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Abstract: Major depressive disorder (MDD) is a prevalent psychiatric condition with a complex
and unknown pathological mechanism. Resting-state functional magnetic resonance imaging
(rs-fMRI) has emerged as a valuable non-invasive technology for MDD diagnosis. By utilizing
rs-fMRI data, a dynamic brain functional connection network (FCN) can be constructed to represent
the complex interacting relationships of multiple brain sub-regions. Graph neural network (GNN)
models have been widely employed to extract disease-associated information. The simple averaging
or summation graph readout functions of GNNs may lead to a loss of critical information. This study
introduces a two-channel graph neural network (DepressionGraph) that effectively aggregates more
comprehensive graph information from the two channels based on the node feature number and
node number. Our proposed DepressionGraph model leverages the transformer–encoder architecture
to extract the relevant information from the time-series FCN. The rs-fMRI data were obtained from
a cohort of 533 subjects, and the experimental data show that DepressionGraph outperforms both
traditional GNNs and simple graph readout functions for the MDD diagnosis task. The introduced
DepressionGraph framework demonstrates efficacy in extracting complex patterns from rs-fMRI data
and exhibits promising capabilities for the precise diagnosis of complex neurological disorders. The
current study acknowledges a potential gender bias due to an imbalanced gender distribution in
the dataset. Future research should prioritize the development and utilization of gender-balanced
datasets to mitigate this limitation and enhance the generalizability of the findings.

Keywords: major depressive disorder (MDD); resting-state functional magnetic resonance imaging
(rs-fMRI); graph neural network (GNN); brain functional connection network (FCN); transformer–encoder;
MDD identification

1. Introduction

Major depressive disorder (MDD) represents one of the most prevalent mental diseases
worldwide, and it stands as a leading cause of disabilities like depressed mood, marked
loss of interest in activities, and difficulty in concentrating [1,2]. The heterogeneity among
the MDD patients leads to significant variations in symptoms and poses a considerable
challenge in the accurate diagnosis [3]. Technology innovations may facilitate the early
diagnosis and timely treatment of MDD patients.

Research on automated, computer-aided medical decision-making systems has made
significant progress with the advancement of medical imaging technologies. Bayareh-
Mancilla et al. integrated the morphological shape and skin thickness in the mammogram-
based asymmetry screening and demonstrated that such explainable features could signifi-
cantly improve the mammogram screening performance [4]. Explainable medical image
features like segmentation-based skin thickness were further supported by the efficacy of
early cancer detection [5].
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Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a
widely-used tool for analyzing MDD as it provides insights into the brain’s functional
connectivities through the dynamic changes in cerebral blood flows [6,7]. The human
brain is recognized as an integrated network comprising multiple brain regions that are
structurally separated yet functionally interconnected. The functional connectivity (FC)
between two brain regions is determined by analyzing the correlations between the two
sequences of blood-oxygen-level-dependent signals [8].

Many studies have demonstrated the feasibility of diagnosing MDD based on the
changes in brain FCs. The FCs of MDD patients at rest underwent abnormal changes over
time, primarily affecting the brain regions associated with the default mode, subcortical, and
sensorimotor functions [9,10]. Furthermore, the degree of the FC abnormality correlated
with the severity of depression in the MDD patients, and the brain network markers
derived from FCs proved effective in distinguishing MDD patients from healthy controls
(HCs) [11]. Preti et al. highlighted the advantages of utilizing the dynamic FCs to deliver
richer temporal dynamic information against the static versions [12]. Zheng et al. proposed
a high-order FC network (FCN) to capture dynamic and high-level brain FCs and achieved
a significantly improved accuracy in the MDD diagnosis [13]. These findings underscored
the potential of utilizing the FC information for the MDD diagnosis.

The classification tasks of rs-fMRI-based FCNs can be broadly categorized into tradi-
tional machine learning and modern deep learning approaches. Several machine learning
algorithms were designed to handle the brain FCN data in the form of an FC matrix.
Vergun et al. employed Fisher’s z-transformation to normalize the brain FC matrix and
used these features for age classification based on the classifier support vector machine
(SVM) [14]. Lei et al. constructed FCNs using multiple brain region segmentation tem-
plates and employed SVM with a sigmoid kernel for the multi-class classification based
on the fused features from these FC matrices [15]. The other studies proposed differen-
tial feature extraction algorithms from FCNs and applied various classifiers for MDD
detections [7,16–18].

