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Abstract: This study discusses a failure detection algorithm that uses frequency analysis and artificial
intelligence to determine whether a rotor used in an industrial setting has failed. A rotor is a standard
component widely used in industrial sites, and continuous friction and corrosion frequently result in
motor and bearing failures. As workers inspecting failure directly are at risk of serious accidents, an
automated environment that can operate unmanned and a system for accurate failure determination
are required. This study proposes an algorithm to detect faults by introducing convolutional neural
networks (CNNs) after converting the fault sound from the rotor into a spectrogram through STFT
analysis and visually processing it. A binary classifier for distinguishing between normal and failure
states was added to the output part of the neural network structure used, which was based on the
transfer learning methodology. We mounted the proposed structure on a designed embedded system
to conduct performance discrimination experiments and analyze various outcome indicators using
real-world fault data from various situations. The analysis revealed that failure could be detected in
response to various normal and fault sounds of the field system and that both training and validation
accuracy were greater than 99%. We further intend to investigate artificial intelligence algorithms
that train and learn by classifying fault types into early, middle, and late stages to identify more
specific faults.

Keywords: rotor fault detection; convolutional neural networks; spectrogram; transfer learning

1. Introduction

Industrial automated mechanical systems are widely used in various industries as
we enter the fourth industrial revolution. For example, oil piping installations world-
wide have been rapidly expanding to satisfy the increasing energy needs. The pipelines
have the potential for structural failure due to erosion, crack propagation, human factors,
environmental factors, and other causes over time [1].

In addition, a conveyor belt device, a piece of industrial machinery, is mainly used
in factories to efficiently transport parts and materials such as coal and minerals [2]. The
conveyor belt system makes extensive use of rollers, which are frequently the cause of
system failure because foreign objects can easily get caught between them and cause
roller breakage [3]. Conveyor belt wear faults are typically identified by a way worker
directly inspecting a belt at a work site. However, manually inspecting the work site is
time-consuming and increases the risk of accidents such as getting caught in the conveyor
belt [4].

Artificial intelligence is quickly becoming a viable replacement for the traditional
methods of machine failure diagnosis [5].

Recently, research on artificial intelligence-based abnormal signal detection has become
a hot issue. Spandonidis. et al. developed LSTM-A and 2D-CNN algorithms based on
sound data and conducted research on leak detection in oil and gas pipelines [1].
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Theodoropoulos et al. conducted a study on detecting early signs of defects in ship
operating conditions through a 2D-CNN model [6]. Hou et al. developed an AE-VBGMM
that combines an autoencoder and a Bayesian Gaussian model to detect malicious nodes in
an IoT environment [7]. In addition, Ahn et al. conducted a study on detecting abnormal
motion inside a machine through supervised learning and unsupervised learning [8]. As a
result, it achieved up to 99% accuracy by overcoming the disadvantages of existing machine
learning algorithm structures such as SVM and BP-NN [9]. However, the LSTM model
has disadvantages in that it is difficult to extract nonlinear characteristics of data and is
slow [10]. Studies on these various artificial intelligence algorithms have resulted in high
performance. In particular, 2D-CNN has become a hot research topic in the field of machine
defect detection based on sound data, and various Fourier transform techniques such as
STFT, WT, and HHT are used in the pre-processing of sound data.

Research results on the application of these 2D-CNN can be easily found in the fields
of EEG signals and ECG signals [11–13]. For example, Nahal Shahini et al. proposed that
the raw EEG input is applied directly to a CNN without feature extraction or selection.
This methodology could be employed in brain–computer interface (BCI) applications due
to high accuracy results [14]. Amin Ullah et al. studied ECG signals-based classification
of arrhythmia. They applied the 2D-CNN model for the classification of ECG signals
into eight classes. The l-D ECG time series signals are transformed into 2D spectrogram
images through STFT. They achieved a high accuracy of 99.11% on the classification of
arrhythmia [15].

