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Abstract: Aiming to differentiate various transportation modes and detect the means of transport an
individual uses, is the focal point of transportation mode detection, one of the problems in the field of
intelligent transport which receives the attention of researchers because of its interesting and useful
applications. In this paper, we present TMD-BERT, a transformer-based model for transportation
mode detection based on sensor data. The proposed transformer-based approach processes the
entire sequence of data, understand the importance of each part of the input sequence and assigns
weights accordingly, using attention mechanisms, to learn global dependencies in the sequence. The
experimental evaluation shows the high performance of the model compared to the state of the art,
demonstrating a prediction accuracy of 98.8%.

Keywords: transportation mode detection; transformers; deep learning; BERT; multimodal
sensor data

1. Introduction

Transportation, nowadays, is an important factor influencing urban areas and has a
promising role in the development of smart cities. Moving from one place to another is a
major part of citizens’ life. Citizens are constantly moving and changing means of transport
according to their needs, thus it may be of extensive research interest how transportation
may evolve over time. Having knowledge of how individuals move at a given time but also
predicting the way they may move in the future, can have useful benefits for city residents
and authorities at many points of everyday life. Improving infrastructure, designing a city
friendly to the citizen, planning a convenient transport system, providing targeted real-
time information and updating according to personal needs, managing traffic congestion,
protecting the environment by promoting soft transportation modes (cycling, running,
and walking), enhancing the physical and mental health of citizens, are some of these
benefits [1].

Transportation Mode Detection (TMD), frequently considered as a subfield of the field
of human activity recognition [2–4], intends to differentiate various transportation modes
and identify the means of transport an individual uses.

The progress of the Internet of things (IoT), big data, and cloud computing has com-
pletely revolutionized transportation. Modern mobile devices such as smartphones, tablets,
smartwatches, etc., have given a huge boost and space for further development in the field
of TMD by collecting and analyzing multimodal sensor data in the transportation area. The
fact that these devices are outfitted with various sensors, such as accelerometer, gyroscope,
hygrometer, magnetometer, sound, and image sensor, etc., allows them to provide precise,
accurate, and ready to use, data. This fact, combined with the increasing [5] and continuous
use of the mobile device in any form of humans mobility [6], makes it more possible than
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before to capture information that, until now, was inaccessible, such as where the individual
is, what transport media the passengers prefer to use, the duration of their trip and even
recognize their daily travel activity patterns [7].

At the same time, the prodigious advances in the Deep learning area, create new
perspectives in the transport community, and in particular in smart mobility. Although
deep learning models such as CNN and LSTM [8] have been applied to TMD yielding
remarkable results, there are still certain limitations in such approaches, mainly pertaining
to the handling of long-range dependencies. Transformers, an innovative deep learning
implementation introduced in 2017 [9], address these limitations, as it is capable of learning
relations between elements thanks to multi-head attention mechanisms and positional
embeddings. Transformers analyze the entire sequence of data, understand the importance
of each segment of the input sequence, and appropriately allocate weights by means of
attention mechanisms, in order to learn global dependencies in the sequence and do not
merely focus on adjacent events.

Transformers are extensively used in Natural Language Processing (NLP) field and
later in other fields, too, such as computer vision, but to our knowledge, little research has
been performed to investigate Transformers models application in the area of intelligent
transport. This work assumes the smart device sensor values for each timestamp as
sequences and each measurement as a word. We operate BERT (Bidirectional Encoder
Representations from Transformers), an open-sourced, pre-trained model, in order to
predict the transportation media an individual will use at a specific time in the future,
using the media we know that has been used in the recent past. The remainder of the
paper is structured as follows: In Section 2 there is a brief overview of related work, while
in Section 3 the proposed transformer-based TMD-BERT model is presented. Section 4,
offers an extensive experimental evaluation of the proposed model in comparison with
traditional deep learning methods. Finally, Section 5 concludes the paper with a summary
of our findings.

2. Related Work

This section presents an analysis of existing research partitioned into two sections,
namely research on deep learning in TMD and a brief overview of research on applications
of transformers.