Deep learning techniques, especially graph neural networks (GNNs), have recently
gained attention for their capability to model graph-structured data effectively. GNNs have
also been investigated for their capability in diagnosing brain disorders such as MDD and
MCI [19]. Kim et al. utilized a GCN-based architecture for early Alzheimer’s disease (AD)
diagnosis in cognitively unimpaired individuals [20]. Pitsik et al. combined GNN and long
short-term memory (LSTM) networks to capture the dynamic changes in the functional
brain networks for MDD prediction [18]. Liu et al. utilized rs-fMRI to generate multi-index
representations for each subject and proposed a tensor-based multi-task learning model
with a tensor-based regularizer for effective MDD predictions [21]. In addition, Wang et al.
collected information from three modalities (DTI, fMRI, and sMRI) for each sample, utilized
a transformer and CNN as feature extractors and employed an ensemble learning voting
mechanism to obtain predictions. This is a multi-modal deep-learning framework designed
for the automatic diagnosis of MDD [22]. Venkatapathy et al. integrated multiple graph
models for the challenging MDD classification task across 16 sites [23]. Zhao et al. employed
the graph-encoder-based architecture for multi-site MDD classification [24]. Both studies
revealed that cross-site batch effects substantially compromised the accuracy of MDD
classification, resulting in significantly reduced performance metrics [23,24].

This study proposes a two-channel graph neural network, DepressionGraph, to extract
the global graph information in the two channels based on node feature number and node
number. This setting alleviates the limitation of the simple readout function in the graph
representations. We also integrate the transformer–encoder part of the vision transformer
(VIT) [25] to capture the dynamic information at different time points of the dynamic
FCNs. The proposed framework, DepressionGraph, demonstrates superior classification
performance compared to existing approaches. The ablation experiment further validates
the effectiveness and necessity of the main modules in DepressionGraph. However, our
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study has a limitation regarding potential gender bias, as the dataset used for analysis
contains a larger number of female samples than male samples.

2. Materials and Methods
2.1. Dataset

The public rs-fMRI dataset utilized in this study was generously provided by the
REST-meta-MDD consortium and comprises data from 17 Chinese hospitals/sites [26].
This study specifically selects the site 20 with the largest number of subjects, similar to [27].
The data were downloaded from http://rfmri.org/REST-meta-MDD accessed on 27 March
2021. The dataset consists of 533 subjects, among whom 282 individuals were diagnosed
with MDD—the other 251 subjects served as the matched healthy controls (HCs).

The diversity in demographic characteristics of the participants is important in influ-
encing the manifestation of MDD symptoms and will impact the generalizability of the
MDD prediction models. The demographic characteristics of the dataset are summarized
in Table 1. The proportion of female participants in the MDD and HC classes is similar.
The mean and standard deviation values of the participants’ ages are also similar in the
two classes. The HC participants have a slightly longer education length (12.97 years) than
the MDD patients (10.78 years). Due to that, this whole cohort was recruited from Chinese
hospitals/sites. The majority of the participants are Chinese.

Table 1. Demographics of the subjects in the MDD dataset. MDD: major depressive disorder; HC:
healthy control; M/F: male/female; Edu: education years; std: standard deviation.

MDD (n = 282) HC (n = 251)

Gender (M/F) 99/183 87/164

Age (mean ± std) 38.74 ± 13.65 39.64 ± 15.87

Edu (mean ± std) 10.78 ± 3.61 12.97 ± 3.94

The rs-fMRI scans were acquired using the Siemens Tim Trio 3T MRI scanner at South-
western University. The scanning parameters used for data acquisition were as follows: a
repetition time (TR) of 2000 ms, an echo time (TE) of 30 ms, and a flip angle of 90◦. The
image slice thickness/gap was set to 3.0 mm/1.0 mm, resulting in a total of 32 slices. Each
rs-fMRI scan consisted of 242-time points, and the voxel size was 3.44 × 3.44 × 4.00 mm3,
with a field of view (FOV) measuring 220 × 220 mm2.

We applied the preprocessing step using the Data Processing Assistant for rs-fMRI
(DPARSF) [28,29]. During this step, the rs-fMRI BOLD signals were extracted for each
subject. The preprocessing operations included (1) discarding the first ten volumes to
achieve magnetization equilibrium, (2) slice timing correction and head motion correction,
(3) normalization to the Montreal Neurological Institute (MNI) template and resampling
to isotropic 3 mm voxel size, (4) smoothing, (5) detrending and band-pass filtering, and
(6) regressing covariates. Ultimately, each subject’s data was transformed as a matrix of
size T × N, where T denotes the number of time points and N is the number of brain
regions of interest (ROIs).

