
ploying electromagnetic waves to detect targets, regardless of weather conditions or time of
day [1–3]. However, the complexity of real-world environments and the diversity of targets
pose challenges in radar detection, potentially due to weaknesses in target returns [4–6]. To
address these challenges, researchers worldwide are focusing on developing adaptive and
resilient target identification techniques. A significant challenge in radar target identifica-
tion lies in characterizing cluttered features using specific distribution models in dynamic
and complex environments [7–9]. To overcome these challenges, radar systems increasingly
incorporate self-learning, adapting, and self-optimizing processing capabilities. The advent
of artificial intelligence technologies has provided valuable support for intelligent radar
design. Deep learning, a branch of machine learning encompassing convolutional neural
networks (CNNs) [10] and recurrent neural networks (RNNs) [11], has demonstrated re-
markable capabilities in automatic feature learning and extraction, enabling tasks such as
intelligent recognition of speech information and image segmentation [12]. Deep learning
has also been successfully applied in radar, particularly for the intelligent detection and
processing of high-resolution synthetic aperture radar (SAR) images [13]. However, these
techniques often struggle when applied to environments that differ from those they were
trained in, and they can also be computationally demanding. Traditional radar target iden-
tification methods are categorized based on processing domains: time domain, frequency
domain, and time-frequency (TF) domain. While effective in many scenarios, traditional
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time-domain processing techniques, such as constant false-alarm rate (CFAR) detection [14]
and coherent or non-coherent accumulation, face difficulties in dynamic and changing
environments with non-Gaussian, non-stationary, and non-linear features. Frequency
domain techniques, such as moving target indicator (MTI) and moving target detection
(MTD), utilize Doppler information extracted through the Fourier transform [13]. Moving
target detection (MTD) is a crucial task in various applications, ranging from conventional
surveillance to autonomous driving. The increased adoption of mmWave Frequency Mod-
ulated Continuous Wave (FMCW) radars for MTD is driven by their advantages, including
high resolution, broad operational range, and obstacle penetration. However, mmWave
FMCW radars are susceptible to noise and interference in unconstrained environments.
Conventional MTD algorithms for mmWave FMCW radars often rely on classical signal
processing techniques like wavelet transforms, finite impulse response (FIR) filtering, and
peak detection.

In response to these challenges, this paper introduces an innovative MTD approach
specifically tailored for mmWave FMCW radars, intending to identify moving targets
in areas with dense to medium foliage from a distance of 30 m to the radar. The pro-
posed methodology integrates classical Digital Signal Processing (DSP) techniques with
novel strategies, aiming to provide a holistic and robust approach to extreme data varia-
tions [15–17]. This integration leverages the strengths of both traditional signal processing
and innovative methodologies, effectively addressing inherent limitations. The goal is
to establish the applicability of classical signal processing in resource-limited practical
scenarios and set a performance benchmark by comparing signal processing-based MTD
with available deep learning-based techniques. Consequently, this research seeks to bridge
the gap between classical signal processing and emerging deep learning techniques, foster-
ing the development of more robust, practical, and efficient MTD solutions for mmWave
FMCW radar systems, thereby advancing the state-of-the-art in radar-based sensing [18].

The key contributions of the work are as follows:

1. Development of computationally inexpensive MTD algorithm.
2. Tackle data variations in range-Doppler data through classical DSP techniques.
3. Develop a low-cost edge deployed radar-based MTD system

This paper is structured to provide a comprehensive understanding of the research.
In Section 1, the introduction outlines the objectives and context for subsequent sections.
Section 2 delves into the signal processing pipeline and presents a mathematical description
of the mmWave radar’s range-Doppler data. This section elucidates the methodology
and data processing intricacies. Section 3 covers experimental aspects, with Section 3.1
detailing the setup and configuration for data collection. Section 3.2 addresses performance
parameters, and the comparative analysis with other techniques is given in Section 3.3. The
concluding Section 4 summarizes the findings and insights derived from the research.