In particular, the CNN based on time–frequency signal data is used for fault diagnosis
of rotating bodies used in various industrial fields. Guoqiang Li et al. proposed a two-step
fault diagnosis method. The first step applied the WPT (Wavelet Packet Transform) to
obtain 1D time–frequency coefficients from vibration signals, which are converted into 2D
gray images. In the next step, the CNN model is applied. As a result, it was confirmed that
the CNN model has superior fault diagnosis capabilities than existing machine learning-
based decision trees, k-nearest neighbors, and support vector machines [16]. Meanwhile,
Dip Kumar Saha et al. proposed a machine-learning approach for fault diagnosis of
rotary machine element bearing. The time waveform of vibration data in the system was
converted to a spectrogram using the fast Fourier transform (FFT) method. In the next
step, a support vector machine (SVM), a machine learning algorithm, was applied. As
a result, the developed SVM model was superior to traditional ML techniques such as
KNN (k-nearest neighbor), DT (decision tree), and LDA (linear discriminant analysis),
but the accuracy was only 93.9% [17]. Additionally, David et al. converted sound data
into image data using time–frequency signal processing techniques such as short-time
Fourier transform (STFT), wavelet transform (WT), and Hilbert–Huang transform (HHT)
to diagnose bearing defects. After learning a convolutional neural network (CNN) model,
it was confirmed that the failure diagnosis performance of the machine was significantly
improved compared with previous studies [18]. LIANG, Pengfei, et al. converted the one-
dimensional vibration signal of the bearing into a two-dimensional frequency spectrogram
using the FFT technique and trained the CNN model to demonstrate that the CNN model
outperformed BP and SVM models [19].

As can be seen through the literature review of various studies, CNN models are
superior to prior artificial intelligence models such as machine learning-based classifiers
and deep learning classification models in signal classification.

However, since these CNN-based deep learning algorithms operate on computers
installed in offices with abundant computer infrastructure, it is difficult to process infor-
mation generated in real time in a wide range of sites with one computer resource [20].
Therefore, it is necessary to apply a compact and efficient CNN model that can be applied
in the field and operate in an embedded environment placed close to rotating equipment.

In this study, we collected the sound data of conveyor belt rollers directly at the work
site and collected the sound data into a spectrogram, an image form applied with an STFT,
a time–frequency analysis technique. During the next step, a CNN-based transfer learning
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model was applied to the converted spectrogram to perform processes such as learning,
evaluation, and machine fault prediction. Finally, the developed rotor fault diagnosis
model using CNN-based transfer learning was embedded in an embedded system based
on Raspberry Pi (RPi) 4 to verify the performance of the failure diagnosis system in real time.
In addition, the sound detection result of each sound detection module obtained through
this process is transmitted to the upper controller, and instead of the entire existing sound
data, only the determination result is transmitted, thereby reducing the load concentrated
on the PLC and PCs.

This study is structured as follows. Section 2 presents the theoretical background.
Section 3 presents the data collection and experimental processes. Sections 4 and 5 present
the experimental results and analysis, and the conclusion and future research directions,
respectively.

2. Theoretical Background
2.1. Short-Time Fourier Transform

STFT is a time–frequency domain analysis method that converts a one-dimensional
signal into a two-dimensional matrix suitable for the CNN model. The processing technique
of STFT is summarized as follows. A window signal is extracted from the desired signal
by adding a short-time window, and then the Fourier spectrogram of the window signal
is calculated. A spectrogram image with a time–frequency expression of the signal can
be obtained by sliding the window along the time axis [21–23]. STFT is expressed using
Equation (1) [24–27], as follows:

STFT(t, ω) =
∫ ∞

−∞
x(τ)ω(τ − t)exp−jωτdτ (1)

where x(τ) denotes a signal function and ω(τ) denotes a window function.
Because the actual conveyor belt sound signal is a discontinuous function, the conver-

sion of Equation (2) is performed for the nth discontinuous signal x(n), time m, frequency
l, and the length L of window function ω(t) [28].

STFT(m, l) =
∞

∑
n=−∞

x(n)ω(n − m)exp−2π jnl/L (2)

The sound signal is converted from the time domain to the time–frequency domain
through this process.

In this study, we converted STFT using the librosa.stft method in Python’s Librosa
package to implement STFT [29].

2.2. Convolutional Neural Networks

Figure 1 shows the representative structure of the CNN. For input image data
(128 × 128 × 3). the convolutional layer creates a feature map that extracts the features of
the image, whereas the pooling layer reduces the number of operations by reducing the
extracted feature map. Identified features that have undergone multiple convolution and
pooling processes are finally classified in the fully connected layer [30–33].
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Figure 1. Structure of convolutional neural networks (CNNs).