Compared to other fMRI data preprocessing software, such as SPM version 12
(https://www.fil.ion.ucl.ac.uk/spm/software/download/spmreg.php), dparsf is more
user-friendly and efficient, significantly improving the efficiency of image analysis. Its
streamlined workflow minimizes the risk of operational and subjective errors in the rs-fMRI
image analysis.

2.2. Overall Framework

The proposed DepressionGraph framework aims to identify MDD by effectively
capturing the time-varying information of brain FCNs based on rs-fMRI time-series data, as
depicted in Figure 1. Each subject is denoted as X ∈ RN×T , where there are N brain regions
of interest (ROIs) and T length of the sequence of the BOLD signals over time. The ROIs

http://rfmri.org/REST-meta-MDD
https://www.fil.ion.ucl.ac.uk/spm/software/download/spmreg.php
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are segmented according to the brain region segmentation template. We adopt a sliding
window approach by dividing the time series data of each ROI into Tdyn segments of length

L. As a result, each subject is represented as Xdyn =
{

X1, · · · XTdyn

}
∈ RTdyn×N×L.
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Figure 1. Overview of the workflow for detecting MDD based on rs-fMRI data.

For Xt ∈ RN×L at the tth time point, we construct an FCN with the ROIs as the nodes
and the BOLD signal value of the tth time point as the node feature of the tth FCN. An
edge is defined between two nodes if the correlation coefficient between their node features
satisfies a predefined threshold. Let Gt = (Xt, At) be the FCN of the tth time point. The
feature matrix is denoted by Xt =

{
x1

t , · · · xN
t
}

, and the adjacency matrix is denoted by
At ∈ {0, 1}N×N .

Our proposed DepressionGraph framework uses a gate recurrent unit (GRU) network
to encode the node features and the two-channel graph neural network to obtain the
feature representation of the entire graph at the tth time point G_feat. Subsequently, we
introduce a transformer-based network to capture temporal information from the FCN
graphs, denoted as G_feadyn. Finally, we employ a multi-layer perceptron (MLP) to predict

the labels, expressed as Labelpred = MLP
(

G_feadyn

)
.

The next two sections give detailed descriptions of the proposed DepressionGraph
model and the transformer-based timing information extraction module.

2.3. DepressionGraph: Two-Channel Graph Neural Network

The DepressionGraph framework aims to generate a one-dimensional feature vector
that comprehensively captures the global information of an input graph (Figure 2). It
leverages two distinct channels for graph representation learning: one for the fine-grained
node features and the other for the coarse-grained features of the entire graph. Given the
graph, G = (X, A) with N nodes and M features for each node. The global features of the
input graph obtained through the DepressionGraph can be represented as:

G_ f ea = concatenate(G_ f eachannel1, G_ f eachannel2), (1)

Here, G_ f eachannel1 ∈ RN represents the graph features extracted through Channel
1, where the dimension of node features is transformed into a one-dimensional vector of
length N. Similarly, G_ f eachannel2 ∈ RM represents the graph features extracted through
Channel 2, where the dimension of node count is transformed into a one-dimensional
vector of length M. The final feature representation of the entire graph is obtained by
concatenating the two vectors acquired from the two channels.
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Figure 2. Illustration of the proposed DepressionGraph framework. The upper half focuses on extract-
ing features based on changes in the number of nodes (Channel 1), while the lower half focuses on
extracting features based on changes in the number of node features (Channel 2). Specifically, during
the channel2 process, the graph of n input nodes undergoes the first graph pooling, aggregating into
n/2 nodes, represented by the yellow nodes in Figure 2. After the second graph pooling, the nodes
further aggregate into a single node, represented by the orange node in Figure 2.

2.4. Channel 1: Graph Feature Extraction by Changing the Number of Node Features

This channel modifies the number of node features to enable the extraction of essential
graph information. Firstly, we employ three aggregation methods to combine information
from neighboring nodes: (1) summing the features of neighboring nodes to obtain XSum_agg,
(2) taking the maximum feature value of neighboring nodes to obtain XMax_agg, and taking
the minimum feature value of neighboring nodes to obtain XMin_agg. After aggregation,
the node feature matrix becomes Xagg ∈ RN×3M, represented as:

Xagg = concatenate
(
XSum_agg, XMax_agg, XMin_agg

)
. (2)

Next, we employ a multi-layer perceptron (MLP) to reduce the dimensionality of node
features. Through one layer of MLP, the node features of length 3 × M are transformed
into features of length M. Another layer of MLP further reduces the length of each node’s
features to one. These one-dimensional node features are concatenated to form a one-
dimensional vector of length N, which serves as the representation of the graph for Channel
1. This representation captures the fine-grained features of each node.