2. System Description

The experimental research utilizes the Texas Instruments AWR 1642 BOOST [19] radar,
employing frequency-modulated continuous waves (FMCW or chirps) transmitted by
the onboard Cortex®-R4F MCU. Chirp settings are configured for transmission, and RX
antennas capture reflected signals. The onboard ADC converts analog IF signals to digital
signals, providing object range information and velocity data based on phase differences.
The digitized data are processed through a hardware accelerator (HWA) for 1D Fast Fourier
Transform (range-FFT) to generate range-time maps. DSP C67x then performs 2D-FFT
(velocity-FFT) on the maps to generate velocity-time maps. The first dimension of the FFT
is the range dimension, and the second dimension is the Doppler dimension. An FMCW
radar, as previously stated, generates a series of wideband chirp signals to illuminate
the monitored area. The burst of Nc up-chirps can be expressed at the TX antenna input
terminals as Equation (1) [20].
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Stx(t) = Atx

Nc−1

∑
nc=0

cos[Ψ(t)]∏
(

t − Tc
2 − ncTPRI

Tc

)
(1)

Here, Atx represents the signal amplitude, and Ψ(t) = 2π( f0ts + 0.5µt2
s ) denotes the

up-chirp phase. Here, Tc is the duration of a single up-chirp, TPRI is the pulse repetition
interval (PRI), and ts = t − ncTPRI defines the fast-time, with ts restricted to the interval
[0, Tc], where nc is the slow-time index. The parameters f0, µ = B/Tc, and B represent the
starting frequency, sweep rate, and bandwidth of the sweep, respectively. The function
∏(χ) yields 1 when |χ| ≤ 1/2 and 0 otherwise. Between successive up-chirps, a recovery
time, where TPRI > Tc, is typically inserted. During this period, the frequency synthesizer
resets to its initial state, and the relative echo signal is disregarded. The collection of chirps,
referred to as a frame, has a duration of TCPI = TPRI Nc, where CPI stands for the coherent
processing interval. A specific interval is commonly inserted before the next burst, resulting
in a frame period Tf that exceeds TCPI .

qIF(ns, nc) = AIFej2π( fbTsns− fDTTRI nc) with ns = 0, . . . , Ns − 1, nc = 0, . . . , Nc − 1 (2)

where, AIF is proportional to the strength of the received echo, denoted as Arx, and Ts
is the sampling period, several parameters are involved. The Doppler shift, given by
fD = −2vr/λ0, is associated with the radial velocity vr (where vr > 0 signifies departing
targets). The wavelength λ0 is calculated as λ0 = c/ f0, where c is the speed of light and
f0 is the starting frequency. The beat frequency fb = πτ0, known as the FMCW radar
range equation [21], involves τ0 = 2r0/c, representing the time-of-flight for the range r0 at
the onset of the chirp. The second term in the exponent of Equation (2) is recognized as
spatial Doppler [22,23]. It is important to note that this analysis assumes the presence of a
single point-like target. If there are multiple targets with various reflective points (extended
targets are typically modeled with different point-like scatterers in this framework), the
mixer output will be the sum of the intermediate frequency (IF) signals associated with
each individual point. The range-Doppler map therefore can be expressed as Equation (3).

RD(Ks f )(nr, nD) = FND
D {FNR

r {u∗ω
Ks f
r }∗ω

Ks f
D }(nr, nD) (3)

where, u is the filtered matrix after removing the clutters [22], ns = 0, . . . , Ns − 1, nc =

0, . . . , Nc ω
Ks f
r and ω

Ks f
D are the Kaiser windows to be applied on the beat frequency and

Doppler dimensions with a shape factor Ks f , and FNR
r and FND

D are the range-FFT and
Doppler-FFT outputting sequences of length NR and ND, respectively. After the processing,
the RD map (as shown in Figure 1) has the dimension NR × ND, where NR = 16 and
ND = 256.

Figure 1. The raw range-Doppler data obtained from the Radar.
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It should be noted that in FMCW radar systems, the Doppler shift is associated with
the radial velocity component of a target, which is the component along the line of sight.
This means that the radar measures the change in frequency of the reflected signal, and this
change is directly related to the radial velocity of the target, i.e., the velocity component
along the line from the radar to the target.

2.1. Radar Signal Processing Pipeline

The range-Doppler data from the radar are passed through a couple of processing
steps shown in Figure 2, which are intended to improve the quality of radar data for
further analysis. This first stage, which is started by a wavelet denoiser is employed to
gradually lower noise and enhance signal clarity in radar returns. A pulse Doppler filter
is then applied after the denoising process to help separate target signals from stationary
clutter in the radar data. This carefully planned series of processing actions guarantees the
preparation and improvement of radar data and is essential for identifying and emphasizing
moving targets of interest.

Figure 2. The signal processing pipeline for the Radar.