In the convolution layer, the feature map from the previous layer is input into the next
convolution layer. The input convolution layer applies an activation function to create the
next convolution kernel.

The operation process of the convolution layer is shown in Equation (3) [31].

Mn
I = f

(
∑ Xm

l−1 × Wmn
l + Bn

I
)

(3)

where M denotes the layer output matrix, f denotes the activation function, X denotes
the previous layer input matrix, W denotes the kernel weight matrix, and B denotes the
bias vector.

A crucial component of CNN is a nonlinear activation function, and the ReLu function
is frequently used for such. The ReLu function returns zero if the input value is less than
zero, and outputs the input value if it is greater than zero. Because these ReLu functions
converge quickly and show non-saturated linearity, the learning speed is quick and the loss
of slope, which is a disadvantage such as the conventional Sigmoid activation function, can
be prevented. Equation (4) represents the expression of the ReLu function [32].

f (x) = ReLu(x) = max(0, x) (4)

The pooling method includes max pooling and average pooling. Max pooling, which
selects the maximum value in each area, is mainly used in the image recognition field.
This pooling process has the advantage of quick calculation speed and reduces overfitting
because the number of parameters to be calculated is few. In this study, we used the Max
pooling method. Max pooling is calculated using Equation (5) [34], as follows:

Pm = MaxMn
I , MnεS (5)

where Pm denotes the output matrix and S denotes the size of the pooling layer.
CNNs repeatedly perform the convolutional and pooling layers before the classifica-

tion step using the fully connected layer, which is the final step. The fully connected layer
flattens the extracted two-dimensional array into a one-dimensional array and classifies the
image using the Softmax function.

2.3. Transfer Learning Model

We could apply the previously learned models to new models [35] using the transfer
learning model. Deep learning generally requires considerable data. In this case, the use of
transfer learning can address the problems of insufficient data, time, and cost associated
with data collection and labeling [36]. Table 1 shows CNN-based transfer learning models
with relatively high-performance indicators of learning results compared with other transfer
learning models [37].
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Table 1. Comparison of transfer learning models.

Model Size (MB) Top-1 Accuracy Top-5 Accuracy Parameters Depth

Xception 88 79.0% 94.5% 22.9 M 81

VGG16 528 71.3% 90.1% 138.4 M 16

VGG16 549 71.3% 90.0% 143.7 M 19

ResNet50 98 74.9% 92.1% 25.6 M 107

ResNet50V2 98 76.0% 93.0% 25.6 M 103

In this study, we selected the Xception model because it has a deep depth, occupies
a small amount of memory capacity, and has the highest validation accuracy among the
transfer learning models.

To apply a transfer learning model to a new dataset, a fine-tuning technique is required
to retrain a previously trained model to serve the intended purpose or to retrain some of the
learned weights. Because of the fine-tuning technique, only one layer is actively learning
while the others are frozen.

Figure 2 shows fine-tuning options according to various data sizes and similarities.
Figure 2a shows four conditions according to the sizes and similarities of the dataset, and
Figure 2b shows the transition learning model and the classifier’s fine-tuning options. In
this study, the entire relearning fine-tuning technique, which is the first quadrant condition
with the highest validation accuracy, was selected and applied to model training after all
the fine-tuning techniques of the four conditions were performed.
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(b) options of fine-tuning.

The complexity or number of convolution layers in the current CNN model increases
the number of hyperparameters increase, which limits the ability to extract image features
and causes overfitting and loss of slope.

To overcome these disadvantages of CNN, Chollet, et al. developed the Xception
model by configuring separable convolution layers, as shown in Figure 3. The separable
convolution layer method connects the feature maps obtained from the existing convolution
layer, obtains a feature map for each channel through depthwise convolution, and then
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reduces the number of channels through pointwise convolution. Using this method, the
amount of computation of the convolution layer is significantly reduced, and it is possible
to reduce the weight of the CNN model [38]. The structure of Xception is shown in Figure 4.
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3. Development of Fault Diagnosis Method Using CNN-Based Transfer Learning
3.1. Design of an Artificial Neural Network System

In this study, sound data were directly collected at the workplace and then converted
into a spectrogram using the STFT technique. The Xception transfer learning model was
then applied to the converted spectrogram to complete the rotor fault diagnosis algorithm.
Finally, the completed fault diagnosis algorithm was embedded in the embedded system
to perform a validation experiment on the real-time fault diagnosis performance of the
rotating body. Figure 5 shows the development procedure for a fault diagnosis system
using the CNN-based transfer learning model conducted in this study.
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3.2. Data Collection