G_ f eachannel1 = MLP2
(
MLP1

(
Xagg

))
. (3)

2.5. Channel 2: Graph Feature Extraction by Changing the Number of Nodes

Channel 2 aims to capture critical graph information by altering the number of nodes.
The top-k pooling algorithm [30] is employed to successively reduce the N nodes to N/2
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nodes and then further reduce the N/2 nodes to a single node. Therefore, all node features
in the graph are aggregated into this single node while preserving the original number of
features (M). The resulting one-dimensional vector of length M (denoted as G_ f eachannel2)
serves as the representation of the graph for Channel 2, capturing the global information of
the graph.

G_ f eachannel2 = TopK2(TopK1(X, A)). (4)

2.6. ViT-Based Timing Information Extraction

Figure 3 shows that the brain FCN at each time period can be viewed as a graph struc-
ture. The proposed DepressionGraph framework represents a graph as a one-dimensional
vector G_ f eat ∈ RC, where C = M + N. Therefore, each subject is represented as a time-
varying graph representation H ∈ RT×C. A simple weighted averaging of the graph
representation at different time points would not adequately capture the temporal dy-
namics. To address this issue, we draw inspiration from the vision transformer (ViT)
network [31] and introduce location encoding via the encoder part of the transformer
network to effectively capture information across time.
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The dynamic graph features G_ f eadyn for each subject can be represented as:

G_ f eadyn = concatenate( fSum(HT × W), fencoder(Hloc)). (5)

Here, the variable W represents the weight assigned to different time points, fSum ∈ RC

is the vector obtained by weighted summing of the different time point vectors, Hloc is
the matrix obtained by adding location encoding to H, and fencoder ∈ RC is the vector
obtained after passing through the encoder. We concatenate the vectors obtained from
these two methods to obtain the dynamic graph representation vector G_ f eadyn ∈ R2C.

2.7. Fusion of Prediction Results of Multiple Brain Region Segmentation Templates

The utilization of various brain region segmentation templates has been demonstrated
to enhance the accuracy of brain disease diagnosis [32,33]. This study selects three widely
adopted brain segmentation templates to construct brain FCNs, i.e., Harvard–Oxford
atlas [34], Automated Anatomical Labeling (AAL) atlas [35], and Craddock’s clustering
200 ROIs (CK) [36]. We construct a brain FCN using each template and employ the majority
voting strategy from the predicted labels of the three trained classification models.
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This prediction strategy allows us to leverage the diverse information captured by
different brain region segmentation templates, and we aim to achieve an improved and
more reliable diagnosis of MDD using rs-fMRI.

2.8. Implementation Details

The code implementation was carried out in the Python programming language,
utilizing PyTorch version 1.7.1 and Scikit-learn version 0.24.2. All the experiments were
conducted on a system equipped with an NVIDIA P100 GPU featuring 16 GB VRAM.

The graph pooling in channel two was implemented by the Top-K pooling adjusted to
the problem setting in this study [30]. The approach allowed us to effectively reduce the
number of nodes while preserving essential graph information.

The original BOLD signal was partitioned into multiple segments using a sliding
window strategy. We set the window size to 50 and the window stride to 3. For example, if
the BOLD signal has a length of 232 time points, it will be partitioned into 61 segments.

A graph was constructed by determining an edge between two nodes if their correla-
tion coefficient was within the top 30% of all the correlation coefficients. We employed the
cross-entropy loss function and utilized the OneCycleLR technique to adjust the learning
rate dynamically. The maximum learning rate was set to 0.001. If a fixed learning rate is
used, satisfying the learning rate requirements of both the initial and final stages of the
model becomes challenging. If the learning rate is too large, the model may struggle to
find a better solution. On the other hand, if the learning rate is too small, the optimization
process at the initial stage becomes slow, resulting in slow convergence. We used dropout
with a 0.5 probability instead of regularization methods. This was done because there were
no apparent signs of overfitting during the model training process. Our model was trained
for 50 epochs, and by the 50th epoch, the model had already converged. The training
batch size, either 1 or 4, was determined by the number of nodes in the graph. Specifically,
for experiments using the AAL and HO templates, we set the batch size to 4, while for
experiments using the CK template, the batch size was set to 1. We used a grid search
strategy to obtain the optimal values of the hyper-parameters. Regarding training speed,
for the AAL and HO templates, each epoch took approximately 4 min 30 s. Completing
the five-fold cross-validation required approximately 19 h. Due to the larger number of
brain regions in the CK template resulting in a higher computational load, each epoch
took approximately 6 min. Completing the five-fold cross-validation for the CK template
required approximately 25 h.