After the data processing phase, the subsequent stage involves peak detection, a critical
process where local maxima are identified, potentially representing targets of interest. A
noteworthy step within this pipeline is the structured organization of these peak detections
in the form of a 5 × 2 matrix. This matrix architecture provides a concise and organized
representation of potential targets. Following this, the processed data matrix undergoes a
threshold operation, a crucial step enabling the judicious selection of true targets based on
specific criteria. This threshold operation acts as a filter, refining the identified peaks and
ensuring that only those surpassing predefined criteria are considered valid targets.

2.1.1. Wavelet Denoising

The initial stage in refining the quality of range-Doppler data, often plagued by various
environmental noise sources [24], involves the application of a discrete wavelet transform
(DWT) [25]. Initially, the original range-Doppler matrix (RD) is decomposed into approxi-
mation (ALL) and detail coefficients (HL,VL,DLL) through a 2D wavelet transform [26].

T(x) = sign(x)× max(|x| − λ) (4)

The threshold function T(x), where x is any given element on the range-Doppler
matrix given in Equation (4), subtracts a threshold value λ from the absolute value of
a specific element from the range-Doppler matrix. As a result, noise below a specific
significance level (specified by the value of λ) is effectively suppressed. The sign(x) function
keeps the element’s sign, which is important since it keeps the directional information
associated with the range-Doppler data.

Subsequently, the thresholding operation is applied individually to the horizontal
(H′

L), vertical (V′
L), and diagonal (D′

LL) detail coefficients. The denoised range-Doppler
matrix (RDdenoised) is then reconstructed by combining the approximation coefficients with
the modified detail coefficients. The denoised range-Doppler data are shown in Figure 3.
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Figure 3. Wavelet denoised range-Doppler data from the Radar.

The wavelet denoiser helps clean unwanted noise associated with the received range-
Doppler data from the radar, shown in Figure 3.

2.1.2. Doppler Filtering

The denoised data obtained from the previous processing stage are subsequently input
into a Doppler filter [27]. This filter is used to bolster the radar system’s capacity to detect
and distinguish moving targets, all while effectively suppressing stationary clutter and
unwanted noise. The denoised radar data matrix (RDdenoised), undergoes a convolution
operation with Doppler filter coefficients h. The filtered data Y is obtained by convolving
each column of RDdenoised with the filter coefficients h. The convolution operation can be
expressed mathematically as Equation (5), which captures the relationship between the
input radar data and the Doppler filter [28].

RD f iltered[n] =
N−1

∑
k=0

RDdenoised[n − k] ∗ h[k] (5)

where, RD f iltered[n] is the value at position n column of the filtered data, h[k] denotes
the kth filter coefficients, and RDdenoised[n − k] is the value at position n − k of the radar
data [29]. The filtered range-Doppler data are shown in Figure 4.

Figure 4. Processed range-Doppler data after Doppler filter.
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2.1.3. Peak Detection

The filtered range-Doppler data from the previous section contains the intensity of
the reflected signals at different ranges and Doppler frequencies. Therefore, to identify
targets that reflect radar signals the range-Doppler data from the radar are subjected to peak
detection [30]. The range-Doppler matrix with elements RD f iltered[i, j], where i represents
the range index and j the Doppler frequency index is subjected to peak detection as given
in Equation (6).

Peak[i, j] =

{
1, i f RD f iltered[i, j] ≥ (top, bottom, le f t, right) and RD f iltered[i, j] ≥ threshold,
0, otherwise.

(6)

where, top = RD f iltered[i − 1, j] is the element corresponding to the range above the cur-
rent range, bottom = RD f iltered[i + 1, j] is the element corresponding to the range below
the current range, le f t = RD f iltered[i, j − 1] is the element corresponding to the Doppler
frequency to the left of the current frequency and right = RD f iltered[i, j + 1] is the element
corresponding to the Doppler frequency to the right of the current frequency. However,
to discern and eliminate the peaks associated with objects having zero Doppler frequency,
notably visible as a central band in Figure 5, a targeted correction is applied. To achieve
this, the range-Doppler data undergo a multiplication process with a two-dimensional
mask (shown in Figure 6a).

Figure 5. The processed range-Doppler data.

(a) (b)

Figure 6. The peak detection algorithm (a) with zero Doppler frequency elimination mask and
(b) masked to remove chirp returns from objects with zero Doppler frequency (stationary).
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This mask is strategically designed with zero values in its central cells, effectively
creating a void in the area corresponding to stationary objects. Subsequently, this mask
is multiplied with the matrix containing the detected peaks, selectively nullifying con-
tributions from stationary objects in the central band while retaining those associated
with moving targets. The outcome of this mask multiplication is reflected in Figure 6b,
illustrating the processed peak detection output after applying the mask.