2.1. Research on Deep Learning in TMD

During the last few years, traditional Machine Learning as well as Deep Learning
techniques have been used to develop several models based on sensors embedded in smart-
phones, (magnetometer, accelerometer, gyroscope, atmospheric pressure, GPS, etc.), with
the aim of determining the mode of transportation used by a citizen. In [10], a number of
traditional Machine Learning models, such as Decision Trees, Random Forests, Multi-Layer
Perceptrons, and Support Vector Machines, to classify five actions (bus, train, walking,
still, car), applied on a sensor-based dataset they created. The experiments resulted in
an accuracy of 81–93% achieved by Random Forest. In [11], several Machine and Deep
Learning techniques for detecting transportation modes in real-time, have been presented,
using and comparing extracted statistical features and raw data as input. Recurrent Neural
Networks (RNN) achieved 88% accuracy by using statistical features whereas Convolu-
tional Neural Networks (CNN) achieved 98.6% accuracy without any pre-processing of raw
data measurements. A CNN model built on acceleration data was used in [12] to recognize
the transportation mode an individual uses when moving. This model compared with a
variety of ML and DL classification models (decision trees, k-nearest neighbors algorithm,
naïve Bayes, adaptive boosting, support vector machines, shallow neural network, and
long short-term memory networks) achieved an accuracy of 94.48% [13]. Instead of raw
data, a novel set of time and frequency extracted features were used to apply an LSTM
model and recognize 10 media of transport with an accuracy of 96.82%.
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2.2. Research on Transformers

Transformers [9] adopt an attention mechanism which examines an input sequence
and decides at each step the importance of the other parts of the sequence. Since their
introduction, they have been gradually shown to outperform LSTM which was the previous
state-of-the-art model in sequential data analysis. Attention was initially designed in the
context of Neural Machine Translation using Seq2Seq Models in the Natural Language
Processing (NLP) field. In NLP, both attention mechanism and transformers have been used
effectively in a variety of tasks such as reading comprehension, abstractive summarization,
word completion, and others [14–16].

Before Transformers appeared, most state-of-the-art NLP models were based on
RNN [17], LSTM [18], or CNN [19], however, these methods presented certain limita-
tions. RNN [20,21] processed data sequentially but firstly this was not very efficient in
handling long sequences and secondly, it was difficult to take full advantage of modern
fast computing devices such as TPUs and GPUs. Even though LSTM offered a slight
improvement over conventional RNN concerning long dependency issues, there were still
particular constraints such as the need for sequential processing that not allowed paral-
lel training and the difficulty in handling long sequences and long-range dependencies.
Convolutional Neural Networks (CNNs) [22], widely used in the NLP field, trained quite
fast and were efficient with short texts, but the number of different kernels required to
capture dependencies between all possible combinations of words in a sentence, would be
huge and impractical. On the other hand, the reason Transformers outperform all other
architectures is the fact that they completely avoid recursion. That is because, thanks to
multi-head attention mechanisms and positional embeddings, they process sentences as a
whole and they learn relationships between words.

3. The Transformer Model for Transportation Mode Detection

The additional feature of training parallelization allows training on larger datasets
than was once possible. This feature led to the development of pre-trained systems such as
BERT (Bidirectional Encoder Representations from Transformers) [23] which was trained
with large language datasets, such as the Wikipedia Corpus and Common Crawl. Thus,
although Transformers were used primarily in the fields of natural language processing
(NLP), the development of pre-trained systems such as BERT sparked a wave of research
in other domains, too. In the Computer Vision domain, models which can be well adapted
to different image processing tasks were developed. In [24], ImageGPT a sequence Trans-
former is trained to auto-regressively predict pixels, without built-in knowledge of the 2D
input structure. In [25], a pre-trained model with transformer architecture is developed
for image processing, and in [26], Facebook AI researchers presented DETR showing that
transformers can be used for object detection and segmentation, with very competitive
results. In Biology and Chemistry research field, the AlphaFold2 model [27] was developed,
an equivariant structure prediction module for protein structure prediction, as well as SE(3)-
Transformers [28] a variant of the self-attention feature for 3D point clouds and graphs,
which is equivalent under continuous 3D rotational translations. In the Transportation
domain, spatial transformer [29], a new variant of graph neural networks has been devel-
oped. This model uses directed spatial dependencies with a self-attention mechanism and
manages to capture and predict traffic flows in real time. In [30] TrafficBERT is proposed, a
model for traffic flow prediction which is based on pre-trained BERT and can be used on a
variety of roads as it is pre-trained with a large traffic dataset.