Slow training may pose challenges in the practical implementation of Depression-
Graph for clinical situations with new cohorts of samples or new ethnic populations. Taking
into account the factor of model training time, we have designed the model structure with
a moderately sized number of MLP layers and graph pooling layers. This helps control the
parameter count of the model and ensures that it does not require excessively long training
time. Neural network distillation technology may be utilized to reduce the model training
time further.

2.9. Performance Measurements

This study formulates the determination of whether a sample suffers from MDD as a
binary classification task. The prediction model is evaluated by the following five widely
used measurements, i.e., accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe),
F1 score (F1), and the area under the receiver operating characteristic curve (AUC). The
numbers of correctly predicted positive (MDD) and negative (HC) samples are denoted
as TP and TN, respectively, while those of the incorrectly predicted positive and negative
samples are denoted as FN and FP, respectively.

Acc = (TP + TN)/(TP + FN + TN + FP), (6)

Pre = TP/(TP + FP), Sen = TP/(TP + FN), Spe = TN/(TN + FP) (7)
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and
F1 = 2 × Pre × Sen/(Pre + Sen). (8)

All the classifiers are trained using the training subset and evaluated on the test
subset. To ensure the experimental robustness and reduce bias, we employ a five-fold cross-
validation strategy for the evaluation of all the models. This approach involves randomly
dividing a dataset into five equally sized subsets and using four subsets for training and
the remaining one subset for testing iteratively. The final performance is averaged across
the five iterations.

3. Results and Discussion
3.1. Comparison of Different Graph Neural Networks

In this section, we assess the performance of various graph neural networks on
the MDD prediction task (Figure 4). Traditional graph neural networks, such as graph
convolutional networks (GCNs) and graph isomorphism networks (GINs), often employ
simple averaging or summation methods for graph readout in graph-based classification
tasks. However, this simplistic approach may overlook critical graph information. The
proposed DepressionGraph utilizes two channels of graph information to capture more
comprehensive global information from the graph.
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Figure 4. Classification accuracies of different graph neural networks for the MDD prediction task.
The horizontal axis gives the three brain region segmentation templates, and the vertical axis is the
classification accuracy.

Figure 4 presents the MDD prediction accuracies of five models, including GCN,
GIN, and two variants of DepressionGraph using only channel one and channel two inde-
pendently, together with the proposed DepressionGraph framework. DepressionGraph
outperforms all four other models using each of the three templates HO/AAL/CK. At
least a 2.24% improvement in accuracy has been achieved by DepressionGraph. The De-
pressionGraph variant with channel one only achieves the second-best accuracy using
each of the three templates. It is evident that utilizing features from two channels signifi-
cantly enhances the model’s performance compared to using features from just one channel
across three templates. The experimental results in Figure 4 validate the effectiveness of
our proposed model and demonstrate that the features extracted from Channel 1, which
focuses on capturing local attention, and Channel 2, which emphasizes global attention,
are complementary to each other.
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3.2. Comparison with Other Classification Algorithms

We constructed a graph structure and used the local clustering coefficients as the fea-
tures, similarly to [37]. These constructed features were then classified using the classifiers,
including support vector machine (SVM), random forest (RF), extreme gradient boost-
ing (XGBoost), multilayer perceptron (MLP), and convolutional neural network (CNN).
Figure 5 presents the performance of these machine learning or deep learning methods
as well as our proposed DepressionGraph. The experimental data demonstrated that
DepressionGraph outperformed other algorithms in terms of metrics, such as Acc = 68.86%
and AUC = 67.90%. Particularly, the Sen = 84.40% of DepressionGraph was significantly
higher than that of other algorithms. Sen measures the detection rate of the model for
diseased samples, and a higher Sen value can reduce the rate of false negatives, which is
crucial for the MDD diagnosis task. DepressionGraph achieves Spe = 51.39%, which is
similar to the classifiers SVM, XGBoost, and MLP. The other two classifiers, RF and CNN,
outperform DepressionGraph in Spe, but their Sen values are the worst two in Figure 5. The
main reason for the poor performance of neural network algorithms like MLP and CNN
may be that the complexity of the feature extraction models is insufficient. It may require
tens of thousands of training samples to train a better model. However, our proposed
DepressionGraph offers a more targeted approach to extract features from changes in brain
networks caused by diseases such as MDD or MCI. Even with fewer training samples, it
can still achieve excellent performance.
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Figure 5. Performance comparison between DepressionGraph and the other machine learning or
deep learning algorithms. The horizontal axis gives the performance metrics Acc, F1, Pre, Sen, Spec,
and AUC. The vertical axis lists the metric values. The experiment evaluates six classification models,
including SVM, XGBoost, RF, MLP, CNN, and DepressionGraph.