We collected various normal and fault sounds of conveyor belt rollers by moving
100 m at a time after recording for 30 min at 4 s intervals outside the quarry and inside
the tunnel of a company that produces 7.5 million tons of cement annually in Yeongwol,
Gangwon-do. A significant amount of data were collected in the environment where the
conveyor belt actually operates to derive the results of artificial intelligence with the same
results in the real environment. Figure 6. shows the conveyor belt rollers on the work site
where the data were extracted. We obtained 17,000 normal sounds and 17,000 malfunction
sounds from conveyor belt rollers. Figure 7. shows the data recorded in 4 s intervals for
silent sounds, normal sounds, and trouble sounds.
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3.3. Spectrogram Images Generation

The collected wav files were converted into spectrogram images using the Librosa
package in the Python environment, yielding approximately 34,000 spectrogram images,
each measuring 128 × 128. Figure 8 shows the conversion of the wave file image into
a spectrogram image using the STFT technique. Various patterns of sound information
can be confirmed into a spectrogram and visualized using this method for converting
sound data generated in the field. In general, a certain pattern frequently appears in the
spectrogram when a failure occurs. The length of the sliding window of the spectrogram is
192 GB, and since information for 4 s is mapped, the overlapping size of the spectrogram
is set to 512, which is about 1/4 the size, and a hamming window that is easy to analyze
continuous sound data used. A total of more than 34,000 spectrogram images were created,
and data augmentation was not performed because this was sufficient to perform training,
validation, and testing through the CNN model.
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3.4. Xception Model Structure Design

Figure 9 shows the configuration of the CNN-based transfer learning model. The
34,000 datasets applied to the model were divided into groups: training (75%), validation
(15%), and testing (10%). The total number of learning epochs was set to 1000, and the
learning was automatically terminated early when the loss increased using a callback
function. We used model checkpoint, Adam optimization, and binary cross-entropy to
implement optimal model learning.
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Figure 9. Binary classifier based on Xception model.

Table 2 shows the details of the training options of the transfer learning model. CNN
training, validation, and evaluation were conducted in a high-capacity computing envi-
ronment with an NVIDIA GeForce RTX 3090 GPU and 192 GB RAM in the computer
environment for developing the CNN-based rotating body fault diagnosis model. The
software library performed data preprocessing through Numpy, Pandas, and Matplotlib
in Python 3.9.7 environment, and AI training and validation were performed in Tensor-
flow version 2.5. Conveyor belt sound data processing and spectrogram generation were
performed in Pyaudio 0.2.11, Librosa 0.9.1, and OpenCV 4.5.5 versions.

Table 2. Train parameters.