The goal of this paper is to build a robust and optimized TMD system that accepts
a sequence of information from multiple smartphone sensors as input, and produces a
prediction output of increased detection and prediction accuracy compared to existing
traditional recurrent networks. The proposed TMD-BERT model leverages the represen-
tational power and other strengths of the transformer network family. It processes the
entire sequence of data and learns global dependencies in the sequence, and provides a
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robust and accurate approach for TMD that outperforms existing methods, as shown in the
experimental evaluation.

3.1. Transformer Models Overview

The basic transformer network model comprises a multi-head attention module and a
position-wise feed-forward network. The normalized input sequence enters i the multi-
head attention layer, which computes attention scores. These are then passed on to a
position-wise feed-forward layer.

Attention mechanism in transformers is affected as a Query-Key-Value (QKV) model.
Attention is composed of a series of linear transformations which analyze input sequences
in an order-invariant fashion, calculating and allocating importance weights to each spot
in the sequence. Single-head dot-product attention mechanism therefore applies linear
transformations to the input signal to form query (Q), key (K) and value (V) matrices. Let
us assume that x ∈ Rsb×sl is the input sequence, where sb is the batch size and sl the input
length of (normalized and preprocessed) transportation-related sensor feature data (see
details in following sections). Then the linear transformations can be represented by the ma-
trices: Wq ∈ Rsl×sq , Wk ∈ Rsl×sk and Wv ∈ Rsl×sv . Then Q = WT

q x, K = WT
k x, V = WT

v x.
Allowing weight matrices to have the same dimensions for easier matrix computations,
sq = sk = sv, the single-head dot product attention A is a matrix multiplication of Q, K and
V following a scaling and softmax operation.

A(Q, K, V) = so f tmax
(

QKT
√

sk

)
V

The first term in the above equation can be seen as the weighting of values at all
locations of the sequence. Attention thus can inherently comprehend which parts of the
sequence are significant to estimate the output and overlook parts that are not significant.
This attribute is especially useful in the cases of imbalanced datasets since the respective
weight for negative samples can automatically be set to a small value.

Further, transformers deploy a multi-head attention mechanism, rather than simply
applying a single attention function. Multi-Head Attention is computed by extending
the single-head attention mechanism to h dimensions (multiple heads) by appending the
single-head attention outputs, followed by a linear layer.

MultiHead Attention = Concat (A(Qi, Ki, Vi)), i = 1, . . . , h

The normalized attention scores are then fed to a position-wise feed-forward layer
(PFFN) that performs linear transformations with Gaussian Error Linear Units (GELU)
activation function. The linear transformations are applied to each position individually
and identically; in other words, the transformations utilize the same parameters for all
positions of a sequence and differentiated parameters across layers. Denoting the attention
sub-block output as a and the weight matrices and bias vectors of the linear transformations
as W1, b1 and W2, b2 respectively yields:

PFFN(a) = GELU(0, aW1 + b1)W2 + b2

3.2. TMD-BERT Model

In this work, we used BERT to train a text classifier and built a model that was
fine-tuned on our data in order to produce a state-of-the-art predictions. Specifically, an
untrained layer of neurons was added to the end of the pre-trained BERT model and then
the new model was trained for our classification task. The selection of a pre-trained model
rather than developing a specific deep learning model (LSTM, CNN, etc.) that is suitable
for the specific task is justified by the fact that developing such complex models requires
high-performance computing resources so by using a pre-trained model as base, it makes
possible to develop high-performance models and solve complicated problems efficiently.
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An overview of TMD-BERT model is presented in Figure 1. More specifically, the
implementation of the model consisted of four phases.
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I. Time data from sensors: the dataset, a series of time data sensors, was already a
supervised learning problem with input and output variables. II. Data Preprocessing: The
data preparation process included (a) Resampling so that the data would be available at
the same frequency that we wanted to make predictions, (b) downsampling in order to
decrease the frequency of the samples from milliseconds to minutes and (c) normalization,
by rescaling real-valued numeric attributes into a 0 to 1 range to make model training
less sensitive to the scale of features. The goal was to establish a multivariate prediction
model so that multiple, recent timesteps could be used to make the prediction for the next
timestep. The preprocessing phase was completed in two schemas, one with and one
without Dimensionality Reduction with Principal Component Analysis (PCA), in order to
investigate its effect on the model performance. III. Bert model: Because the labels were
imbalanced, we split the data set using for each class 85% for training and 15% for testing.
The inputs were tokenized using BERT tokenizer by instantiating a pre-trained BERT model
configuration to encode the train and test data. IV. Prediction: An output of increased
detection and prediction accuracy was predicted.

In more detail, the maximum length of the sentences was 256. There are many variants
of pre-trained BERT models. In this work, bert-base-uncased was used. The BERTBase
model uses 12 layers of transformers block with 768-hidden layers, 12 self-attention heads,
and around 110M trainable parameters. It is trained on lower-cased English text. We
used BERT architecture with also adding a linear layer for predicting the output. The
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last hidden layer which corresponds to the [CLS] token was imported to the output layer
of size num_classes which is eight here. Hence, we set the flag do_lower_case to true
in BertTokenizer. The input to the BERT model was the set of measurements for each
timestamp that was treated as a sequence so that one sequence would be classified as one
of the eight labels. BertForSequenceClassification is the Bert Model transformer with a
sequence classification/regression head on top (a linear layer on top of the pooled output).
The model was tested for various batch sizes and the different number of epochs so as to
avoid any possible underfitting and improve the overall model performance. One epoch
was finally chosen among several numbers of epochs tested, as there was no significant
performance improvement in comparison with timely execution. We used batch size 1 as a
larger batch size resulted in CPU memory overflow. We used a Random sampler just for
the training set, so that the model is more representative of the overall data distribution.
For the validation set, balancing batches is not an issue, so a sequential sampler was used.
We also used the Adam optimizer, which is “computationally efficient, has little memory
requirement, invariant to diagonal rescaling of gradients, and is well suited for problems
that are large in terms of data/parameters” [31]. The learning rate was initially set to 0.00001
and epsilon is a very small number to prevent any division by zero in the implementation.
Get_linear_scheduler_with_warmup creates a schedule with a learning rate that after a
warmup period during which it increases linearly from 0 to the learning rate set in the
optimizer, it then starts to decrease linearly to 0. The hyper-parameters of the model are
summarized in Table 1.

Table 1. The parameters of the TMD-BERT model.

TMD-BERT Model

DataLoader RandomSampler (for train data)
SequentialSampler (for test data)

Batch size 1
epochs 1

Optimizer Adam
Learning rate 0.00001

epsilon 0.00000001
Scheduler get_linear_scheduler_with_warmup

For the reason that BERT requires inputs in a specific format, for each tokenized input
sentence, there were created:

• Input ids which are a sequence of integers that represent each input token in the
vocabulary of BERT tokenizer.

• Attention mask which is a sequence of 0 for padding and 1 for input tokens.
• Labels which are a sequence of 0 and 1 that represent the 8 labels of transportation modes.

In Figure 2 the fine-tuning procedure for sequence classification tasks is visualized.
The final hidden state of the [CLS] token which is taken as the input sequence, is imported
to the classification layer. That has a dimension of 8 (number of labels) × H (size of
the hidden state). In the figure, E represents the input embedding, Ti represents the
contextual representation of token I, and [CLS] is a special symbol that represents the
classification output.