The range-Doppler matrix obtained after the previous steps contains peaks (with
value 1) for an object with some Doppler frequency as seen in Figure 6b. When dealing
with moving objects, these peaks shift cell by cell in the processed range-Doppler plot as it
accumulates over time [31]. To determine whether the object is in motion or stationary, a
temporal stacking operation is applied to the range-Doppler matrix. The resulting array
undergoes threshold evaluation, with the threshold determined through experimentation. If
any element in the stacked array surpasses this threshold, the system classifies the outcome
as “Moving target detected”. Conversely, if all elements remain below the threshold,
the classification is “No moving target detected”. This stacking and threshold-based
classification are repeated for every five consecutive frames of the range-Doppler plot,
providing a systematic way to identify the presence of moving targets.

3. Experiment, Results, and Discussion
3.1. Experimental Setup

The experimental setup for evaluating the proposed moving target identification
system was carefully designed to ensure accurate and reliable results. The setup was
situated in an open area within the Center for Real-time Distributed Sensing and Autonomy
at the University of Maryland, Baltimore County, as shown in Figure 7. This location
provided a controlled environment free from external interference, allowing for precise
data collection and analysis. The core components of the experimental setup included a
Texas Instruments AWR1642 BOOST mmWave radar sensor and a Raspberry Pi single-
board computer.

Figure 7. The experiment setup with AWR1642 BOOST mmWave radar, mounted on tripod.

The mmWave radar sensor, equipped with two transmit antennas and four receiving
antennas [32], was the primary sensing device responsible for detecting and tracking a
moving person. In this setup, four receive antennas capture signals from varied angles,
enhancing Doppler shift information. Simultaneously, two transmit antennas create mul-
tiple beams, offering coverage flexibility and enabling beam steering for improved radar
performance. The Raspberry Pi served as the data acquisition and processing platform,
capturing and processing the radar sensor’s output signals. The mmWave radar sensor’s
configuration was optimized to achieve the desired performance characteristics. It transmit-
ted 256 chirps using each coherent processing interval (CPI), with a bandwidth of 3 GHz
and a duration of 51.2 s. This configuration resulted in a range resolution of 0.146 m, a
velocity resolution of 1.0018 m per second (m/s), and a maximum range of 33.75 m. These
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parameters were carefully chosen to balance the trade-offs between range resolution, ve-
locity resolution, and maximum range, ensuring that the system could effectively detect
and track moving targets within the specified range and velocity range. The signal pro-
cessing pipeline from the previous section is implemented in Python language [33], and
the entire software stack is deployed on the Raspberry Pi acting as the data acquisition
and processing platform. The Raspberry Pi’s capabilities were sufficient to handle the
real-time data processing demands of the radar sensor, while its compact size and low
power consumption made it a suitable choice for field testing and deployment.

3.2. Experimental Results

In this section, the accuracy results in terms of a binary classification problem are
presented. In this case, the classes “Moving target detected” and “No moving target
detected” are considered. The following notations are used when a total of 1000 tests were
performed, 650 True positives (TP) are moving targets detected correctly classified, 60 false
positives (FP) are non-moving targets incorrectly classified as moving, 270 true negatives
(TN) are non-moving targets correctly classified, 20 false negatives (FN) are moving targets
incorrectly classified as non-moving. The following metrics are then adopted:

1. Accuracy (Acc.), Acc = TP+TN/TP+TN+FP+FN, indicates the correctness of the
classifications.

2. Precision (PR), PR = TP/TP+FP, indicates how many predicted positive labels are
positive.

3. Sensitivity (SE), SE = TP/TP+FN, indicates how much a model is accurate to predict
the positive class

4. Specificity (SP), SP= TN/TN+FP, indicates how much a model is accurate to predict
the negative class.

The results are presented in Table 1 proves that the proposed system is capable of
distinguishing moving targets from non-moving ones.

Table 1. Experimental results from a controlled lab environment.

S No. Metrics Values

1 Accuracy (Acc.) 0.920
2 Precision (PR) 0.915
3 Sensitivity (SE) 0.970
4 Specificity (SP) 0.818

3.3. Comparison with Similar Techniques

The work described here in this paper is directly compared with various state-of-the-
art approaches, as outlined in Table 2, by taking the developed MTD algorithm along with
a couple of techniques available in the literature for field trial as seen in Figure 8.