Name of Component Content and Value

Optimizer Adam
Mini-batch size 32

Epoch 1000
Loss Binary cross entropy

Callback
Patience (validation loss) 10

Model checkpoint Best validation accuracy

4. Experimental Results
4.1. Configuration of the Embedded System

In this study, a set of experiments to verify the proposed algorithm for diagnosing
roller failures was configured as shown in Figure 10. The sound detection module, a unit
diagnosis system, is a Raspberry Pi4-based embedded system type controller equipped
with a CNN-based Xception model. Since the arrangement of the rollers at the work site is
consistently located for a long distance, each embedded model was placed at 3 m intervals
corresponding to the maximum separation distance in the laboratory, and a speaker gen-
erating the sound of the rollers was placed 1 m in front of the embedded module. Then,
using a speaker, the sound data of the normal and faulty state of the roller secured at the
actual work site was output, and a diagnostic experiment was performed for 1 h once every
4 s. Additionally, the embedded system developed in this study diagnoses the failure of
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the conveyor belt roller sound and transmits the diagnosis result to PCs or PLC equipment
through Wi-Fi. Each of the conveyor belt roller sound detection modules distributed around
the conveyor belt rotating body collects ambient sound data and performs preprocessing on
the collected data. For the experiment, the PWB-05 battery was used as the power source,
BM-350U was used as the microphone, and BZ-SP600X was used as the speaker. Then, the
sound data that have gone through the preprocessing process are analyzed for the failure
of the rotating body by applying an artificial intelligence model. The failure determination
result of each module obtained through this process is transmitted to the upper controller,
and instead of the entire existing sound data, only the failure determination result is trans-
mitted, thereby reducing the load concentrated on the PLC or PCs. Figure 11 hows the
internal equipment of the embedded system used in this experiment.
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Figure 12 shows a schematic diagram of an embedded software system. The con-
ventional diagnosis of abnormalities in the rolling element required a worker to visit the
site and analyze the sound and condition of the roller. Therefore, the implementation of
wireless communication between a system that diagnoses the presence of abnormalities
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in the field in real time and a remote supervisor’s monitoring system is a very important
issue. In this research, we introduced the RPI4 embedded system to build these envi-
ronments. Embedded systems now include servers such as Dnsmasq, Hostapd, etc., for
remote connections, enabling wireless local networks. The way the whole system works
is designed with a GUI based on Node-Red. Rotating body sound data measured in real
time was used to determine the normality and failure of the conveyor belt through an
artificial intelligence model installed in RPI4, and the determination results were stored in
a USB memory. At the same time, the discrimination result can be checked in real time on a
remote PC through MQTT. The user interface outputs the result of determining whether
it is normal or malfunctioning, the distance between the roller and the recorder, and the
number of recordings.
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4.2. Results of Xception Model Learning

Figure 13 shows the validation accuracy and validation loss according to the number
of epochs during the learning process. The weights of models with the highest validation
accuracy during the learning process were stored at 396 epochs, and learning was stopped
early at 406 epochs out of a 1000 epoch set. The developed fault diagnosis transfer learning
model showed a high validation accuracy of 99.567% and a low validation loss of 0.014.
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Figure 13. Comparison of training and validation results in various transfer learning models should
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accuracy; (f) VGG19 loss; (g) ResNet50 accuracy; (h) ResNet50 loss.
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Figure 14 shows the confusion matrix for model prediction, and the classification
report in Table 2 shows the precision, recall, and harmonic average (F1-score). Equations
(6) to (8) are used to express precision, recall, accuracy, and harmonic mean, respectively.
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In the model prediction results in Table 2, the precision, recall, accuracy, and harmonic
mean of the validation and test datasets were all at least 98%.

As shown in Figure 13, overfitting did not occur during learning in this experiment.
Additionally, the validation error gradually decreases, and the validation accuracy tends
to increase.

The reason why overfitting did not occur was that sufficient datasets were used in this
experiment, and the spectrogram image data were set to 0 and 1 classes through one-hot
encoding. In addition, unbiased dataset distribution was confirmed through rigorous
data preprocessing, and training and validation were performed. In addition, dropout
was applied to reduce the complexity of the hyperparameter of the fully connected layer,
and early stopping was applied to automatically end training when the validation loss
reduction did not proceed within 10 epochs of the learning curve of the model.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 Score =
Precision × Recall
Precision + Recall

(8)

In the validation dataset, 2992 of 3000 images from the fault dataset were determined
as faults, and 2997 of 3000 images from the normal dataset were determined as normal.
Regarding the test dataset, 1996 of 2000 images from the fault dataset were determined
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as faults, and 1985 of 2000 images from the normal dataset were determined as normal.
Although the accuracy of the test dataset is higher regarding the normal and fault, as 97.8%
and 9.99%, respectively, it is less accurate than the validation dataset in terms of prediction
results. The accuracy of the test dataset was lower than that of the validation dataset in the
terms of prediction. However, the accuracy of the test dataset was with 97.8% and 9.99%
accuracy for normal and malfunction, respectively.

As shown in Table 3, all four CNN models training results, precision, recall, accuracy,
and F1-score, produced high results. In order to apply to RPI4, a small computer for embed-
ded systems, the Xception model with the smallest model capacity and hyperparameters
was applied to the embedded system and experiments were conducted.

Table 3. Test dataset classification results.

Name Precision Accuracy Recall F1-Score Total Data No.