As mentioned before, the attention mechanism allows the model to comprehend the
relation between words taking into consideration the content of the sentence. Attention
provides us with a way in which we can see how BERT forms complex representations
to understand language. Using BertViz [32], an interactive tool developed to visualize
attention in BERT from multiple perspectives, Figure 3 depicts the attention resulting from
an input text from our dataset, “−0.38 0.19 −0.22 0.36 0.38 0.55 0.54” and “0.03 0.37 −0.34
−0.55 0.04 0.58 0.23”, with the values representing the seven PCA principal components
on particular timestamps. Self-attention is represented by colored lines depending on
the color that corresponds to each attention head. These lines connect the tokens that
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are attending (left) with the tokens being attended to (right). The line weight reflects the
attention score. For example, in Figure 3, for different layers and attention heads, in (a) each
word seems to attend to more than one previous word with attention distributed in a
slightly uneven way across previous words in the sentence. In contrast, in (b) each word
seems to attend strongly to the immediately preceding word in the sentence. Finally, in
(c) there is a between-sentence connection without a specific pattern for this sentences case.
The fact that the attention head focuses on the [SEP] token indicates that it cannot find
anything else in the input sentence to focus on.
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The above visualizations show a mechanism of attention within the model, but BERT
learns multiple mechanisms of attention, i.e., heads, that operate alongside with each other.
In contrast with single-attention-mechanism, multi-head attention has the benefit that the
model can capture a more extensive range of word relations. Figure 4 shows the attention
in all the heads at once time for the same input text as before (i.e., “−0.38 0.19 −0.22 0.36
0.38 0.55 0.54” and “0.03 0.37 −0.34 −0.55 0.04 0.58 0.23”). Each cell shows the attention
pattern for a specific head (column) in a particular layer (row). From this visualization, we
can see that BERT produces a rich array of attention patterns.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. The attention in all the heads for the input text “−0.38 0.19 −0.22 0.36 0.38 0.55 0.54” and 
“0.03 0.37 −0.34 −0.55 0.04 0.58 0.23”. 

4. Experimental Evaluation 
In this section, the performance analysis of the proposed TMD-BERT model is pre-

sented. At first, there is a brief description of the dataset, then the data preparation is pre-
sented and finally, the analysis of the results follows.  

4.1. Dataset Description 
The dataset exploited in the experiments of this work, is a part of the initial Sussex-

Huawei Locomotion-Transportation (SHL) dataset. It comprises 68 days of recording dur-
ing a period from 1 March 2017 to 5 July 2017 and it was collected from one participant’s 
phone sensors. The phone was in his trouser’s front pocket. The participant used a variety 
of 8 transportation modes: Still, Walk, Run, Bike, Car, Bus, Train, and Subway. The meas-
urements are derived from four smartphone sensors: magnetometer, accelerometer, gyro-
scope, and pressure sensor, which measure temperature, pressure, and altitude. The data 
set consists of 181,319 timestamps. The goal was to frame a forecasting problem for pre-
dicting the transportation mode that will be used at the next timestep, given the sensor 
measurements and transportation mode used in past, and recent timesteps. 

4.2. Preliminary Data Analysis 
The dataset used in the experiments was a supervised learning problem that had 

input and output variables (labels). The feature values per class are shown in Table 2. 

Figure 4. The attention in all the heads for the input text “−0.38 0.19 −0.22 0.36 0.38 0.55 0.54” and
“0.03 0.37 −0.34 −0.55 0.04 0.58 0.23”.

4. Experimental Evaluation

In this section, the performance analysis of the proposed TMD-BERT model is pre-
sented. At first, there is a brief description of the dataset, then the data preparation is
presented and finally, the analysis of the results follows.