3.3. Necessity of Dynamic Brain Functional Connection Network

To demonstrate the necessity of adopting the dynamic functional connectivity network
(DFCN) approach, we compared the performance of DepressionGraph using the static
functional connectivity network (SFCN) versus DFCN. The AAL template was used. As
shown in Table 2, it is evident that DFCN outperforms SFCN in all metrics, highlighting the
importance of incorporating time-varying features in our method. This further validates
the effectiveness of DepressionGraph based on DFCN in capturing patterns of functional
connectivity that evolve over time.
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Table 2. Comparison of performance between DepressionGraph using DFCN and SFCN. The bolded
values indicate the best-performing method for a specific indicator.

Algorithm Acc F1 Pre Sen Spe AUC

DepressionGraph (SFCN) 56.47% 61.07% 57.96% 64.54% 47.41% 55.97%
DepressionGraph (DFCN) 68.86% 74.14% 66.11% 84.40% 51.39% 67.90%

3.4. Contribution of Transformer–Encoder Module

We further investigate the impact of incorporating the transformer–encoder for the
timing information extraction in the MDD prediction task (Figure 6). We use the weighted
summation module to replace the transformer encoder module in the DepressionGraph
framework and denote this simplified variant as DepressionGraph-NoTE. The Depression-
Graph framework outperforms DepressionGraph-NoTE on the MDD prediction task on all
three brain region segmentation templates HO/AAL/CK. The experimental data show the
valuable addition of the transformer encoder module to the DepressionGraph framework.
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Figure 6. Evaluation of the transformer encoder module in the DepressionGraph framework. The
model “DepressionGraph-NoTE” denotes the DepressionGraph without the transformer encoder
module. Three brain region segmentation templates, HO/AAL/CK, are evaluated on the horizontal
axis. The vertical axis gives the prediction accuracies.

3.5. Contributions of Brain Segmentation Templates

We evaluate the contributions of the three brain segmentation templates HO/AAL/CK
and their fusion to the DepressionGraph framework (Table 3). The complete version of
DepressionGraph fuses all three templates and achieves the best performances in three
overall measurements, including Acc = 71.48%, F1 = 77.91%, and AUC = 70.03%. The variant
DepressionGraph(AAL) achieves the highest Pre = 66.11%, slightly better than that (66.01%)
of DepressionGraph. The other variant, DepressionGraph(CK) (Sen = 98.58%), outperforms
the complete version DepressionGraph (Sen = 95.04%) in the measurement Sen.

We analyzed the features encoded by the second-last layer of the HO-based model.
We chose the HO brain parcellation template because it outperformed the models based
on the AAL and CK templates (Table 3). The features in the layer before the final layer
of the model are one-dimensional vectors with a length of 480. We separately calculated
the Pearson correlation coefficients (PCCs) between these 480 features and the class labels
separately. PCC ranges from −1 to 1. After analyzing the distribution of the latent features
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encoded by the HO-based model, we found that the highest absolute value of these PCCs
was less than 0.1 (Figure 7). We speculate that this might be because the features before
the final layer of the model still need to pass through a linear layer for classification. The
weight parameters of the linear layer and the cross-entropy loss function are also crucial
for the classification results, as they can potentially lead to a lack of strong correlation
between the features before the final layer and the labels. We believe that improving the
correlation between the latent features and the labels would further contribute to enhancing
the model’s performance. In our future work, we plan to design additional loss functions
specifically for enhancing the correlations of the latent features with the labels.

Table 3. Contribution evaluation of DepressionGraph using different brain segmentation templates.
The column “Model” includes the complete version of DepressionGraph and the three variants
using only one of the three templates HO/AAL/CK. The next columns give the five performance
measurements, i.e., Acc, F1, Pre, Sen, Spe, and AUC. The bolded values indicate the best-performing
method for a specific indicator.

Model Acc F1 Pre Sen Spe AUC

DepressionGraph(HO) 69.42% 75.11% 65.95% 87.23% 49.40% 68.32%

DepressionGraph(AAL) 68.86% 74.14% 66.11% 84.40% 51.39% 67.90%

DepressionGraph(CK) 68.48% 76.80% 62.90% 98.58% 34.66% 66.62%

DepressionGraph 71.48% 77.91% 66.01% 95.04% 45.02% 70.03%
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Figure 7. Distribution of the feature importance in the HO-based model. The horizontal axis gives
the value ranges of the feature importance metrics in the HO-based model. The vertical axis lists the
percentages of the features with the importance metrics in the HO-based model. The data series “FI”
and “Abs(FI)” refer to the feature importance and the absolute values, respectively, of the feature
importance of the latent features encoded by the HO-based model.