The evaluation spanned diverse environmental scenarios, ranging from the first en-
vironment characterized by minimal foliage, through the second environment with a
moderate density of foliage, to the final environment featuring the maximum density of
foliage shown in Figure 8. Throughout these experiments, the targeted moving object main-
tained a consistent distance of 30 m from the mmWave Radar. It is worth emphasizing the
noteworthy progress observed in the field of moving target detection, a fact corroborated by
the impressive advancements documented in prior studies, specifically references [34,35].
In these seminal works, the authors demonstrated remarkable accuracy rates, achieving
98.7% and 99.75%, respectively. Notably, these exceptional outcomes were realized by
employing cutting-edge deep learning-based classifier architectures, such as Convolutional
Neural Networks (CNN) and SqueezeNet. A similar scenario can be seen in the case
of [36–40], where the accuracy of the detection technique falls as the environment becomes
cluttered. This comparison serves to underscore the significance of our newly proposed
methodology, as it not only competes favorably with these highly advanced approaches but,
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importantly, showcases its own merits, particularly in scenarios characterized by varying
levels of foliage density.

(a) (b) (c)

Figure 8. The experimental setup with AWR1642 BOOST mmWave radar at (a) an empty landscape
(b) a moderately dense and (c) a dense foliage environment.

Table 2. Comparison with similar moving target detection techniques.

S No. Framework

Detection Peak Accuracy

Features Architecture First
Environment

Second
Environment

Third
Environment

1 This work Range-Doppler
Doppler filter

with thresholding 91.2% 90.8% 91.3%

2 Yan Dai, et al. [34] Range-Doppler CNN 98.7% 90.6% 87.6%
3 Li, et al. [35] Range-Doppler SqueezeNet 99.75% 96.12% 95.23%
4 Tang, et al. [36] Range-Doppler AdaBoost 93.78% 90.11% 89.23%
5 Patel, et al. [37] Range-Doppler CNN 98.11% 91.20% 88.23%
6 Xie, et al. [38] Range-Doppler 1D-CNN 98.0% 97.2% 96.3%
7 Xie, et al. [39] Range-Doppler 1D-CNN 99.0% 98.1% 97.8%
8 Jiang, et al. [40] Raw data CNN 98.5% 97.7% 96.4%

The rigorous evaluation process validates the robustness and adaptability of our
moving target identification system, affirming its potential as a leading solution in the
ever-evolving landscape of advanced radar-based sensing systems.

3.4. Comparison Based on Computational Complexity

The computational complexity of the developed radar signal processing pipeline is
very critical for real-time applications. The wavelet filtering, applied to the range-Doppler
data in the very first step, exhibits a typical complexity of O(N) [41], where N represents
the size of the input signal (in this case, 16 by 256). Simultaneously, Doppler processing
involves techniques such as the Fast Fourier Transform (FFT) in the Doppler domain,
which comes with a complexity of O(NdlogNd), where Nd is the number of Doppler bins.
However, in the case of CNNs, the computational complexity of a convolutional layer
is often expressed as O(K ∗ N ∗ M), where K is the number of filters, N is the size of
the input feature map, and M is the size of the filter. Similarly, for pooling operations,
complexity is generally lower than convolution, often O(P), where P is the number of
pooling operations [42]. After convolutional and pooling layers, fully connected layers
involve matrix multiplications. If F is the number of neurons in the fully connected layer,
the complexity is O(F ∗ C), where C is the number of input neurons.
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4. Conclusions

In conclusion, this paper presents an innovative approach to moving target detection
using the AWR 1642 BOOST mmWave Radar. Our digital signal processing pipeline, consist-
ing of a wavelet denoiser, pulse Doppler filter, and peak detection algorithm, outperforms
traditional machine learning-based methods. Our approach’s effectiveness is demonstrated
by transforming peak data into a 5 × 2 matrix and applying a threshold test, yielding an
impressive accuracy rate of 92.0% (seen in Table 1). It can be observed from Table 2 that
the methodology proposed here in this work is not as accurate as MTD applications that
use learning-based techniques at a much lower computational complexity, as discussed in
Section 3.3. However, it can also be seen from Table 2 that the proposed techniques suffer
less degradation when the type of environment changes. Hence, in applications requiring
precise target detection, such as autonomous vehicles and surveillance systems [43], our
method represents a significant advancement this technique will prove advantageous. In
subsequent research, we will use radars that are capable of overcoming the speed and
range resolution constraints to address the multi-target categorization challenge using a
similar DSP-based technique.
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