4.1. Dataset Description

The dataset exploited in the experiments of this work, is a part of the initial Sussex-
Huawei Locomotion-Transportation (SHL) dataset. It comprises 68 days of recording
during a period from 1 March 2017 to 5 July 2017 and it was collected from one participant’s
phone sensors. The phone was in his trouser’s front pocket. The participant used a
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variety of 8 transportation modes: Still, Walk, Run, Bike, Car, Bus, Train, and Subway. The
measurements are derived from four smartphone sensors: magnetometer, accelerometer,
gyroscope, and pressure sensor, which measure temperature, pressure, and altitude. The
data set consists of 181,319 timestamps. The goal was to frame a forecasting problem for
predicting the transportation mode that will be used at the next timestep, given the sensor
measurements and transportation mode used in past, and recent timesteps.

4.2. Preliminary Data Analysis

The dataset used in the experiments was a supervised learning problem that had input
and output variables (labels). The feature values per class are shown in Table 2.

Table 2. Samples per class.

Class Samples

Still 19,085
Walk 46,987
Run 39,814
Bike 43,988
Car 26,268
Bus 3,861

Train 623
Subway 693

The fact that one certain class categories comprise a larger proportion of the dataset
than others, is not an issue in this work firstly because none of the transportation modes
is more significant than others, secondly Bert seems to handle imbalanced classification
well, thus removing the need to use standard data augmentation methods so as to limit
this problem of imbalance [33] and thirdly, as it appears from the results all classes are
predicted regardless of the samples number for each class.

Figure 5 shows the distribution of all sensor measurements, including the mean value
of the 3 or 4 axes of acceleration, magnitude, orientation, gravity and linear acceleration,
as long as the temperature, pressure, and altitude values. The same features were used to
calculate correlation in pairs.
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The results of the correlation analysis were calculated using Pearson’s Correlation
Coefficient (PCC) [34] and are shown in Figure 6. The PCC appears above the scatterplot
for every pair of features. It shows the linear relationship between two sets of data by
returning a value of between −1 and +1. The highest positively correlated pairs of features
are acceleration-gravity (ρ = 0.87) and the highest negative ones are altitude and pressure
(ρ = −0.85), as long as gravity and magnitude (ρ = −0.77). Most of the other pairs of
features have a low percentage of interaction. In order to additionally visualize the insights
of the dataset, not only on the interrelationship between sensor parameters but on the single
machine learning variable distribution, too, the diagonal of the pair plot diagram shows
the distribution of every single variable whereas the lower triangle depicts the probability
distribution of one with respect to the other values.
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4.3. Data Preparation

The dataset, having input and output variables, was already a supervised learning
problem. For better performance, data was processed by dropping rows with class 0 (null
class) and by sorting time values by date. Taking into consideration the fact that switching
between modes of transport can be quite frequent, the dataset was resampled at a 1-minute
time-window frequency, by making a downsampling from milliseconds to minutes. The
problem was framed so that recent time steps could be used to predict the transport mode
for the next time step. Also, the input features were normalized because of the different
scales in input values.

Two different approaches were tested before feeding the input data to the model.
Firstly, the data was used as the initial set of 22 features. After that, before applying BERT,
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a dimensionality reduction algorithm was applied, so as to reduce the dimension of the
training data and examine whether this will affect and to what extent the performance of
the model. Because this study assumes the sensor values for each timestamp as sequences
and each measurement as a word, the values were rounded to 2 decimal places so to have
a more distinct and clear vocabulary. The technique used for dimensionality reduction
was Principal Component Analysis (PCA). A number of n-components values were tested
to fulfill the best model performance. As presented in Figure 7, in order to implement
PCA, seven principal components were the best choice so as to keep over 90% of the total
variance of the data.
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4.4. Experimental Results

In this subsection, the performance of the proposed optimized BERT model is eval-
uated. As a benchmark to the BERT model in order to determine transportation modes,
LSTM was used, since it is the best-performing model up to the present.

The LSTM model was defined as having 64 neurons in the first hidden layer, a Softmax
activation function which is popularly used for multiclass classification problems, and
8 output values in the output layer. Categorical cross-entropy was used as a method to
calculate errors and Adam optimizer with a learning rate of 0.001 in order to update the
weights of the neural network. According to [31], Adam is “computationally efficient,
has little memory requirement, and is well suited for problems that are large in terms of
data/parameters”. Additionally, dropout was implemented to randomly drop 20% of units
from the network. Various tests were performed on the number of epochs and batch sizes
until the appropriate values were selected for optimal results in model performance. In
summary, the LSTM model hyperparameters are presented in Table 3.