In summary, the DepressionGraph framework achieves similarly well, with values
of Acc = 69.42%, 68.86%, and 68.48% for the three templates HO, AAL, and CK, respec-
tively. The fusion of all three templates further improves the MDD prediction model to
Acc = 71.48%. However, the fusion of three brain segmentation templates increased the al-
gorithmic complexity and model training time. Future work may consider the construction
of a better single template-based prediction framework or the designing of refined brain
segmentation templates.
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3.6. Comparison with the Existing Studies

The overall performance of DepressionGraph is compared with the existing studies
(Figure 8). The comparison experiment focuses on the models using the same dataset as in
this study, including Gu et al. [38], Li et al. [39], Jie et al. [40], Guo et al. [41], Yao et al. [27],
Zhang et al. [42], and Zhu et al. [43]. Figure 8 shows that DepressionGraph outperforms all
the other studies in both the two performance measurements, Acc and F1. Previous studies
did not release the performance measurements Pre, Sen, Spe, and AUC. The proposed
DepressionGraph even improves the MDD prediction accuracy of Yao et al. [27] by 11.34%.
Zhang et al. proposed a multi-view graph neural network to detect MDD across ten sites
and achieved Acc = 65.61% and F1 = 64.55%, which were worse than DepressionGraph [42].
Zhu et al. evaluated their model across 16 sites, and DepressionGraph outperformed their
model by 0.78% in Acc and 6.78% in F1 on the same site [43]. The multi-site investigations
referenced in [42,43] reported F1 scores around 65%, whereas the DepressionGraph model
attained a more elevated F1 score of 71.13%. This disparity implies the presence of an inter-
site batch effect, underscoring the necessity for future research focused on the development
and implementation of sophisticated batch effect mitigation algorithms.
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Figure 8. Performance comparison with the existing studies. The horizontal axis gives the two
measurements, Acc and F1, and the vertical axis gives the values of these performance measure-
ments. The proposed DepressionGraph framework is compared with the previous studies, including
Gu et al. [38], Li et al. [39], Jie et al. [40], Guo et al. [41], Yao et al. [27], Zhang et al. [42], and
Zhu et al. [43].

3.7. Validation of DepressionGraph on Mild Cognitive Impairment

To further validate the effectiveness of DepressionGraph, we downloaded 149 samples
of early mild cognitive impairment (EMCI), 105 samples of mild cognitive impairment
(MCI), and 133 samples of normal controls (NC) from the ADNI database [44]. The data
were preprocessed using dparsf following the approach described in Yang et al. [45]. We
employed the commonly used automated anatomical labeling (AAL) template for brain
region segmentation.

We set up two binary classification tasks: EMCI vs. NC and LMCI vs. NC. We
compared the performance of DepressionGraph with [45] to further demonstrate the ef-
fectiveness of the proposed algorithm. Table 4 presents the performance of our proposed
method compared to the method proposed in [45]. The experimental data showed that
our method outperformed Yang et al. in most metrics and provided evidence that De-
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pressionGraph not only performed well in diagnosing MDD but also exhibited excellent
performance in predicting other disorders such as MCI. We anticipated that Depression-
Graph can also achieve good results on the MCI dataset because both disorders primarily
arise from abnormalities within the brain and exhibit symptomatic similarities. Compared
to the MDD dataset, the MCI dataset’s shorter temporal signals per brain region result in
quicker training and testing speeds. The performance also suggests that EMCI and LMCI
are easier to detect than MDD against the normal control samples.

Table 4. Performance of DepressionGraph and Yang et al.’s method on the MCI dataset. The bolded
values indicate the best-performing method for a specific indicator.

Algorithm Task Acc Pre Rec AUC

Yang et al. [45] EMCI/NC 82.76% 79.58% 69.73% 88.23%
DepressionGraph EMCI/NC 86.52% 93.58% 76.69% 86.00%

Yang et al. [45] LMCI/NC 87.23% 69.13% 75.58% 92.34%
DepressionGraph LMCI/NC 88.66% 88.97% 90.98% 88.35%

3.8. Model Discussion

The above results indicated that our proposed DepressionGraph framework could
extract more comprehensive information from graphs compared to the existing graph
neural network methods, such as GCN and GIN. By utilizing the dynamic functional
connectivity network (DFCN), we can capture the temporal features of functional connec-
tivity networks (FCN). This approach significantly outperforms the SFCN method, with
an improvement of 12.39% in accuracy (ACC). Recent studies have also adopted DFCN
for their experiments. While most papers use the AAL template for brain parcellation, it
may not be suitable for all brain disorders. To address this limitation, we employed three
different brain parcellation templates and fused the results to compensate for the weakness
of a single template. The experimental results further supported the effectiveness of fusing
multiple brain parcellation templates.