Xception normal 0.993
0.995

0.998 0.995 2000
fault 0.998 0.993 0.995 2000

VGG16
normal 0.995

0.996
0.997 0.996 2000

fault 0.997 0.995 0.996 2000

VGG19
normal 0.995

0.990
0.986 0.990 2000

fault 0.986 0.995 0.990 2000

ResNet50
normal 0.986

0.986
0.988 0.987 2000

fault 0.988 0.986 0.987 2000

4.3. Result Applied to the Embedded System

Table 4 shows the results of the failure diagnosis experiment using the developed
model and the embedded system. Although the developed model showed low accuracy
compared to the test dataset, it showed high accuracy of 94.89–99.44% when used on an
embedded system similar to the actual working environment.

Table 4. Accuracies according to the sound conditions.

Name Accuracy [%] Total Data No. True False

Normal 94.89 900 854 46
Fault 99.44 900 895 5

Figure 15 shows the result of fault determination for 900 fault sound data for 1 h
in 6 min intervals using the embedded system. Only 5 of 900 pieces of data showed
judgment errors.
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Figure 16 shows a relatively low accuracy of 94.89% by discriminating 854 of the
900 normal sounds of the conveyor belt as normal. However, it was confirmed that the
figure of 94.89% was also high in accuracy and showed good results for normal sound
data. However, it is estimated that a fine failure signal is generated in normal sound data
because of the lower accuracy than the failure sound data. To address this, it is necessary
to further strengthen data preprocessing or refine classification to improve the accuracy
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of diagnostic systems in addition to the faults and normals due to conventional binary
classification. Laboratory-level experiments on conveyor belt defect sound data have
proven high accuracy for normal and fault diagnosis, and high utilization at the actual
conveyor work site can also be expected in the future.
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5. Conclusions and Future Research Plans

This study proposed a fault diagnosis method using CNN that converts various sounds
generated from rotors such as conveyor belt rollers in industrial sites into spectrogram
through STFT techniques and applies complex patterns of visualized images. The sound
data generated at the work site was directly collected to create a dataset necessary for deep
learning, and various preprocessing tasks, including spectrograms, were performed on
the collected data to be suitable for deep learning. Additionally, we used the Xception
transfer learning model to improve the classification accuracy using little data. Because
the transfer learning model is generalized, a fully connected layer and a classifier were
independently designed and applied to the transfer learning model to create a structure
appropriate for the rotor fault site. The developed model was applied to a Raspberry
Pi-based embedded system to perform a fault diagnosis experiment, and the analysis was
conducted using various matrices for the experimental results. Using the results of the
experiment, it was possible to confirm that more than 99% of diagnoses for various faults
and normal sounds and typical noises were accurate. In conclusion, this study performed
model learning based on work site data and developed a rotor fault diagnosis system using
the STFT technique and transfer learning model. It was confirmed that the developed
artificial neural model can determine various normal and fault sounds at the work site with
a high level of accuracy using an embedded system.

In addition, conventional CNN models cannot demonstrate high accuracy in diag-
nosing new failure modes that occur such as conveyor belt production lines with a lot of
field noise and various nonlinear factors. So, we proposed a lightweight CNN model and
real-time testing of the CNN model. Based on the findings of this study, it is expected
that the current manual defect diagnosis method, in which a person directly inspects a
conveyor belt for defects, will reduce the number of human casualties, such as worker
pinching accidents.

Additionally, this proposed method has the advantage of obtaining field information
remotely by processing field discrimination data in real time in an artificial intelligence-
based discrimination system installed on the site, away from the conventional method
of manually visiting the site and manually determining the failure. Simplification of
information processing is expected as it directly judges the raw failure information data
in the field without having to process it again. As a result of this study, it tends to detect
well when the fault sound occurs clearly in the field, but it is classified as normal in the
early phase of the fault where the fault sound is weak or occurs very intermittently. In this
case, in order to detect the early stage of failure, it is necessary to study a classification
technique that learns by further subdividing the stage of failure into early, middle, and
late stages of failure. In addition, we plan to conduct research on the development of a
failure diagnosis system applicable to the field by analyzing the real-time diagnosis results
for classes such as normal and failure for various sound data generated from the rotating
body of the conveyor belt in the actual work site. In addition to diagnosing the failure of
the rotating body, we plan to conduct research on the development of a big data analysis
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system and artificial intelligence-based prediction model that can predict the replacement
cycle due to deterioration, damage, and looseness of the rotating body at an early stage.

In future research, we intend to improve the binary classification method of failure and
normal and to develop an artificial intelligence algorithm that can diagnose more detailed
failures by categorizing different failure types into early, middle, and late stages.
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