Table 3. The parameters of LSTM.

LSTM hyperparameters Values

Num of neurons in the first layer 64
Output values 8

Optimizer Adam
Dropout 0.2

Learning rate 0.001
Error calculation Categorical cross-entropy

Dense Layer 1
Activation function Softmax



Electronics 2023, 12, 581 12 of 17

The performance evaluation of various classification models, was implemented by
calculating several metrics, i.e., accuracy, precision, recall, F1-score, confusion matrix,
Matthews correlation coefficient (MCC), and Cohen Kappa Score (CKS). Among these, the
weighted F1-score was selected as the most representative metric, because it corresponds
to the average F1-score value, taking into consideration the proportion of each class in the
dataset. For forecasting, 1 minute before was taken into consideration, so as to predict the
media of transport used in the next minute.

The experimental results indicated that TMD-BERT outperformed LSTM implemen-
tation. Figure 8 shows F1 Score for TMD-BERT compared with LSTM before and after
dimensionality reduction with PCA, for both techniques.
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Figure 10 shows the average values of the actual transport media used, indicated
by the blue line, and the predicted values indicated by the orange line. It is clear that
the TMD-BERT model was able to capture the overall trend as the orange and blue lines
coincide for the most part.
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Similarly, the actual and predicted values per class are shown in Figure 11. The model
does seem to provide an adequate fit in all classes.
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Figure 11. The actual and predicted values per class without dimensionality reduction.

Figure 12 presents the accuracy per class before and after applying the PCA algorithm
to our model. The classes Still, Train and Subway were predicted more accurately without
dimensionality reduction and only Bus achieved an increase in accuracy after applying
PCA. The prediction for the other classes (Walk, Run, Bike, Car) was almost perfect in
both cases.
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In terms of time, as depicted in Figure 13, TMD-BERT compared to LSTM had a longer
training and prediction time, as the model ran on a CPU system. Here it should be noted
that TMD-BERT can allow for massive parallelization of time series calculations and is thus
far better able to take advantage of parallelism provided by modern GPU acceleration, thus
significantly decreasing training time.
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The Matthews correlation coefficient (MCC) [35] is a metric used widely in the NLP
field to evaluate performance, especially for imbalanced classes. With +1 being the best
score, and −1 the worst score, 0.997–0.998 value indicates a high performance of the model.
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Cohen Kappa Score (CKS) [36], a measure that can handle efficiently both multi-class and
imbalanced class issues, can be defined as a metric used to compare the predicted labels
deriving from a model with the actual data labels. The value ranges from -1 (indicating
worst performance) to 1 (indicating best performance). A Cohen Kappa value of 0 means
that the model is close to random guessing whereas a value of 1 means that the model
is perfect [37]. A value of 0.997–0.998 indicates a high performance of the model. In
Figure 14a, F1 Score, Accuracy, Matthews Correlation Coefficient (MCC), and Cohen Kappa
Score (CKS) values before and after applying PCA, are depicted. True positives, False
negatives, False positives, and True negatives values involved in the calculation of the
above metrics, are shown in Figure 14b, being indicative of Bike class.
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5. Conclusions

The automatic detection of transportation modes using mobile sensor data is a popular
research problem whose outcome can be used further for support in several Intelligent
Transportation System applications, but also for personalization and enhanced experience
offered in mobile applications and service provision. Our proposed TMD-BERT model
introduces the strengths of the bidirectional encoder representations from the transformers
approach in the TMD problem, handling the entire sensor data sequence as a whole and
thus allowing for better long-range dependency modeling. An extensive experimental
evaluation shows the high performance of the model in comparison to the state of the
art. Future directions of our work include the investigation of methods for increased
interpretability of the provided framework, which at the same time retains an augmented
degree of prediction accuracy regarding the estimated result.
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