DepressionGraph extracts high-level abstracted information from the complex brain
rs-fMRI data, which lacks explainable features to guide the future clinical practice of MDD
diagnosis. Explainable artificial intelligence (XAI) technologies may be considered in future
studies. Combining expert medical knowledge with XAI (explainable artificial intelligence)
technology is also more likely to achieve excellent performance.

3.9. Clinical Implications

The diagnosis of major depressive disorder (MDD) currently relies heavily on clinical
observations. The spatiotemporal changes in brain blood flow can be detected by fMRI
technology and have been related to neural activities of various neural disorders, including
MDD [46]. The rapidly innovated fMRI technology offers high temporal and spatial
resolution of imaging human brains, and the fMRI-based machine learning and deep
learning algorithms have been extensively explored for their contributions to diagnosing
MDD [47]. Precise classification of MDD patients from other neural disorders and normal
controls may facilitate the computational diagnosis of MDD in future clinical practice and
regular health examinations.

4. Conclusions

This study presents a two-channel graph neural network framework, Depression-
Graph, for MDD prediction using rs-fMRI data. DepressionGraph leverages the capabilities
of graph neural network and transformer–encoder-based timing information extraction
and effectively captures rich temporal dynamics in the brain FCNs. We also address the
limitation of a single brain segmentation template by fusing the prediction results from
models trained with three different templates.

The experimental results clearly demonstrate the superiority of DepressionGraph over
traditional GNNs as well as the existing studies. At least a 6.78% improvement in F1 is
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achieved by our proposed DepressionGraph over the other models on the same dataset.
Similarly to [42,43], the cross-site generalizability of DepressionGraph needs to be explored
in future work. The impact of the biased ethnicity in the cohort will be evaluated with
additional diversified datasets.

Long-term trends associated with MDD in the time series data may greatly facilitate a
better understanding of MDD’s biological mechanism and the early diagnosis of MDD in
clinical practice. However, most of the existing datasets overlooked this issue, probably
due to the difficulties in identifying and tracking MDD patients before and after the
disease onset in the long term. The lack of long-term time-series data means most of the
computational studies focus on detecting the short-term fluctuations that only reflect acute
changes in the mental status of neurological disorders like MDD. The accumulation of
long-term time series brain imaging data for various neurological disorders can only be
resolved by the establishment of a large international consortium.

DepressionGraph extracted complex high-level information across the time series
activities of the whole brain, which captured the subtle patterns of MDD. The main limita-
tion of the DepressionGraph-extracted features is the lack of explainability, and it cannot
intuitively decompose the precise MDD classification model into the causal relations of
activated brain regions and the in-depth characterization of functional neurodynamic pat-
terns. In our future work, we aim to extract clinically meaningful types of node features
from the current model. We plan to visualize the changes in brain networks over time
using visualization tools to explore clinically actionable conclusions. Additionally, we
will attempt to optimize the network structure by adding additional constraints to the
node features and analyzing the changes in brain networks over time based on the node
features and the connections between nodes. This analysis will help us identify specific
brain regions activated in MDD patients, which facilitates a better understanding of the
causal relations of activated brain regions and enhances the interpretability and clinical
applicability of our model.

The other limitations of DepressionGraph include the confounding effect of unbal-
anced gender ratios and the high requirement for computational resources due to the FCN
construction and the evaluation of the time series data. In future work, we will explore
network modules that are more computationally efficient for the MDD prediction task.
Additionally, we will conduct experiments on more datasets to ensure a balanced male–
female ratio in both positive and negative samples, thereby avoiding the confounding
effect of gender on MDD classification. The imbalanced ratio between the two genders
will be evaluated by building two separate gender-specific models. We will attempt to
mitigate the limitations of the model in characterizing functional neurodynamics and
explainability by utilizing more advanced algorithms to extract temporal dynamics in-
formation of individual brain regions. Additionally, we will refer to the image feature
extraction methods evaluated by El-Gayar et al. [48] to extract intrinsic features from the
magnetic resonance imaging itself, aiming to further enhance the performance of the model.
Explainable artificial intelligence (XAI) algorithms will also be evaluated for their MDD
prediction performance and the possible roles in characterizing the causal relations of brain
activations and functional neurodynamics. Hierarchical clustering and k-means clustering
strategies of the XAI-extracted explainable features will be employed to group the MDD
patients into clinically meaningful subpopulations of MDD biotypes in future work.
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